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ABSTRACT Antimicrobial resistance in Streptococcus pneumoniae represents a threat
to public health, and monitoring the dissemination of resistant strains is essential to
guiding health policy. Multiple-variable linear regression modeling was used to deter-
mine the contributions of molecular antimicrobial resistance determinants to antimi-
crobial MICs for penicillin, ceftriaxone, erythromycin, clarithromycin, clindamycin, levo-
floxacin, and trimethoprim-sulfamethoxazole. Training data sets consisting of Canadian
S. pneumoniae isolates obtained from 1995 to 2019 were used to generate multiple-
variable linear regression equations for each antimicrobial. The regression equations
were then applied to validation data sets of Canadian (n = 439) and U.S. (n = 607 and
n = 747) isolates. The MICs for b-lactam antimicrobials were fully explained by amino
acid substitutions in motif regions of the penicillin binding proteins PBP1a, PPB2b,
and PBP2x. Accuracies of predicted MICs within 1 doubling dilution to phenotypically
determined MICs were 97.4% for penicillin, 98.2% for ceftriaxone, 94.8% for erythromy-
cin, 96.6% for clarithromycin, 98.2% for clindamycin, 100% for levofloxacin, and 98.8%
for trimethoprim-sulfamethoxazole, with an overall sensitivity of 95.8% and specificity
of 98.0%. Accuracies of predicted MICs to the phenotypically determined MICs were
similar to those of phenotype-only MIC comparison studies. The ability to acquire
detailed antimicrobial resistance information directly from molecular determinants will
facilitate the transition from routine phenotypic testing to whole-genome sequencing
analysis and can fill the surveillance gap in an era of increased reliance on nucleic
acid assay diagnostics to better monitor the dynamics of S. pneumoniae.
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S treptococcus pneumoniae is a common Gram-positive microorganism of the human
nasopharynx that can cause severe invasive pneumococcal diseases (IPDs),

such as bacteremia and meningitis. In this environment, exposure to other com-
mensal bacteria, host immune responses, and sublethal antimicrobial levels
increase selective pressures and favor the exchange of genetic material (1–4). The
pneumococcal genome also contains numerous insertion sequences and other mo-
bile genetic elements that facilitate the uptake of antimicrobial resistance determi-
nants through horizontal recombination events (2, 5). Due to the ease with which
S. pneumoniae can acquire novel antimicrobial resistance determinants, prompt
detection of their emergence, dissemination, and dynamics through surveillance
systems is essential to public health. The implementation of pediatric vaccination
programs has been successful not only in lowering general incidence of IPD, but
also by targeting serotypes associated with antimicrobial resistance, achieving a
concurrent decrease in overall antimicrobial resistance (6, 7). The proliferation of
antimicrobial-resistant isolates of nonvaccine serotypes, however, remains a major
global health concern (8, 9).

The antimicrobial resistance mechanisms of S. pneumoniae have been extensively
documented and with few exceptions can fully explain the observed antimicrobial
phenotypes (10, 11). b-Lactam resistance has been attributed to genetic changes in
the transpeptidase domains of penicillin binding proteins (encoded by pbp1a, pbp2b,
and pbp2x), macrolide and lincosamide resistance to the presence of 23S rRNA methyl-
transferases (encoded by ermB and ermTR), the ABC-efflux pump (encoded by mefAE),
or the number of 23S rRNA alleles with point mutations in the peptidyltransferase loop
of domain V, fluoroquinolone resistance due to genetic changes in quinolone resist-
ance-determining regions (QRDR) of gyrA and/or parC, tetracycline resistance due to
the presence of tetM or tetO, chloramphenicol resistance due to the presence of cat,
and trimethoprim-sulfamethoxazole resistance caused by genetic mutations in folA
and folP (10, 12–24).

Monitoring the dissemination and dynamics of antimicrobial resistance of S.
pneumoniae has traditionally relied upon in vitro phenotypic susceptibility testing
of bacterial cultures; however, the development of whole-genome sequencing and
novel molecular-based techniques to determine antimicrobial resistance can
increase efficiency and decrease the labor associated with screening and monitor-
ing strains for surveillance purposes. A EUCAST subcommittee reviewed the exist-
ing data on the use of whole-genome sequencing for the prediction of antimicro-
bial resistance for a number of bacterial species (25). The committee concluded
that there was a lack of studies on the utility of whole-genome sequencing for the
prediction of antimicrobial resistance in antimicrobials used to treat S. pneumoniae
infections. Multiple-variable linear regression modeling has been successfully used
to accurately predict MICs of a variety of agents for Neisseria gonorrhoeae (26–28).
In this study, we employ a computational statistical approach not only to directly
determine antimicrobial MICs from molecular determinants, but also to determine
the relative contribution of each determinant to the overall MIC and present simple
mathematical equations that can be applied to determine penicillin, ceftriaxone,
erythromycin, clarithromycin, clindamycin, levofloxacin, and trimethoprim-sulfame-
thoxazole MIC values for S. pneumoniae.

RESULTS

Regression analysis indicated that the predicted MIC (MICpred) for penicillin
depended upon any alteration of the PBP1a-STMK, PBP1a-TSQF, PBP2b-SSNT, PBP2b-
QLQPT, and/or PBP2x-LKSG motifs and specific alterations of PBP2x-STMK!SAFK and
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PBP2x-KDA!EDT or KEA. No isolates were found in the training or validation data sets
to have modifications of the PBP1a-SSN, PBP1a-KTG, PBP2b-SVVK, PBP2b-KTG, or
PBP2x-SSN motifs (Table 1).

