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Abstract: Chronic inflammation induces autoimmune disorders and chronic diseases. Several natural
products activate nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, attenuating inflamma-
tory responses. Ergosta-7,9(11),22-trien-3β-ol (EK100) isolated from Cordyceps militaris showed anti-
inflammatory and antioxidative activity, but those mechanisms are still unclear. This study is the first to
investigate EK100 on antioxidant Nrf2 relative genes expression in LPS-stimulated macrophage-like cell
lines. The results showed that EK100 reduced IL-6 (interleukin-6) and tumor necrosis factor-α production.
EK100 also attenuated a mitogen-activated protein kinase/activator protein-1 (MAPK/AP-1) pathway
and interleukin-6/Janus kinase/signal transducer and activator of transcription (IL-6/JAK/STAT) path-
way in LPS-stimulated cells. Toll-like receptor 4 (TLR4) inhibitor CLI-095 and MAPK inhibitors can
synergize the anti-inflammatory response of EK100 in LPS-stimulated cells. Moreover, EK100 activated
Nrf2/HO-1 (heme oxygenase-1) signaling in LPS-stimulated murine macrophage-like RAW 264.7 cells,
murine microglial BV2 cells, and human monocytic leukemia THP-1 cells. However, Nrf2 small inter-
fering RNA (Nrf2 siRNA) reversed EK100-induced antioxidative proteins expressions. In conclusion,
EK100 showed anti-inflammatory responses via activating the antioxidative Nrf2/HO-1 signaling and
inhibiting TLR4 related MAPK/AP-1 induced IL-6/JAK/STAT pathways in the LPS-stimulated cells
in vitro. The results suggest EK100 acts as a novel antioxidant with multiple therapeutic targets that can
potentially be developed to treat chronic inflammation-related diseases.

Keywords: Ergosta-7,9(11),22-trien-3β-ol (EK100); Cordyceps militaris; anti-inflammatory response;
MAPK/AP-1 signaling pathways; IL-6/JAK/STAT signaling pathways; Nrf2/ HO-1 signaling path-
way; atomic force microscopy (AFM)
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1. Introduction

Chronic inflammation primes several autoimmune diseases and neurodegenerative
disorders, leading to cause disability and mortality worldwide [1]. The other studies
described the Kelch-like ECH-associated protein/nuclear factor erythroid 2-related factor
2/antioxidant responsive element (Keap1/Nrf2/ARE) signaling pathways to regulate
antioxidant gene expression and inhibit the progression of inflammation [2]. Nrf2 also
suppresses pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-6 (IL-6) by
blocking the transcription factor nuclear factor-kappa B (NF-κB) inflammatory response in
macrophage cells [3]. Although Nrf2 elevated ARE expressions such as heme oxygenase-1
(HO-1), catalase (CAT), and superoxide dismutases (SODs), Nrf2 also attenuates the free
radicals damage response [4].

MAPK signaling induced the release of tumor necrosis factor-α (TNF-α) and interleukin-
6 (IL-6) [5]. Then, IL-6 binding to the transmembrane IL-6 receptor and subsequent activa-
tion of Janus kinase (JAK), which is following the phosphorylation of the signal transducer
and activator of transcription (STAT) 1/3 and the activated STAT complex will translocate
from the cytoplasm to the cellular nucleus initiating transcription of STAT3 target genes [6].
Moreover, JAKs are cytoplasmic tyrosine kinases that could phosphorylate and dimerize
the STATs. The phosphorylation and dimerization activate STATs translocated into the
cellular nucleus. Furthermore, STAT1/3 binding to specific target DNA triggered inflam-
matory cytokines of TNF-α, IL-2, IL-6 [7,8]. p38 MAPK regulated transcription factor Nrf2
activation and antioxidative HO-1 expression. However, HO-1 is an ARE and exhibited
anti-inflammation responses [9].

Cordyceps militaris (CM) was traditionally used in ancient times for anti-inflammatory,
antioxidant, and anti-aging responses and revitalizing various body systems [10]. Ergosta-
7,9(11),22-trien-3β-ol (EK100) was separated and purified from CM, which interfered with
Lipopolysaccharide (LPS) docking to Myeloid differentiation protein-2 (MD-2) in the toll-
like receptor 4 (TLR4) attenuate inflammatory effect [11]. Moreover, EK100 inhibited the
expression of IL-6, iNOS, and NF-κB [12,13]. EK100 inhibited the release of cytokines
such as TNF-α, nitric oxide (NO), IL-1β, and IL-6 expressions [14]. In addition, EK100 in-
creased the endogenous antioxidant expression of CAT and SOD in carrageenan-stimulated
mice [15]. However, the relationship between antioxidative and anti-inflammatory effects
is still unclear. Thus, this study aims to explore EK100 on antioxidant Nrf2 signaling and
inflammatory pathways in LPS-stimulated macrophage-like cell lines.