Equation 1 shows a penicillin MIC regression model:

penicillin MIC ðmg=LÞ ¼ 2^½round ð24:611
1:547� PBP1a motif 1ð Þ2STMK ! any
� �

1
0:949� PBP1a motif 4ð Þ2TSQF ! any
� �

1
1:202� PBP2b motif 2ð Þ2SSNT ! any
� �

1
0:356� PBP2b motif 3ð Þ2QLQPT ! any
� �

1
1:626� PBP2x motif 1ð Þ2STMK ! SAFKð Þ1
1:548� PBP2x motif 3ð Þ2KDA ! EDTð Þ1
0:680� PBP2x motif 3ð Þ2KDA ! KEAð Þ1
0:753� PBP2x motif 4ð Þ2LKSG ! VKSGÞÞ��

(1)

where each molecular determinant has a value of 1 if present or 0 if absent.
The molecular determinants having the largest effect on penicillin MIC were modi-

fications to the PBP2x-STMK!SAFK, PBP2x-KDA!EDT, and PBP1a-STMK!SAMK/
SSMK amino acid motifs producing an adjusted R2 value of 0.893 (see Table S1 in the
supplemental material). The PBP2x-KDA!EDT motif with two amino acid changes
had a regression coefficient over two times that of the PBP2x-KDA!KEA motif,
corresponding to a 2-fold increased contribution to the MICpred increment value.
The accuracy of the resultant penicillin MICpred values calculated from the regres-
sion equation within 1 doubling dilution to the overall phenotypically determined
MIC (MICpheno) values of the Canadian and U.S. data sets was 97.4% (1,748/1,794),
with a sensitivity and specificity of 92.8% and 96.5%, respectively (Table 2). There
were four (4/1,354 [0.3%]) very major interpretative errors (VMEs; i.e., predicted
susceptible but phenotypically resistant) seen in the U.S. data sets, with MICpred

values of #0.03 mg/liter but MICpheno values ranging from 2 to 8 mg/liter.
Alignments of pbp1a, pbp2b, and pbp2x genes from these isolates did not reveal
any other major nucleotide differences from other susceptible strains to explain
the discrepancy.

Ceftriaxone MIC regression modeling resulted in fewer molecular determinants
where there were no contributions to MICpred from PBP2b motif changes, with only
the PBP1a-STMK, PBP2x-STMK, PBP2x-KDA, and PBP2x-LKSG motifs having an influ-
ence, with an adjusted R2 value of 0.72 (see Table S3 in the supplemental material).
The PBP2x-STMK!SAFK motif had the greatest magnitude, with a regression coeffi-
cient of 2.7, twice that of modifications to next most influential motif, PBP1a-STMK,
which had a regression coefficient of 1.3.

Equation 2 shows the ceftriaxone MIC regression model:

ceftriaxone MICðmg=LÞ ¼ 2^½round ð22:7091
1:25� PBP1a motif 1ð Þ2STMK ! any
� �

1
2:72� PBP2x motif 1ð Þ2STMK ! SAFKð Þ1
0:76� PBP2x motif 3ð Þ2KDA ! EDTð Þ1
0:989� PBP2x motif 4ð Þ2LKSG ! VKSGÞÞ��

(2)

where each molecular determinant has a value of 1 if present or 0 if absent.
The MICpred for ceftriaxone had an overall accuracy of 98.2% to 1 doubling

dilution of the MICpheno of the combined validation data sets. The specificity
(measure of susceptibility) was 96.7%, and sensitivity (measure of resistance) was
97.2%. The relatively large number of minor (MI) errors for both penicillin
(n = 121 [6.7%]) and ceftriaxone (n = 124 [6.9%]) were due to a large number of
MICpred values within 1 doubling dilution of the intermediate resistance interpre-
tative breakpoints and the very broad CLSI intermediate resistance interpretative
breakpoint range for penicillin, covering 3 doubling dilutions from 0.125 to
1 mg/liter.
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TABLE 1 Distribution of penicillin MICs and penicillin binding protein motif profiles of isolates in the multiple-variable linear regression
training data seta

PBP1a motifs PBP2b motifs PBP2x motifs

No. of isolates with penicillin MIC (mg/L) of:

0.03 0.06 0.125 0.25 0.5 1 2 4 8
SSMK/WT/WT/NTGY WT/SSNA/AIDTK/WT SAFK/WT/KEA/VKSG 2 2

SSMK/WT/WT/NTGY WT/SSNA/AIDTK/WT SAMK/WT/EDT/VKSG 1 2 7 17 6
SSMK/WT/WT/NTGY WT/SSNA/AIDTK/WT SAMK/WT/EDA/VKSG 1

SAMK/WT/WT/NTGY WT/SSNA/TVDTK/WT SAMK/WT/KEA/VKSG 1
SAMK/WT/WT/NTGY WT/SSNA/AIDTK/WT SAMK/WT/KEA/VKSG 1 1
SAMK/WT/WT/NTGY WT/SSNA/WT/WT SAMK/WT/KEA/VKSG 1 8 28 6

SSMK/WT/WT/NTGY WT/SSNA/SVESK/WT SAMK/WT/KEA/VKSG 1
SSMK/WT/WT/NTGY WT/SSNA/WT/WT SAMK/WT/KEA/VKSG 1 3 11 11 1
SSMK/WT/WT/NTGY WT/SSNA/WT/WT SAMK/WT/EDT/VKSG 1

SAMK/WT/WT/NTGY WT/SSNA/WT/WT WT/WT/WT/WT 1 1 4
SAMK/WT/WT/NTGY WT/SSNA/SVESK/WT WT/WT/WT/WT 1
SAMK/WT/WT/NTGY WT/SSNA/SVESK/WT WT/WT/EDA/VKSG 1
SAMK/WT/WT/NTGY WT/SSNA/WT/WT SPMK/WT/WT/WT 1

SSMK/WT/WT/NTGY WT/SSNA/AIDTK/WT SAMK/WT/KEA/VKSG 1
SSMK/WT/WT/NTGY WT/SSNS/WT/WT SAMK/WT/KEA/VKSG 1
SSMK/WT/WT/NTGY WT/WT/WT/WT SAMK/WT/KEA/VKSG 1
SSMK/WT/WT/NTGY WT/SSNA/WT/WT WT/WT/WT/WT 1

WT/WT/WT/NTGY WT/SSNA/WT/WT SAMK/WT/KEA/VKSG 2 4 1
WT/WT/WT/NTGY WT/SSNA/SVETK/WT SPMK/WT/WT/WT 1
WT/WT/WT/NTGY WT/SSNA/WT/WT WT/WT/WT/WT 2 4 16 4
WT/WT/WT/NTGY WT/SSNA/SVESK/WT WT/WT/WT/WT 1
WT/WT/WT/NTGY WT/SSNA/SVESK/WT WT/WT/EDA/VKSG 3
WT/WT/WT/NTGY WT/YSSN/QQLQP/GKT WT/WT/WT/VKSG 1
WT/WT/WT/TSQY WT/YSSN/QQLQP/GKT WT/WT/WT/WT 1
WT/WT/WT/TSQY WT/SSNA/SVESK/WT WT/WT/WT/WT 1
WT/WT/WT/TSQY WT/SSNA/WT/WT SAMK/WT/WT/WT 1

WT/WT/WT/TSQY WT/SSNA/SVESK/WT SAMK/WT/WT/WT 1
WT/WT/WT/NTGY WT/WT/WT/WT WT/WT/WT/WT 1
WT/WT/WT/NTGY WT/WT/WT/WT WT/WT/KEA/WT 1
WT/WT/WT/NTGY WT/WT/WT/WT SAMK/WT/WT/WT 1 19 1

WT/WT/WT/WT WT/SSNA/WT/WT SAMK/WT/KEA/VKSG 2
WT/WT/WT/WT WT/SSNA/WT/WT WT/WT/WT/VKSG 1
WT/WT/WT/WT WT/SSNA/WT/WT WT/WT/KEA/WT 4 16 6
WT/WT/WT/WT WT/SSNA/TVDTK/WT WT/WT/WT/WT 1 1
WT/WT/WT/WT WT/SSNA/SVESK/WT WT/WT/WT/WT 2 9 3
WT/WT/WT/WT WT/SSNA/WT/WT SAMK/WT/WT/WT 2 9 12
WT/WT/WT/WT WT/SSNA/SVESK/WT SAMK/WT/WT/WT 1 1
WT/WT/WT/WT WT/SSNA/WT/WT WT/WT/KAA/WT 6 3
WT/WT/WT/WT WT/SSNA/WT/WT WT/WT/WT/WT 1 3

WT/WT/WT/WT WT/WT/WT/WT WT/WT/KEA/VKSG 1 1
WT/WT/WT/WT WT/WT/WT/WT WT/WT/KET/VKSG 3 1 1
WT/WT/WT/WT WT/WT/WT/WT WT/WT/KEA/WT 1
WT/WT/WT/WT WT/WT/WT/WT SAMK/WT/KAA/WT 4 1
WT/WT/WT/WT WT/WT/WT/WT SAMK/WT/WT/WT 2 1

WT/WT/WT/WT WT/WT/WT/WT WT/WT/WT/WT 279 191 8 2 1

Total 292 241 64 44 23 21 50 29 8
aUnaltered “wild-type” (WT) penicillin binding protein (PBP) motifs correspond to S. pneumoniae R6 (NCBI accession no. AE007317.1: 332863 to 335022, 1494216 to 1496273,
and 302261 to 304513; locus tags spr0329, spr1517, and spr0304, respectively). PBP1a represents STMK/SSN/KTG/TSFQ, with amino acid start positions at 370/446/557/574,
PBP2b represents SVVK/SSNT/QLQPT/KTG, with start positions at 386/443/565/615, and PBP2x represents STMK/SSN/KDA/LKSG, with start positions at 337/395/505/546
(Fig. 3). Bold font indicates motifs that significantly contribute to the predicted penicillin MIC value through regression analysis.
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Equation 3 shows the erythromycin MIC regression model:

erythromycin MIC ðmg=LÞ ¼ 2^½round ð22:9341
2:877� 23S rRNA� A2059Gð Þ1
1:080� 23S rRNA� C2611Tð Þ1
9:482� ermBð Þ1
5:540�mefAEð Þ1
1:357�mefAE promoterð Þ1
0:707�mefAE intergenicð ÞÞ�

(3)

where ermB and mefAE molecular determinants have a value of 1 or 0 if present or
absent, respectively, “23S rRNA-A2059G” and “23S rRNA-C2611T” are the number of al-
leles with the point mutation present, and “mefAE promoter” and “mefAE intergenic”
have a value of 1 or 0, corresponding to the presence or absence of the 2364T substitu-
tion or the 99-bp deletion in the intergenic region betweenmefE andmel, respectively.

Seven isolates within the validation data sets possessed a predicted dysfunctional
ermB gene and were considered ermB negative for regression analysis calculations.
Specifically, an ErmB-G41E amino acid substitution was found in five isolates, ErmB-
G41K was detected in one isolate, and an ermB adenosine nucleotide deletion at posi-
tion 629 creating a pseudogene was observed in two isolates (see supplemental valida-
tion Data Set S12 in the supplemental material).

The MICpred for erythromycin was greatly influenced by the presence of ermB (coeffi-
cient = 9.5), mefAE (coefficient = 5.5), and the A2059G point mutation of 23S rRNA
(coefficient = 2.9 for each mutated allele), with lesser contributions from the C2611T
23S rRNA mutation, mefAE-346T mutation, and 99-bp intergenic deletion, to achieve
an adjusted R2 value of 0.96 (see Table S4 in the supplemental material). Although the
coefficient value for the 23S rRNA-A2059G mutation is relatively low compared to
those of the ermB or mefAE determinants, when all four alleles carry the mutation, the
magnitude of the coefficient increases considerably to 12. The erythromycin MICpred

had an overall accuracy of 94.8% (1,215/1,281) within 1 doubling dilution of the eryth-
romycin MICpheno of the validation data sets and 98% sensitivity and specificity.

Equation 4 shows the clarithromycin MIC regression model:

clarithromycin MIC ðmg=LÞ ¼ 2^½round ð24:9841
1:819� 23S rRNA� A2059Gð Þ1
1:246� 23S rRNA� C2611Tð Þ1
10:820� ermBð Þ1
5:577�mefAEð Þ1
0:833�mefAE promoterð Þ1
0:950�mefAE intergenicð ÞÞ�

(4)

where ermB andmefAEmolecular determinants have a value of 1 or 0 if present or absent,
respectively, “23S rRNA-A2059G” and “23S rRNA-C2611T” are the number of alleles with
the point mutation present, and “mefAE promoter” and “mefAE intergenic” have a value of
1 or 0, corresponding to the presence or absence of the 2364T substitution or the 99-bp
deletion in the intergenic region betweenmefE andmel, respectively.

The regression equation for the clarithromycin MICpred had determinant coefficients
similar to those for erythromycin, with ermB, mefAE, and the A2059G 23S rRNA point
mutations contributing the most to the overall MIC, with values of 10.8, 5.6, and 1.8,
respectively, resulting in an adjusted R2 value of 0.98 (see Table S5 in the supplemental
material). Overall MIC accuracy within 1 doubling dilution was 96.6% (424/439), with
100% sensitivity and specificity.