2. Materials and Methods
2.1. Materials

CM was obtained from Hsinhai Biotechnology (Taichung, Taiwan). Dimethyl sulfox-
ide (DMSO), dexamethasone (Dexa), paraformaldehyde, bovine serum albumin (BSA),
LPS), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and 4′,6-
diamidino-2-phenylindole (DAPI) were acquired from Sigma-Aldrich (St. Louis, MO,
USA). Dulbecco’s Modified Eagle’s Medium (DMEM), DMEM/F12 medium, RPMI1640
medium, penicillin, streptomycin, and fetal bovine serum (FBS), LipofectamineTM 3000,
TAK-242 (CLI-095), TRIzol™ Reagent, SuperScript™ II Reverse Transcriptase, RNaseOUT™
Recombinant RNase Inhibitor, Hoechst 33258, SYBR green, Alexa Fluor 488, and Alexa
Fluor 594 were purchased from Invitrogen (Carlsbad, CA, USA). Primary antibodies of
PI3K, p-PI3K, Akt, p-Akt, IKK, p-IKK, ERK, p-ERK, JNK, p-JNK, p38, p-p38, c-Jun, c-Fos,
Nrf2, p-Nrf2, SOD1, SOD2, CAT, HO-1, STAT1, p-STAT1, STAT3, p-STAT3(727), STAT3,
p-STAT3(705), JAK1, p-JAK1, JAK2, p-JAK2, PCNA, and β-actin were obtained from Cell
Signaling (Beverly, MA, USA).

2.2. Cell Culture

RAW 264.7 murine macrophage-like cells and THP-1 human leukemia monocytic cells
were obtained from Food Industry Research and Development Institute (Hsinchu, Taiwan).
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BV2 murine microglial cells were purchased from American Type Culture Collection
(Manassas, VA, USA).

RAW 264.7 cells were incubated in a DMEM medium with 10% FBS and antibiotics
(100 units/mL penicillin and 100 µg/mL streptomycin). BV2 cells were cultured in a
DMEM/F12 with 10% FBS, 2 mM glutamine, and antibiotics. However, THP-1 cells were
cultivated in an RPMI1640 medium with 10% FBS and antibiotics. The cells were treated
with phorbol 12-myristate 13-acetate (PMA) for 24–48 h to stimulate macrophage differ-
entiation before experiments. All cells were hatched in the incubator at 37 ◦C containing
5% CO2.

2.3. Atomic Force Microscopy (AFM) Assay

AFM assay was used to explore three-dimensional morphological information of anti-
inflammatory effects as described previously [16]. In brief, RAW 264.7 cells (5 × 104 cells/mL)
were cultured on the glass coverslips in a 6-well plate. Cells were treated with 80 µM
EK100 or 2 µM Dexa 1 h before 100 ng/mL LPS was stimulated for 24 h. Then, 4%
paraformaldehyde was added to fix the cells. The AFM probe was APP-Nano ACTA series
whose tip and cantilever spring constant radius. Furthermore, the cell-binding force of
AFM was analyzed with NanoScope (Bruker Co., Santa Barbara, CA, USA).

2.4. Enzyme-Linked Immunosorbent Assay (ELISA)

Measured the creation of cytokines using ELISA assay as described previously [17].
In brief, cells were treated with 0, 10, 20, 40, and 80 µM EK100 for 1 h before being
incubated with LPS in various periods. Then, the cell culture supernatant was collected
and determined for cytokines levels using ELISA kits (IL-6 and TNF-α) by Micro-Reader
EPOCH2 plate reader (BioTek, Winooski, VT, USA).

2.5. Quantitative Polymerase Chain Reaction Assay (qPCR)

Analyzed RNA expression was using qPCR assay as described previously [18]. Briefly,
RAW 264.7 cells (1.5 × 105 cells/well) were cultured in 6-well plates. 0, 10, 20, 40, and
80 µM EK100 were treated before LPS treatment. TRIzol reagent with SuperScript™ II
Reverse Transcriptase and RNaseOUT™ Recombinant RNase Inhibitor extracted RNA. The
RNA which was being collected was transformed into cDNA by using cDNA kits (Roche,
Mannheim, Germany). The following PCR primer sequences were used: IL-6_ forward (F):
5′-CCGGAGAGGAGACTTCACAG-3′, and IL-6_reverse (R): 5′-TCCACGATTTCCCAGAG-
AAC-3′ (Sequence ID: NM_013693.3); TNF-α_F: 5′-TCAGCCTCTTCTCATTCCTG-3′, and
TNF-α_R: 5′-TGAAGAGAACCTGGGAGTAG-3′ (Sequence ID: NM_013693.3); GAPDH_F:
5′-GGCCTTCCGTGTTCCTACC-3′, GAPDH_R: 5′-TGCCTGCTTCACCACCTTC-3′ (Se-
quence ID: BC023196.2). The thermal cycler parameters were followed by 40 cycles of 95 ◦C
for 10 s and 60 ◦C for 30 s. StepOne Plus Real-Time PCR Systems (Applied Biosystems,
Carlsbad, CA, USA) were applied to PCR reactions, which also operated using SYBR green
working solution. The following steps about thermal cycler parameters were used 95 ◦C
for 10 min, followed by 40 cycles of 95 ◦C for 10 s, and 60 ◦C for 30 s.