Equation 5 shows the clindamycin MIC regression model:

clindamycin MIC ðmg=LÞ ¼ 2^½round ð22:8151
0:456� 23S rRNA� A2059Gð Þ1
9:048� ermBð ÞÞ�

(5)

where the ermB molecular determinant has a value of 1 if present or 0 if absent, and
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the value of “23S rRNA-A2059G” is the number of alleles with the point mutation
present.

The regression model for clindamycin resistance included primarily the presence of
ermB and a minor contribution from the 23S rRNA-A2059G mutation and had an
adjusted R2 value of 0.97 (see Table S6 in the supplemental material). The C2611T 23S
rRNA mutation did not contribute to the model, as only one isolate was present in the
training data carrying the mutation in all four alleles, yet only having a MICpheno value
of #0.125 mg/liter. This determinant was also rare in the validation data, present in
two isolates of the USA-1 data set, for which the MICpheno values were not available.
This minimal complement of resistance determinants for clindamycin reflected the dis-
tribution of MICpheno values observed in the training (see Table S12 in the supplemental
material) and validation data sets (see Tables S26 and S27 in the supplemental mate-
rial), where MICs are polarized with extremely low or very high values. In the USA-2
data set, which had a maximum clindamycin MICpheno value of 2 mg/liter, 0.74% of the
isolates had MICpheno values between 0.25 and 2 mg/liter, and of the 439 isolates in the
Canadian validation data set, where testing included dilutions up to $64 mg/liter,
there were no MICpheno values in the range from 0.5 to 16 mg/liter observed. There was
a 98.2% (1,164/1,186) overall accuracy between MICpred and MICpheno values, with over
98% specificity and sensitivity.

Equation 6 shows the levofloxacin MIC regression model:

levofloxacin MIC ðmg=LÞ ¼ 2^½round ð20:2181
2:028� GyrA� S81Fð Þ1
1:564� GyrA� S81Yð Þ1
3:564� GyrA� S81Lð Þ1
1:654� ParC� S79 anyð Þ1
0:834� ParC�D83 anyð ÞÞ�

where each molecular determinant has a value of 1 if present or 0 if absent.
The MICpred for levofloxacin was predominantly dependent upon GyrA amino acid

mutations S81L (n = 2) and S81F (n = 16), having regression coefficients of 3.6 and 2.0,
respectively. Other determinants contributing to a lesser extent to the overall MICpred

values included the GyrA-S81Y mutations (n = 1) and any mutations at ParC-S79 or
ParC-D83. The adjusted R2 value of 0.460 (see Table S7 in the supplemental material)
was very low for the model, likely due to very small number of isolates with resistance
determinants and corresponding MICpheno values of $8 mg/liter (n = 11) compared to
the very large number of isolates with no determinants and MICpheno values of #2 mg/
liter (n = 942) within the training data. Despite the low adjusted R2 value and only two
phenotypically levofloxacin-resistant isolates in the validation data, the accuracy of
MICpred values compared to MICpheno values within 1 doubling dilution approached
100% (1,185/1,186), with 100% sensitivity and specificity. One isolate was missing the
open reading frame corresponding to the gyrA gene in the genome assembly.

Equation 7 shows the trimethoprim-sulfamethoxaxole MIC regression model:

trimethoprim� sulfamethoxazole ðMIC mg=LÞ ¼ 2^½round ð22:2501
1:600� FolA� I100Lð Þ1
2:526� FolP disruptionð ÞÞ�

(7)

where each molecular determinant has a value of 1 if present or 0 if absent.
Regression modeling for trimethoprim-sulfamethoxazole resistance indicated that

disruption of FolP had a regression coefficient of 2.5, suggesting a larger influence on
overall MICpred than the I100L FolA determinant, which had a coefficient of 1.6. The
adjusted R2 value was 0.798 (see Table S8 in the supplemental material) for the model,
and there was 98.8% overall accuracy of MICpred and MICpheno, with a specificity of
97.5% and sensitivity of 96.5%.

The absence or presence of a single molecular determinant for chloramphenicol,
doxycycline, and tetracycline resistance was used to assign a MICpred value as less than
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or greater than the susceptible or resistant interpretation breakpoint, rather than using
multiple-variable linear regression analysis. The presence of the cat gene was associ-
ated with a MICpred value of $8 mg/liter (see Table S15 in the supplemental material),
which resulted in 99.8% accuracy with corresponding MICpheno values, with sensitivity,
specificity, positive predictive value (PPV), and negative predicted value (NPV) of
53.3%, 100%, 100%, and 98.5%, respectively. The low sensitivity can be attributed to
the very abrupt resistance breakpoint between susceptible and resistant at#4 mg/liter
and $8 mg/liter resulting in a relatively large number of possible phenotyping errors
that were phenotypically resistant strains (n = 21) without the cat gene among a rela-
tively low overall number of phenotypically resistant isolates (n = 45). Similarly, tetracy-
cline and doxycycline MICs were determined solely by the presence of tetM (tetO was
not detected in this study), giving a MICpred value for tetracycline of $8 mg/liter and a
value for doxycycline of $4 mg/liter (see Tables S16 and S17 in the supplemental ma-
terial). The accuracy, sensitivity, specificity, positive predictive value, and negative pre-
dictive value for tetracycline MICpred were 97.6%, 96.2%, 98.1%, 94.1% and 98.8%, those
for doxycycline were 98.4%, 95.1%, 99.5%, 95.1% and 99.5%, respectively.

DISCUSSION

Multiple-variable linear regression analysis is a relatively simple, yet powerful tool
to determine the dynamics of a specific variables among a complex series of other fac-
tors. Determinants of interest affecting the MIC were identified for each antimicrobial
by summarizing the phenotypic MIC values and molecular determinant profiles (Table
1; see Tables S9 to S17 in the supplemental material), and the regression model was
optimized by removing, combining, and adding back individual factors while examin-
ing the effect on the regression model metrics. This analytical strategy has been suc-
cessfully used to validate predicted MICs from whole-genome sequence data of N. gon-
orrhoeae (26–28). In this study, multiple-variable linear regression modeling of molecular
antimicrobial resistance determinants accurately predicted the MIC values for the b-lac-
tam, macrolide, lincosamide, fluoroquinolone, and folate pathway inhibitor antimicrobials
investigated. There was 98% (range, 94.2 to 100%) overall accuracy between the predicted
and phenotypically derived MIC values, with 96% (range, 87.8 to 100%) sensitivity and
98% (range, 87.7 to 100%) specificity.

Resistance to b-lactam antimicrobials in S. pneumoniae is associated with changes
to the transpeptidase domains of penicillin binding proteins PBP1a, PBP2b, and PBP2x,
with particular focus on three amino acid motifs in each protein (24). It has been sug-
gested that changes in PBP2b and PBP2x provide low-level resistance, while high level
resistance is achieved with additional changes to PBP1a (29). Although increased resist-
ance to b-lactams caused by altered PBP amino acid motifs has been extensively
reported, multiple-variable linear regression analysis identified another possible amino
acid motif in each protein that may contribute to overall MIC levels and was able to
predict the relative contribution of each mutation to the overall MIC. Multiple-variable
linear regression modeling for predicting penicillin MICs identified any changes to two
motifs of PBP1a and PBP2b and specific changes to three motifs of PBP2x as signifi-
cantly contributing to the MIC. The ceftriaxone MIC regression model was simpler, lacking
the PBP2b motifs as contributing factors. Penicillin and ceftriaxone models included any
changes to the PBP1a-STMK motif and PBP2x-STMK!SAFK, PBP2x-KDA!EDT, and
LKSG!VKSG specific motif changes. The regression coefficients for these shared determi-
nants were similar for both penicillin and ceftriaxone MICs, except for PBP2x-STMK!SAFK,
which had a 2-fold greater effect on ceftriaxone MICs, reflecting the importance of this muta-
tion to overall resistance reported in other studies (10, 24). The regression models for pre-
dicting b-lactam MICs had 98% accuracy to those derived phenotypically, with 0.1% major
interpretative errors and 0.2% very major errors. The relatively large number of minor inter-
pretative errors in both penicillin and ceftriaxone MICs could be due to a large number of
MICpred values within 1 doubling dilution of the intermediate CLSI resistance interpretative
breakpoints, which are very broad for penicillin, covering 3 doubling dilutions from 0.125 to
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1 mg/liter. These findings are similar to those from a previous study, which used PBP allelic
profiles as a PBP type library to associate phenotypic MICs with specific alleles, giving a simi-
lar 98% accuracy within 1 doubling dilution of the phenotypic MIC, with major and very
major interpretative errors slightly larger at 3% and 2%, respectively (18).

The greatest contributor to the macrolide and lincosamide MICs was the presence
of ermB, which had similar regression coefficients for erythromycin, clarithromycin, and
clindamycin, corresponding to 9 to 11 doubling MIC increments. The mefAE coeffi-
cients for erythromycin and clarithromycin were also similar, with increment values of
about 5 for each antimicrobial, contributing about half as much as ermB to the MICpred

values. The 23S rRNA-A2059G point mutation had regression coefficient values of 3 for
each mutated allele for erythromycin and 2 for clarithromycin, but contributed much
less to the clindamycin MIC, with a coefficient of only 0.5. The C2611T 23S rRNA resist-
ance determinant contributed less than the A2059G determinant, with a value of about
1 for clarithromycin and erythromycin MICs; however, the C2611T mutation was not
identified as a significantly contributing factor to increased clindamycin MICs. The
G761T mutation, 364 nucleotides upstream (2364T) from the mefE start codon (Fig. 1),
had a 2-fold greater influence upon the erythromycin predicted MIC than that for clari-
thromycin and had a similar influence to the 99-bp intergenic deletion between mefE
and mel. Although the 2364T mutation may be a considerable distance from the mefE
start codon in the macrolide efflux genetic assembly to be located in the promoter
region for mefE, there are a number of ATG start codons upstream before mefE, which
may suggest that a small regulatory protein is located in this region. Accuracy with
phenotypic MIC was best with clindamycin, with 98% accuracy, and both erythromycin
and clarithromycin had accuracies of 95% and 97%, respectively, with sensitivities and
specificities over 98% for all three antimicrobials. The USA-1 validation data set had an
accuracy of 94% and a relatively low sensitivity of 91%, primarily due to 11 isolates
with erythromycin MICpheno values of #0.5 mg/liter, despite having mefAE or an intact
ermB as the sole resistance determinant, which should result in a MICpred value of
$8 mg/liter, suggesting possible phenotyping errors. Conversely, there were 5 isolates
in this data set that lacked any known molecular determinants but were phenotypically
erythromycin resistant, having MICs of $1 mg/liter. Screening the discrepant genomes
with additional molecular antimicrobial resistance determinant query tools ResFinder,
ARG-ANNOT, and CARD (30–32) confirmed the genotypes. The observed discrepancies
between molecular determinant profiles and expected resistance phenotypes may be
due phenotypic reading errors, contamination, mislabeling, DNA sequencing errors, or
possibly novel resistance mechanisms.

A single isolate in the training data set, and no isolates in the validation data sets,
possessed the ermTR resistance determinant combined with mefAE. The single ermTR-
positive isolate had MICpheno values for erythromycin and clarithromycin of$256 mg/li-
ter and $16 mg/liter, respectively, similar to other isolates having an ermB mefAE ge-
notype. Additional data are required to perform adequate regression analysis for the
ermTR resistance determinant; however, speculatively its contribution to overall MICpred

may be similar to that of ermB.
Fluoroquinolone resistance has been attributed to the GyrA-S81 and ParC-S79,

-D83, and -N91 amino acid substitutions (10, 21). Regression modeling indicated that
each of the three GyrA-S81F, -Y, and -L mutations had different contributions to the
overall levofloxacin MIC, with the S81L mutation having about twice the effect of S81Y.
Any mutation at ParC-D79 or -D83 significantly contributed the overall levofloxacin
MICpred; however, a D91 mutation was found in only a single isolate of the training
data set, with a MICpheno value of 0.5 mg/liter (susceptible interpretation) and therefore
did not contribute significantly during the modeling process. Despite have the lowest
adjusted R2 value, the MICpred for levofloxacin had the best accuracy to MICpheno of all
the antimicrobials analyzed, with accuracy to within 1 doubling dilution, all percen-
tages of sensitivity and specificity of 100%, and no interpretive errors.