2.6. Western Blotting Analysis (WB)

WB was used for analytical performance in immunogenetics to detect specific proteins
described previously [19]. In brief, cells were treated with 0, 10, 20, 40, and 80 µM EK100 1
h before LPS. Proteins were extracted by PRO-PREP™ and then separated by 8-12% SDS-
PAGE. Proteins were transferred from gel to polyvinylidene fluoride (PVDF) membranes
(Millipore Co. Billerica, MA, USA) and blocked with 5% BSA. Then probed with the
primary antibodies overnight at 4 ◦C before incubated with horseradish peroxidase (HRP)
conjugated secondary antibody. The antibody detection reaction was performed with
enhanced chemiluminescence (ECL) (Amersham, Piscataway, NJ, USA). The antibodies
were captured using a biomolecular imager (Las 4000 mini, GE, Pittsburgh, PA, USA).
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2.7. Immunofluorescence Assay (IF)

IF assay was used for visualized the specificity of antibodies with fluorescent dyes in
the cells. Therefore, it allows visualization of the target proteins distribution through the
sample under a fluorescence microscope, as described previously [20]. In brief, cells were
incubated in a confocal laser dish (500 cells/dish) for 16 h and treated with 80 µM EK100 or
2 µM Dexa before being incubated with LPS. Cells were fixed with 4% paraformaldehyde,
then permeabilized with 0.25% Triton X-100. It blocks nonspecific binding by 5% PBS-BSA,
probes with the primary antibodies, and labels a secondary antibody with IgG Alexa Fluor
488 or Alexa Fluor 594. After that, the nuclei were stained with DAPI gel (1 µg/mL) in
1% BSA for 20 min at 37 ◦C in the darkness. IF staining images were visualized with an
SP2/SP8X Confocal Spectral Microscope (Leica Microsystems, Wetzlar, Germany).

2.8. Nrf2 siRNA Transfection Assay

Nrf2 siRNA transfection assay was used to analyze the Nrf2 antioxidation activity,
as described previously [18]. In brief, RAW 264.7 cells were cultured in 6-well plates
(2 × 105 cells/well). Transfection of DNA fragment encoding Nrf2 siRNA or Nrf2-negative
control siRNA was performed using LipofectamineTM 3000 (Invitrogen). Nfe2l2 Mouse
siRNA Oligo Duplex was used for transfection of small interfering RNA (siRNA). Nrf2
siRNA to knockdown endogenous Nrf2, confirming the protocol formulated by the manu-
facturer (Invitrogen). After 24–48 h, EK100 and LPS mixture was added to the transfected
cells for 18 h, followed by WB and the other analyses.

2.9. Statistical Analysis

All experimental data were demonstrated as the mean ± SEM obtained from 3 indi-
vidual experiments, and experiments were conducted in triplicates (n = 3). Statistical signif-
icance was performed using one-way analysis of variance (ANOVA) followed by Tukey’s
honest significant difference (HSD) test or the Student’s two-tailed t-test to determine the
statistical significance via SPSS17.0 software system (IBM, Chicago, IL). Differences were
measured statistically significant at the level when p-value < 0.05.

3. Results
3.1. EK100 Inhibited IL-6 and TNF-α Released in LPS-Stimulated RAW 264.7 Cells

The results indicated that LPS induced the production of IL-6 and TNF-α in RAW
264.7 cells. Compared to the LPS group, EK100 at 80 µM decreased inflammatory cytokines
of IL-6 and TNF-α, respectively. EK100 reduced the ratio of inflammatory cytokines of
IL-6 (Figure 1a) and TNF-α (Figure 1b), respectively. Moreover, LPS increased the cytokine
production of IL-6 and TNF-α, and EK100 also reduced the mRNA expression of TNF-α
and IL-6. In the production of pro-inflammatory cytokines expression of mRNA, EK100
significantly inhibited mRNA of IL-6 (Figure 1c) and TNF-α (Figure 1d), respectively. Those
results showed EK100 suppressed LPS-stimulated cytokines released from IL-6 and TNF-α
in RAW 264.7 cells.
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using qPCR assay as described in Materials and Methods. Data are presented as the means ± SEM 
of three independent experiments (n = 3). # p < 0.05 compared to the control group, * p < 0.05, ** p < 
0.01, and *** p < 0.001 compared to LPS alone group. 
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increased to 59.0 ± 3.3 µm, the EK100 group significantly reduced to 13.6 ± 0.4 µm, and the 
Dexa group reduced to 19.4 ± 1.97 µm (Figure 2c). Analysis of variance with AFM assay 
showed that EK100 and Dexa could reverse LPS-stimulated morphological changes in 
RAW 264.7 cells. 

Figure 1. EK100 inhibited IL-6 and TNF-α released in LPS-stimulated RAW 264.7 cells. RAW
264.7 cells were treated with 0, 10, 20, 40, and 80 µM EK100 for 1 h before being stimulated with
100 ng/mL LPS for 24 h. Then the suspension media was separated from the remaining cells. In
the suspension media, we detected the cytokines productions of IL-6 (a) and TNF-α (b) by using
the specific ELISA kit, respectively. It extracted and analyzed IL-6 (c) and TNF-α (d) mRNA in the
remaining cells by using qPCR assay as described in Materials and Methods. Data are presented as
the means ± SEM of three independent experiments (n = 3). # p < 0.05 compared to the control group,
* p < 0.05, ** p < 0.01, and *** p < 0.001 compared to LPS alone group.