Molecular determinants for sulfamethoxazole-trimethoprim resistance include a
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FIG 1 Alignment of representative DNA sequences of the macrolide efflux genetic assembly (mega) from mefE to mel of Streptococcus pneumoniae strains. The
starting sequence position corresponds to position 627 of the mega sequence (GenBank accession no. AF274320). The start codons of mefE and mel are
indicated. Sequence ID SC11-3328-P has a wild-type genotype and clarithromycin MIC of 2 mg/liter, SC11-1841-P has the 2364T mutation and clarithromycin MIC
of 4 mg/liter, SC11-2895-P has the 99-bp deletion in the intergenic region between mefE and mel and a clarithromycin MIC of 4 mg/liter, and SC19-2674-P has
both the 2364T substitution and the 99-bp deletion in the intergenic region between mefE and mel and a clarithromycin MIC of 8 mg/liter.
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simple and well-documented mechanism involving a FolA-I100L amino acid substitu-
tion and disruptions of folP, with a resistant phenotype observed when both determi-
nants are present and intermediate when only one is present (10, 33, 34). MICs could
be assigned simply as $4/76 mg/liter (resistant) when both determinants are present,
1/19 mg/liter or 2/38 mg/liter (intermediate) when only one is present, or #0.5/
9.5 mg/liter (susceptible) when both determinants are wild type. A similar strategy can
be used where the presence of cat in an isolate correlates with a chloramphenicol
MICpred value of $8 mg/liter (resistant CLSI breakpoint), or tetM or tetO with a tetracy-
cline MICpred value of $16 mg/liter. Regression analysis, however, offers insight into
the relative magnitudes of each determinant, and in the future, the specific nucleotide
insertions of folP may each be investigated to add further refinement to the predictive
models to enhance the accuracy and precision of the MIC predictions. Comparison of
the magnitudes of the regression coefficients indicates that the FolP disruptions (Fig.
2; see Table S8 in the supplemental material) have a greater influence on MIC than the
FolA-I100L mutation.

There was low variability of MIC accuracy values between the validation data sets,
suggesting the regression equations are robust and may be applied broadly across
testing sites. A regression model developed for penicillin MICs from PBP types
described by Metcalf et al. (10, 18, 35) as a simulated training data set (http://www.cdc
.gov/streplab/mic-tables.html) generated a regression equation very similar to that
attained using the Canadian training data (see Tables S1 and S2 in the supplemental
material). The accuracy and precision of the predicted MICs may continually be
improved over time, with larger, broader, and more current training data to address
consistency of sampling, culturing methods, laboratory testing procedures, interpreta-
tion of phenotypic results, geographical variation, and the discovery of novel resistance
determinants. Despite some discrepancies, the comparison of MICpred to MICpheno com-
pares favorably to comparison studies of purely phenotypic results. A summary of an
interlaboratory quality control program for pneumococcal serotyping and antimicro-
bial susceptibility testing involving reference laboratories participating in the
International Circumpolar Surveillance program had an 97% overall accuracy of tests
within 1 doubling dilution of the modal MIC, with erythromycin and clindamycin accu-
racies of 92% and 89%, respectively (36). Other quality assurance programs that have
collated accuracy for phenotypic antimicrobial susceptibility testing included the
Canadian National Gonococcal Antimicrobial Susceptibility Comparison Program (37),
where the average MIC accuracy ranged from 85.6% to 98.9%, and a 2018 comparison
of international antimicrobial proficiency panel results from various Caribbean and
South American countries (38) reported an overall accuracy of .90% for some partici-
pants, while accuracy among other laboratories ranged from 60.0% to 82.4%.

Limitations of the study include that the accuracy and precision of the MIC predic-
tion based on molecular determinants are largely limited by the training data used to
generate the regression equations. The training data may include variability due to the
subjective nature of phenotypic testing, where the same phenotypes may not always
be observed on repeat testing, molecular resistance profile errors, and the possible

FIG 2 Alignment of representative S. pneumoniae folP DNA sequences showing insertion and deletion disruptions between nucleotide positions 151 and
226 in folP of S. pneumoniae R6 (GenBank accession no. NC_003098.1: 267995 to 268966, locus tag spr0266). Disrupted folP sequences associated with
reduced susceptibility to trimethoprim-sulfamethoxazole are identified in those sequences where the amino acid motif at FolP positions 66 to 68 differ
from the wild-type motif “IEE.” (Nucleotides corresponding to the motif are in bold.)
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presence of as-yet-unidentified resistance factors. Rare resistance determinants need
to be present in the training data in sufficient quantities to generate meaningful statis-
tics. While using a large training data set to develop the regression model can resolve
some discrepancies, some rare resistance patterns, such as very high b-lactam resist-
ance, are reliant on the availability of a relatively small number of isolates with this
phenotype. Furthermore, there may also be some rare resistance determinants that
were not present or were present in insufficient numbers to significantly influence the
regression model, such as some of the reported PBP motifs, ermTR, or the 23S rRNA
point mutations. These limitations can be reduced by increasing the size of the training
data with isolates from varied regions of the world and regularly updating the regres-
sion models with newly discovered factors and updated coefficient values for currently
identified factors. The MIC prediction models described here can be easily regenerated
using the molecular markers discussed in this study with local training phenotypic
data sets, which may be more applicable to individual laboratory testing environments.
This approach also directly identifies the magnitude of antimicrobial resistance deter-
minants specifically contributing to overall MIC without the need for continual curation
of allelic databases that infer MIC values.

There is a need for surveillance systems that not only closely track the dissemination of
known resistant strains, but also promptly detect novel antimicrobial resistant clones as they
emerge to limit their expansion. Over the short term, molecular-based methods may

FIG 3 Amino acid alignment of penicillin binding proteins PBP1a, PBP2b, and PBP2x showing wild-type motifs associated with b-lactam resistance. PBP1a,
PBP2b, and PBP2x are protein sequences from S. pneumoniae R6 (NCBI accession no. AE007317.1: 332863 to 335022, 1494216 to 1496273, and 302261 to
304513); locus tags spr0329, spr1517, and spr0304;, respectively. Amino acid sequences in red boxes are motifs previously described, and those in blue
were identified as significantly contributing to increased b-lactam MICs through linear regression analysis.
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primarily be used for surveillance purposes. As molecular-based genomic techniques
become more comprehensive and broadly available to track lineages, antibiotic resistance,
and virulence and fitness determinants, the MIC predicting strategy described here may pro-
vide a powerful tool to replace traditional phenotypic testing in clinical settings.
Mathematical modeling to describe biological systems can fill a surveillance gap in an era of
increased reliance on nucleic acid assay diagnostics to monitor the dynamics of S. pneumo-
niae, and the ability to acquire detailed antimicrobial resistance information directly from
molecular information will enhance the monitoring of the dynamics of S. pneumoniae to
effectively inform public health interventions to reduce the burden of disease.

MATERIALS ANDMETHODS
Training and validation data sets and antimicrobial susceptibility testing. Training data sets (see

supplemental training Data Sets S1 to S11 in the supplemental material) consisted of S. pneumoniae iso-
lates collected in Canada from 1995 to 2019 for national surveillance purposes that had both phenotypic
antimicrobial susceptibilities as well as molecular characterization data available. Isolates for the penicil-
lin (n = 772), ceftriaxone (n = 772), erythromycin (n = 324), clarithromycin (n = 847), clindamycin
(n = 1,356), levofloxacin (n = 1,446), trimethoprim-sulfamethoxazole (n = 1,207), tetracycline (n = 573),
doxycycline (n = 938), and chloramphenicol (n = 824) MIC training data sets were selected to provide a
broad range of MICs and well-characterized antimicrobial resistance determinants. An additional simu-
lated training data set (n = 4,339) for penicillin MICs was generated from PBP types described by Metcalf
et al. (10, 18, 35; http://www.cdc.gov/streplab/mic-tables.html).

Validation data (supplemental validation Data Set D12) included 439 Canadian S. pneumoniae iso-
lates collected during 2019 for which both phenotypic antimicrobial susceptibility and molecular charac-
terization results were available, as well as data previously reported for 534 isolates from Massachusetts,
USA, during 2001 to 2007 (USA-1 data set) (39) and 747 isolates collected through a study of the Active
Bacterial Core surveillance (ABCs), Centers for Disease Control and Prevention, Atlanta, GA, USA, during
2015 (USA-2 data set) (10).

Testing on the training and validation data sets of Canadian and U.S. isolates of their susceptibility
to penicillin, ceftriaxone, erythromycin, clarithromycin, clindamycin, levofloxacin, trimethoprim-sulfame-
thoxazole, tetracycline, doxycycline, and chloramphenicol was done using the broth microdilution
method according to Clinical and Laboratory Standards Institute (CLSI) guidelines (40, 41). Oral penicillin
V and meningitis ceftriaxone resistance breakpoint interpretations were used.

Molecular analysis. Molecular antimicrobial resistance determinants were identified in silico from whole-
genome sequencing data by querying reference (“wild-type”) gene nucleotide sequences against assembled
contig files using BLAST (42), with the E value cutoff option set to 10e2100 and identifying relevant mutations
or the presence or absence of the gene, as appropriate. Penicillin and ceftriaxone resistance determinants
included changes to the “wild-type” amino acid SXXK, SXN, and KXG motifs in penicillin binding proteins
PBP1a, PBP2b, and PBP2x from S. pneumoniae R6 (NCBI accession no. AE007317.1: 332863 to 335022, 1494216
to 1496273, and 302261 to 304513; locus tags spr0329, spr1517, and spr0304;, respectively) (14, 24). The wild-
type PBP1a motifs STMK, SSN, and KTG had amino acid start positions 370, 446, and 557, respectively, the wild-
type PBP2a motifs SVVK, SSNT, and KTG started at positions 386, 443 and 615, respectively, and the wild-type
PBP2x motifs STMK, SSN, and LKSG started at positions 337, 395, and 546, respectively. An additional motif for
each protein was identified through sequence alignment analysis of previously wild-type PBP motif profiles
with relatively high MIC values. Novel motifs identified included TSQF, starting at position 574 of PBP1a,
QLQPT, starting at position 565 of PBP2b, and KDA, starting at position 505 of PBP2x, bringing the total number
of motifs analyzed per protein to four (Fig. 3).

Macrolide and lincosamide resistance determinants included the presence or absence of ermB (NCBI
accession no. AB426620.1: 4320 to 5057), ermTR (CP002121.1: 856174 to 856905), mefAE (CP000921.1:
1802511 to 1803728); a G761T nucleotide mutation of the macrolide efflux genetic assembly (mega)
sequence of GenBank accession no. AF274320.1 located in the mefAE promoter region 364 bp upstream
[2364T] of the start codon (Fig. 1) (43), a 99-bp deletion in the intergenic region between mefE and mel
(Fig. 1) (43), and 23S rRNA-A2059G and -C2611T point mutations (Escherichia coli numbering, corre-
sponding to A2061G and C2613T in S. pneumoniae R6 GenBank accession no. AE007317.1, respectively).
Alleles of ermB with G41E, G41K, or L63Q amino acid substitutions or an adenosine nucleotide insertion
at position 628 conferred a susceptible macrolide phenotype to the strains and therefore were given an
ermB-negative genotype. The number of 23S rRNA allele mutations was determined by a custom
SNVPhyl workflow (44) using a 23S rRNA allele of S. pneumoniae R6 (GenBank accession no. AE007317.1,
locus tag sprr02) as a mapping reference and interrogating the allele counts at nucleotide positions
2061 and 2613 from the resultant variant call files (.vcf). By convention, the locations of the 23S rRNA nu-
cleotide mutations are based on the Escherichia coli coordinates of A2059G and C2611T (19, 20), which
correspond to A2061G and C2613T, respectively, of S. pneumoniae R6.

Tetracycline resistance markers included the presence of tetM (AB426620.1: 14972 to 16891) or tetO
(FM178797.1: 66 to 1985), and the chloramphenicol resistance determinant in the presence or absence of
the cat gene (ICE6BST90: 56517 to 57167). The presence of the GyrA amino acid substitution S81 (AE007317
.1: 1095463 to 1097931, locus tag spr1099) and ParC-S79, -D83, and -N91 substitutions (AE007317.1: 752250
to 754721, locus tag 0757) were analyzed as levofloxacin resistance determinants. Trimethoprim-sulfame-
thoxazole resistance determinants included the FolA-I100L (AE007317.1: 1412861 to 1413367) amino acid
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substitution and disruptions of folP (AE007317.1: 268022 to 268966) by nucleotide insertions or deletions in
the region spanning nucleotide positions 169 to 196 corresponding to amino acid positions 57 to 66 (Fig. 2).
Disrupted folP DNA sequences were detected by changes of the conserved “IEE” translated FolP amino acid
motif at positions 66 to 68 indicating a shift in the protein reading frame.