3.2. EK100 Prevented the Morphological Change in LPS-Stimulated RAW 264.7 Cells

Almost 23.65% of the LPS-stimulated only group showed dendritic morphological
transition change and lamellipodia in the AFM assay. Conversely, EK100 and Dexa pre-
sented significantly reverse LPS-stimulated morphological adaptation to the distinctive
oval shape, with the smooth cell surface and converse (Figure 2a). The morphological
change (length/width > 1.5) of AFM assay in the control group was below 0.5% in RAW
264.7 cells. However, after LPS-stimulated, the morphological change in the only LPS-
induced group increased to 28.7 ± 7.1%, but the EK100 group significantly reduced to
1.7 ± 1.2%, and the Dexa group reduced to 5.0± 2.0% (Figure 2b). Moreover, the horizontal
distance in the control group was 13.6 ± 0.5 µm. However, the LPS-induced alone group
increased to 59.0 ± 3.3 µm, the EK100 group significantly reduced to 13.6 ± 0.4 µm, and
the Dexa group reduced to 19.4 ± 1.97 µm (Figure 2c). Analysis of variance with AFM
assay showed that EK100 and Dexa could reverse LPS-stimulated morphological changes
in RAW 264.7 cells.
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Figure 2. EK100 prevented the morphological change in LPS-stimulated RAW 264.7 cells. (a) Cells were treated with
80 µM EK100 or Dexa (2 µM) for 1 h and stimulated with 100 ng/mL LPS for 24 h. The dendritic transformation assay and
surface ultrastructural morphological change by AFM assay, including amplitude error, three-dimensional (3D) images, 3D
projection, and horizontal distances as designated and described in Materials and Methods. Those analysis data from AFM
assay of the ratio of morphological change (b) and the horizontal distance (c) were analyzed using NanoScope analysis
software. All data calculated in the cells were presented as the mean ± SEM of three independent experiments (n = 3).
# p < 0.05 compared with the control group and *** p < 0.001 as compared with LPS alone group.
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3.3. EK100 Suppressed the MAPK/AP-1 Pathways in LPS-Stimulated RAW 264.7 Cells

As shown in Figure 3a, LPS increased the maximum pro-inflammatory mediator
expression of phosphorylation of MAPKs; within 15–30 min LPS-induced phosphorylated
MAPKs. This study indicates that EK100 attenuated phosphorylated MAPKs significantly.
Compared with the LPS-induced only group, 80 µM EK100 suppressed the phosphorylated
extracellular signal-regulated kinase (ERK) to 0.19 ± 0.03 folds, c-Jun N-terminal kinase
(JNK) to 0.29 ± 0.03 folds, and p38 MAPK (P38) to 0.39 ± 0.02 folds (Figure 3b). Conse-
quently, LPS-induced transcription factor AP-1 translocated into the cellular nucleus from
the cytoplasm in the cells, and EK100 attenuated c-Jun and c-Fos significantly. Compared
with the LPS-induced only group, 80 µM EK100 inhibited c-Jun level to 0.2 ± 0.05 folds
and c-Fos level to 0.34 ± 0.02 folds, respectively (Figure 3c). IF staining also showed EK100
inhibited the expression of c-Jun in the cellular nucleus (Figure 3d). However, ERK inhibitor
PD98095-synergized EK100 attenuated the phosphorylated ERK1/2 (Figure 3e). JNK in-
hibitor SP600125 did not influence that EK100 attenuated the phosphorylation of JNK in
LPS stimulated cells (Figure 3f). p38 inhibitor SB203580-synergized EK100 attenuated the
phosphorylated p38 (Figure 3g). In RAW 264.7 cells, LPS also induced the phosphorylated
ERK1/2, JNK, and p38. EK100 reduced phosphorylated ERK1/2, JNK, and p38. Moreover,
TLR4 inhibitor CLI-095-synergized EK100 reduced the phosphorylated ERK1/2, JNK, and
p38 (Figure 3h). The results indicated that EK100 reduced LPS-stimulated phosphory-
lated ERK1/2, JNK, and p38 and inhibited the translocation and activation of c-Jun and
c-Fos. These results further supported that EK100 attenuated the TLR4 signaling induced
MAPK/AP-1 signaling pathways in RAW 264.7 cells.

Antioxidants 2021, 10, x FOR PEER REVIEW 7 of 20 
 

AFM assay of the ratio of morphological change (b) and the horizontal distance (c) were analyzed using NanoScope anal-
ysis software. All data calculated in the cells were presented as the mean ± SEM of three independent experiments (n = 3). 
# p < 0.05 compared with the control group and *** p < 0.001 as compared with LPS alone group. 

3.3. EK100 Suppressed the MAPK/AP-1 Pathways in LPS-Stimulated RAW 264.7 Cells 
As shown in Figure 3a, LPS increased the maximum pro-inflammatory mediator ex-

pression of phosphorylation of MAPKs; within 15–30 min LPS-induced phosphorylated 
MAPKs. This study indicates that EK100 attenuated phosphorylated MAPKs signifi-
cantly. Compared with the LPS-induced only group, 80 µM EK100 suppressed the phos-
phorylated extracellular signal-regulated kinase (ERK) to 0.19 ± 0.03 folds, c-Jun N-termi-
nal kinase (JNK) to 0.29 ± 0.03 folds, and p38 MAPK (P38) to 0.39 ± 0.02 folds (Figure 3b). 
Consequently, LPS-induced transcription factor AP-1 translocated into the cellular nu-
cleus from the cytoplasm in the cells, and EK100 attenuated c-Jun and c-Fos significantly. 
Compared with the LPS-induced only group, 80 µM EK100 inhibited c-Jun level to 0.2 ± 
0.05 folds and c-Fos level to 0.34 ± 0.02 folds, respectively (Figure 3c). IF staining also 
showed EK100 inhibited the expression of c-Jun in the cellular nucleus (Figure 3d). How-
ever, ERK inhibitor PD98095-synergized EK100 attenuated the phosphorylated ERK1/2 
(Figure 3e). JNK inhibitor SP600125 did not influence that EK100 attenuated the phos-
phorylation of JNK in LPS stimulated cells (Figure 3f). p38 inhibitor SB203580-synergized 
EK100 attenuated the phosphorylated p38 (Figure 3g). In RAW 264.7 cells, LPS also in-
duced the phosphorylated ERK1/2, JNK, and p38. EK100 reduced phosphorylated 
ERK1/2, JNK, and p38. Moreover, TLR4 inhibitor CLI-095-synergized EK100 reduced the 
phosphorylated ERK1/2, JNK, and p38 (Figure 3h). The results indicated that EK100 re-
duced LPS-stimulated phosphorylated ERK1/2, JNK, and p38 and inhibited the transloca-
tion and activation of c-Jun and c-Fos. These results further supported that EK100 attenu-
ated the TLR4 signaling induced MAPK/AP-1 signaling pathways in RAW 264.7 cells. 

 
Figure 3. Cont.



Antioxidants 2021, 10, 1430 8 of 19Antioxidants 2021, 10, x FOR PEER REVIEW 8 of 20 
 

 

 

 
Figure 3. Cont.



Antioxidants 2021, 10, 1430 9 of 19Antioxidants 2021, 10, x FOR PEER REVIEW 9 of 20 
 

 
Figure 3. EK100 suppressed the MAPK/AP-1 pathways in LPS-stimulated RAW 264.7 cells. (a) Cells 
were treated with 0, 10, 20, 40, and 80 µM EK100 and then treated with 100 ng/mL LPS to evaluate 
the protein expression maximum peaks of p-ERK, p-JNK, and p-p38 in LPS-stimulated RAW 264.7 
cells. (b) Cells were treated with 0, 10, 20, 40, and 80 µM EK100 for 1 h before being stimulated with 
LPS for 30 min. Then used WB analyzed MAPK protein levels (c). The protein expressions of tran-
scription factor c-Jun and c-Fos in cytoplasm and nucleus were measured by WB. (d) Cells were 
treated with 80 µM EK100 for 1 h before being stimulated with LPS for 2 h. The localization and 
expression of c-Jun were measured by IF staining as designated in Materials and Methods. Cells 
were treated with EK100 and MAPK inhibitor (PD98095, SP600125, and SB203580) and TLR4 (CLI-
095) for 1 h before being stimulated with LPS for 30 min. The protein expressions of p-ERK (e), p-
JNK (f), p-p38 (g), and p-MAPKs (h) were detected by WB. Data presented as folds means ± SEM 
compared with β-actin in the cellular cytoplasm or PCNA in the cellular nucleus of three independ-
ent experiments (n = 3). # p < 0.05 compared with the control group, * p < 0.05, ** p < 0.01, and *** p < 
0.001 compared with LPS alone or group no EK100 treated group. 

3.4. EK100 Inhibited the JAKs/STATs Pathways in LPS-Stimulated RAW 264.7 Cells 
The results displayed that LPS stimulated phosphorylated JAK1/2 and EK100 atten-

uated p-JAK1/2 significantly (Figure 4a). LPS also stimulated phosphorylated STAT1/3 
and EK100 attenuated p-STAT1, p-STAT3 (727), and p-STAT3 (705) significantly in the 
cytoplasm (Figure 4b). Consequently, EK100 also reduced LPS-stimulated protein expres-
sion and translocation of p-STAT1 and p-STAT3 in the cellular nucleus (Figure 4c). Fur-
thermore, 80 µM EK100 inhibited the ratio of protein expression of nuclear transcription 
factor p-STAT1 level to 0.11 ± 0.03 folds, p-STAT3 (727) level to 0.17 ± 0.03 folds, and p-
STAT3 (705) level to 0.11 ± 0.02 folds, respectively (Figure 4c). As shown in Figure 4d, IF 
staining assay also showed that LPS-induced p-STAT3 (705) translocated into the cellular 
nucleus, and EK100 prevented the nuclear translocation of p-STAT3 (705) into the cellular 
nucleus significantly. These findings indicate that EK100 attenuated the transcription fac-
tor proteins translocation and activation of p-STAT1 and p-STAT3 in RAW 264.7 cells. 
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were treated with 0, 10, 20, 40, and 80 µM EK100 and then treated with 100 ng/mL LPS to evaluate the
protein expression maximum peaks of p-ERK, p-JNK, and p-p38 in LPS-stimulated RAW 264.7 cells.
(b) Cells were treated with 0, 10, 20, 40, and 80 µM EK100 for 1 h before being stimulated with LPS for
30 min. Then used WB analyzed MAPK protein levels (c). The protein expressions of transcription
factor c-Jun and c-Fos in cytoplasm and nucleus were measured by WB. (d) Cells were treated with
80 µM EK100 for 1 h before being stimulated with LPS for 2 h. The localization and expression of
c-Jun were measured by IF staining as designated in Materials and Methods. Cells were treated with
EK100 and MAPK inhibitor (PD98095, SP600125, and SB203580) and TLR4 (CLI-095) for 1 h before
being stimulated with LPS for 30 min. The protein expressions of p-ERK (e), p-JNK (f), p-p38 (g), and
p-MAPKs (h) were detected by WB. Data presented as folds means ± SEM compared with β-actin
in the cellular cytoplasm or PCNA in the cellular nucleus of three independent experiments (n = 3).
# p < 0.05 compared with the control group, * p < 0.05, ** p < 0.01, and *** p < 0.001 compared with
LPS alone or group no EK100 treated group.

3.4. EK100 Inhibited the JAKs/STATs Pathways in LPS-Stimulated RAW 264.7 Cells

The results displayed that LPS stimulated phosphorylated JAK1/2 and EK100 attenu-
ated p-JAK1/2 significantly (Figure 4a). LPS also stimulated phosphorylated STAT1/3 and
EK100 attenuated p-STAT1, p-STAT3 (727), and p-STAT3 (705) significantly in the cytoplasm
(Figure 4b). Consequently, EK100 also reduced LPS-stimulated protein expression and
translocation of p-STAT1 and p-STAT3 in the cellular nucleus (Figure 4c). Furthermore,
80 µM EK100 inhibited the ratio of protein expression of nuclear transcription factor p-
STAT1 level to 0.11 ± 0.03 folds, p-STAT3 (727) level to 0.17 ± 0.03 folds, and p-STAT3
(705) level to 0.11 ± 0.02 folds, respectively (Figure 4c). As shown in Figure 4d, IF staining
assay also showed that LPS-induced p-STAT3 (705) translocated into the cellular nucleus,
and EK100 prevented the nuclear translocation of p-STAT3 (705) into the cellular nucleus
significantly. These findings indicate that EK100 attenuated the transcription factor proteins
translocation and activation of p-STAT1 and p-STAT3 in RAW 264.7 cells.
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Figure 4. EK100 suppressed the MAPK/AP-1 pathways in LPS-stimulated RAW 264.7 cells. Cells
were treated with 0, 10, 20, 40, and 80 µM EK100 for 1 h before being stimulated with 100 ng/mL LPS
for 6 h. (a) The phosphorylation protein expressions JAK1/2 were analyzed. (b) The phosphorylation
protein expressions p-STAT1 (705), p-STAT3 (727), and p-STAT3 (705) in the cellular cytoplasm were
analyzed. (c) The phosphorylation and protein expression in the cellular nucleus of p-STAT1 (705),
p-STAT3 (727), and p-STAT3 (705) were analyzed. (d) Cells were treated with 80 µM EK100 for
1 h before being stimulated with LPS for 6 h. p-STAT (Tyr705) was measured with IF staining. All
experiments were designated and described in Materials and Methods. Data presented as folds
means ± SEM compared with β-actin in the cellular cytoplasm or PCNA in the cellular nucleus
of three independent experiments (n = 3). # p < 0.05 compared with the control group, * p < 0.05,
** p < 0.01, and *** p < 0.001 compared with LPS alone group.
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3.5. EK100 Activated the Nrf2/HO-1 Signaling Pathway in LPS-Stimulated Macrophage-like Cells

In RAW 264.7 cells, EK100 stimulated antioxidative Nrf2 protein expression signifi-
cantly in the cellular nucleus of RAW 264.7 cells. At 80 µM EK100, and compared with
the LPS group, Nrf2 protein expression increased from 0.22 ± 0.02 to 0.81 ± 0.06 folds
in the cellular nucleus (Figure 5a). Simulation results indicated that EK100 stimulated
Nrf2-relative antioxidative protein expression, including HO-1, SOD1, SOD2, and CAT,
was significant. At 80 µM EK100, and compared with the LPS group, EK100 increased the
antioxidation protein level of HO-1 protein from 0.22 ± 0.08 to 4.20 ± 0.80 folds, the SOD1
protein level from 0.58 ± 0.23 to 1.72 ± 0.21 folds, the SOD2 protein level from 0.47 ± 0.17
to 1.47 ± 0.17 folds, and the CAT protein level from 0.61 ± 0.17 to 1.70 ± 0.29 folds, respec-
tively (Figure 5b). EK100 stimulated the antioxidative transcript factor Nrf2 translocated
into the cellular nucleus (Figure 5c). EK100 also promoted the antioxidative proteins of
HO-1 expression but only in the cellular cytoplasm (Figure 5d). These results indicated that
EK100 induced the transcription factor Nrf2 translocated into the cellular nucleus. Nrf2
activated the antioxidative relative gene expressions of HO-1, SOD1, SOD2, and CAT in
RAW 264.7 cells.
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In THP-1 cells, EK100 stimulated antioxidative Nrf2 in the cellular nucleus significantly.
At 80 µM EK100 treatment, Nrf2 protein level increased from 0.31± 0.02 to 0.65± 0.02 folds
in the cellular nucleus (Figure 5e).

In BV2 cells, EK100 also stimulated antioxidative Nrf2 in the cellular nucleus sig-
nificantly. At 80 µM EK100 treatment, Nrf2 protein level increased from 0.34 ± 0.02 to
0.60 ± 0.02 folds in the cellular nucleus (Figure 5f). Moreover, in BV2 cells with IF staining
assay, we found that EK100 also stimulated the antioxidative transcript factor Nrf2 in the
cellular nucleus and cytoplasm in LPS-stimulated BV2 cells (Figure 5g).

The results indicated that EK100 elevated the antioxidative transcription factor Nrf2
translocated into the cellular nucleus. EK100 also activated Nrf2/HO-1 signaling pathway
in murine macrophage-like RAW 264.7 cells, human leukemia monocytic THP-1 cells, and
murine microglial BV2 cells.

3.6. Nrf2 siRNA Reversed EK100 Activated the Nrf2/HO-1 Pathway in LPS-Stimulated Cells

Although EK100 inhibited the Nrf2 protein expression in the cytoplasm, EK100 stimu-
lated antioxidative Nrf2 protein expression significantly in the cellular nucleus of RAW
264.7 cells. Moreover, Nrf2 siRNA attenuated with or without EK100 stimulated antioxida-
tive Nrf2 protein expression in the cellular nucleus and cytoplasm. At 80 µM EK100 with
LPS promoted and compared with or without pretreated Nrf2 siRNA, the antioxidative
protein level of Nrf2 protein level decreased from 1.09 ± 0.06 to 0.47 ± 0.02 folds in the cel-
lular nucleus of RAW 264.7 cells (Figure 6a). Simulation results indicated that Nrf2 siRNA
attenuated with EK100 stimulated the protein expressions of HO-1, SOD1, SOD2, and CAT,
respectively. At 80 µM EK100 with LPS stimulated, and compared with pretreated Nrf2
siRNA, the antioxidative protein levels of HO-1 protein decreased from 0.58 ± 0.03 to
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0.50 ± 0.03 folds, SOD1 protein level reduced from 0.50 ± 0.02 to 0.38 ± 0.02 folds, and
SOD2 protein level decreased from 0.79 ± 0.04 to 0.62 ± 0.03 folds. CAT protein levels
decreased from 0.67 ± 0.03 to 0.37 ± 0.02 folds in RAW 264.7 cells, respectively (Figure 6b).
Moreover, in the IF staining assay, we found that Nrf2 siRNA reversed EK100 induced the
antioxidative transcript factor Nrf2 protein expression in the cellular nucleus (Figure 6c)
and HO-1 protein expression cellular cytoplasm (Figure 6d) in LPS-stimulated RAW 264.7
cells. The results displayed that Nrf2 siRNA reversed EK100 induced the overexpression of
the Nrf2/HO-1 antioxidative signaling pathway.
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Figure 6. Nrf2 siRNA reversed EK100 activated the Nrf2/HO-1 pathway in LPS-stimulated cells. (a) Nrf2 siRNA or
Nrf2-negative control siRNA was transfected into cells for 24 h and was collected. Cells were treated with 80 µM EK100 and
15 µM CLI-095 for 1 h before being stimulated with LPS for 6 h. The protein levels of Nrf2 in the cellular cytoplasm and
cellular nucleus were analyzed by WB assay. (b) Nrf2 siRNA or Nrf2-negative control siRNA was transfected into cells for
24 h and was collected. Cells were treated with 80 µM EK100 and 15 µM CLI-095 for 1 h before being stimulated with LPS
for 24 h. WB analyzed the protein expressions of HO-1, SOD1, SOD2, and CAT. (c) Nrf2 siRNA or Nrf2-negative control
siRNA was transfected into cells for 24 h and was collected. Representative images showing the effect of 80 µM EK100 on
Nrf2 protein expression were measured by IF staining in LPS-stimulated RAW 264.7 cells. (d) Nrf2 siRNA or Nrf2-negative
control siRNA was transfected into cells for 24 h and was collected. Illustrative images of IF staining showed the effect
of 80 µM EK100 on HO-1 protein expression in LPS-stimulated RAW 264.7 cells. All the experiments were designated in
Materials and Methods. All results were expressed as folds mean ± SEM compared with β-actin in the cytoplasm or PCNA
in the cellular nucleus of three independent experiments (n = 3). # p < 0.05 compared with the control group, * p < 0.05 and
*** p < 0.001 compared with the LPS alone group or no Nrf2 siRNA treated group.
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4. Discussion

Chronic inflammation is critical for survival during bodily injury and infection that
causes disability and mortality for patients. Accordingly, the MAPK/AP-1 pathway is
prominent in releasing cytokines of IL-1, IL-6, IL-8, and TNF-α and activated the phosphory-
lated STATs [21,22]. Moreover, LPS-induced TLR4, NF-κB, and MAPK signaling pathways
are required to control the regulation of IL-6 expression [23]. The present studies indicated
that LPS-stimulated inflammatory cytokines release IL-6 and TNF-α in RAW 264.7 cells.
However, EK100 inhibited the release and the mRNA expression of the cytokines of IL-6
and TNF-α in LPS-stimulated RAW 264.7 cells (Figure 1a–d). The AFM is a novel nanotool
that shows the height distribution of the cell membrane topography and reflects the com-
plexity of cell membrane ultrastructure images that are beneficial for investigating potential
targets for anti-inflammatory drugs on native macrophages [16,24]. The LPS-stimulated
only group showed dendritic morphological transition change and lamellipodia; EK100
presented significantly reverse LPS-stimulated morphological change to the distinctive
oval shape with the smooth cell surface and converse. Herein, EK100 and Dexa reduced the
morphological change and cellular size in LPS-stimulated RAW 264.7 cells. Thus, the AFM
assay in Figure 2a–c provided evidence and confirmed that EK100 prevented inflammatory
response and the dendritic transformation in LPS-stimulated RAW 264.7 cells in vitro.

TLR4 activates the MAPK/IKK pathways to induce inflammatory transcription factor
NF-κB, and AP-1 translocates into the nucleus and increases the release of TNF-α and
IL-6 [25,26]. Phosphatidylinositol 3-kinase B (PI3K/Akt) activated the MAPK/AP-1 signal-
ing [27]. AP-1 includes c-Fos and c-Jun heterodimers, the transcription factors that mediate
many biological processes [28]. The activation of transcription factors c-Fos and c-Jun
has been shown to stimulate iNOS and COX-2 expression; however, c-Jun can activate
Nrf2-induced transcription, and c-Fos can suppress Nrf2-induced transcription [29–31].
EK100 interfered with LPS docking to TLR4/MD-2 co-Receptors to attenuate the inflam-
matory cytokines NO and PGE2 releases [11]. As shown in Figure 3a, LPS increased the
pro-inflammatory mediator expression of MAPKs. However, EK100 attenuated the phos-
phorylated ERK1/2, JNK, and p38 (Figure 3b). EK100 inhibited c-Jun and c-Fos translocated
into the cellular nucleus from the cytoplasm in the cells (Figure 3c). IF staining also showed
EK100 inhibited the expression of c-Jun in the cellular nucleus (Figure 3d). These results
noted that EK100 prevented LPS-stimulated phosphorylated ERK1/2, JNK, and p38 and
inhibited the translocation of c-Jun and c-Fos in RAW 264.7 cells (Figure 3e–g). TLR4 in-
hibitor CLI-095 and MAPK inhibitors synergized EK100 attenuated MAPK/AP-1 signaling
pathways (Figure 3h). The results supported and confirmed that EK100 attenuated the
TLR4 signaling-related MAPK/AP-1 inflammatory signaling pathways in LPS-stimulated
RAW 264.7 cells.

Elevated phosphorylated STAT (p-STAT) raised chronic inflammatory activity [1].
Activation of STAT3 and NF-κB elevated IL-6-mediated overexpression of COX-2 in chronic
inflammatory diseases [32]. p38 regulates the IL-6-induced transcriptional activation of
STAT3 during the inflammatory process and keeps cells alive [33,34]. Herein, it was
observed that EK100 attenuated LPS-stimulated protein expression of p-JAKs (Figure 4a)
and translocation of p-STAT1, p-STAT3 (727), and p-STAT3 (705) in the cellular nucleus
(Figure 4b,c). Furthermore, EK100 inhibited LPS-stimulated nuclear transcription factors
p-STAT3 (727) expression were examined with IF staining (Figure 4d). Based on these
findings, it is indicated that EK100 attenuated IL-6 activated a JAK/STAT inflammatory
and stress signaling pathway in LPS-stimulated RAW 264.7 cells.

Nrf2 was reflected as the cytoprotective factor regulating the antioxidative, anti-inflam-
matory, and detoxifying activities [35]. The antioxidant mechanisms of the Keap1/Nrf2
antioxidant response element (ARE) were to eliminate inflammatory carcinogens and
toxins before they can cause damage and maintain cellular homeostasis [36]. Under stress,
Nrf2 may dissociate from its inhibitor Keap-1 and translocate into the cellular nucleus,
thereby starting the transcriptional activation pathways of cell defense genes [37]. Several
protein kinases, including PKC, ERK, JNK, and p38, modify Nrf2 and activate its release
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from Keap1/Nrf2 [38]. The upregulation of Nrf2/Keap1 and suppression of NF-κB/MAPK
attribute antioxidative, anti-inflammatory, and antiapoptotic effects [39]. Nrf2 interacts
with c-Jun and regulates ARE antioxidative gene expressions. Nrf2 also induces NAD (P) H
quinone oxidoreductase 1 (NQO1) and catalase (CAT) expression [40]. Nrf2 was correlated
with the induction cytoprotective proteins of HO-1, GPx, SOD, and CAT, permitting free
radical scavenging in cells caused by oxidative damage [41,42].

In LPS-stimulated RAW 264.7 cells, it was observed that EK100 increased Nrf2 protein
expression in the cellular nucleus (Figure 5a). Moreover, EK100 increased HO-1, SOD1,
SOD2, and CAT (Figure 5b). The IF staining assay showed that EK100 stimulated the
antioxidative transcript factor Nrf2 in the cellular nucleus (Figure 5c)and then promoted
the antioxidative proteins of HO-1 expression in the cytoplasm (Figure 5d). Moreover,
EK100 also activated the Nrf2/HO-1 signaling pathway in human leukemia monocytic
THP-1 cells (Figure 5e) and murine microglial BV2 cells (Figure 5f,g).

Nrf2 siRNA significantly knocked down Nrf2 mRNA and protein levels and elevated
intracellular levels of reactive oxygen species (ROS) [43]. Nrf2 siRNA was usually used
to knock down the function of Nrf2, HO-1, and relative proteins in RAW 264.7 cells [44].
Simulation results indicate Nrf2 siRNA reversed EK100 promoted the protein overexpres-
sion of Nrf2 (Figure 6a), HO-1, SOD1, SOD2, and CAT, respectively (Figure 6b). However,
Nrf2 siRNA significantly reversed EK100-induced proteins expressions of the Nrf2/HO-1
signaling pathway (Figure 6c,d). The results in Figure 5 indicated that EK100 induced
the transcription factor Nrf2 translocated to the cellular nucleus. Then Nrf2 activated the
antioxidant protein expressions of HO-1, SOD1, SOD2, and CAT in the cellular cytoplasm
in cells. In brief, EK100 activated the antioxidative Nrf2/HO-1 signaling pathway in
LPS-stimulated macrophage-like cells in vitro.

5. Conclusions

This study reveals that EK100 anti-inflammatory effects interfere with the LPS/TLR4
related MAPK/AP-1-induced IL-6/JAKs/STATs inflammatory pathway and activate the
Nrf2/HO-1 antioxidative signaling LPS-stimulated macrophage-like cells (Figure 7). The
results may lead to approval for EK100 to act as a novel dual strategy through interferences
with the inflammatory transcription factor signaling pathway and activate the antioxidative
transcription factor signaling pathway to treat inflammatory diseases in the future.
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