Multiple-variable linear regression analysis. Multiple-variable linear regression analyses (45) were
performed using Microsoft Excel 2010 (version 14.0.7151.5001; Microsoft Corp.) to determine the rela-
tionship of the molecular antimicrobial resistance determinants contained in an isolate to the pheno-
typically determined MIC value (MICpheno) for each antimicrobial as previously described (27). The dou-
bling MICpheno values were standardized to exact doubling dilutions (512, 256, 128, 64, 32, 16, 8, 4, 2, 1,
0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125, 0.00390625, 0.001953125, and 0.000976563).
The exact MICs were then converted to a linear increment scale using the formula phenotypic MIC incre-
ment = log2 (standardized MIC) and used as the dependent variable in the regression analysis. Molecular
markers were used as independent variables and with presence or absence represented by a value of 1
and 0, respectively, except for the 23S rRNA-A2059G and -C2611T variables, which corresponded to the
number of alleles with a respective mutation. A regression model for each antimicrobial was built from a
preliminary analysis that included all independent variables followed by stepwise removal of variables
with relatively high individual P values of .0.05 and those causing little change in the adjusted coeffi-
cient of determination (R2) value (Tables S1 to S8). To simplify the regression equations, variables with
multiple possible mutations for a single resistance determinant having similar regression coefficients
were collapsed into a single combined variable if the new regression coefficient was similar to the initial
separately derived coefficients. For example, two of the possible PBP1a mutations for the STMK motif
combined as “SAMK or SSMK” (“any”) had a similar coefficient value to each of the values calculated indi-
vidually. Nonsignificantly contributing variables removed during the initial stepwise removal molecular
determinants were then reintroduced to assess their contribution to the model.

An adjusted R2 value (95% confidence interval) of 0.0 to 0.1 was considered no correlation to very weak
correlation, 0.2 to 0.4 was considered weak correlation, 0.5 to 0.7 was considered moderate correlation, 0.8
to 0.9 was considered strong correlation, and .0.9 was considered very strong correlation (27). Predicted
MIC values (MICpred) for each antimicrobial were calculated by first calculating the predicted MIC increment
by summing the regression intercept and independent variable coefficients for each isolate, rounding frac-
tional values up or down to the nearest whole integer and then converting this value back to a doubling
MIC value using the formula predicted MIC value = 2predicted MIC increment. Individual P values of ,0.05 for the
independent variables at a confidence interval of 95% were considered significant.

Sensitivity (measure of resistance), specificity (measure of susceptibility), positive predictive value
and negative predictive value for the MICpred were based on the accuracy to traditional MICpheno values:
true positive (TP) having nonsusceptible (resistant or intermediate) predicted and phenotypic MICs, false
negative (FN) having susceptible predicted MICs but nonsusceptible phenotypic MICs, true negative
(TN) having susceptible predicted and phenotypic MICs, and false positive (FP) having a nonsusceptible
predicted MICs and susceptible phenotypic MICs. Calculations were performed as follows: sensitivity
(SENS) = TP/(FN1 TP) � 100, specificity (SPEC) = TN/(FP1 TN) � 100, positive predictive value = TP/(TP1
FP), and negative predictive value = TN/(TN 1 FN) (46). Antimicrobial resistance interpretative errors were
defined as minor error (MI) where the MICpred corresponded to intermediate resistance and the MICpheno

corresponded to either susceptible or resistance interpretations and vice versa, major error (ME) where the
MICpred corresponded to a resistant interpretation and the MICpheno was susceptible, and very major error
(VME) where the MICpred was susceptible and MICpheno was resistant.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.3 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.6 MB.
SUPPLEMENTAL FILE 3, XLSX file, 0.3 MB.

ACKNOWLEDGMENTS
We thank Angela Yuen, Rozette Mallari, and Shelley Peterson from the Streptococcus and

Sexually Transmitted Diseases Unit at NML for laboratory technical assistance, the NML
Science Technology Cores and Services Division for genomics infrastructure, software tools,
technical support, and guidance, the NML Genomics Core Facility for next-generation
sequencing and analytical expertise, the staff of provincial and public health laboratories in
Canada for participating in the national laboratory surveillance program, and the CDC
Streptococcus Laboratory whole-genome sequencing team for valuable data.

REFERENCES
1. Kadioglu A, Weiser JN, Paton JC, Andrew PW. 2008. The role of Streptococ-

cus pneumoniae virulence factors in host respiratory colonization and dis-
ease. Nat Rev Microbiol 6:288–301. https://doi.org/10.1038/nrmicro1871.

2. Henriques-Normark B, Blomberg C, Dagerhamn J, Bättig P, Normark S.
2008. The rise and fall of bacterial clones: Streptococcus pneumoniae. Nat
Rev Microbiol 6:827–837. https://doi.org/10.1038/nrmicro2011.

Demczuk et al. Antimicrobial Agents and Chemotherapy

January 2022 Volume 66 Issue 1 e01370-21 aac.asm.org 14

https://www.ncbi.nlm.nih.gov/nuccore/AE007317.1
https://doi.org/10.1038/nrmicro1871
https://doi.org/10.1038/nrmicro2011
https://aac.asm.org


3. Shelyakin PV, Bochkareva OO, Karan AA, Gelfand MS. 2019. Micro-evolu-
tion of three Streptococcus species: selection, antigenic variation, and hor-
izontal gene inflow. BMC Evol Biol 19:83. https://doi.org/10.1186/s12862
-019-1403-6.

4. Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ, Angiuoli SV, Oggioni
M, Dunning Hotopp JC, Hu FZ, Riley DR, Covacci A, Mitchell TJ, Bentley
SD, Kilian M, Ehrlich GD, Rappuoli R, Moxon ER, Masignani V. 2010. Struc-
ture and dynamics of the pan-genome of Streptococcus pneumoniae and
closely related species. Genome Biol 11:R107. https://doi.org/10.1186/gb
-2010-11-10-r107.

5. van der Poll T, Opal SM. 2009. Pathogenesis, treatment, and prevention of
pneumococcal pneumonia. Lancet 374:1543–1556. https://doi.org/10
.1016/S0140-6736(09)61114-4.

6. Tomczyk S, Lynfield R, Schaffner W, Reingold A, Miller L, Petit S, Holtzman
C, Zansky SM, Thomas A, Baumbach J, Harrison LH, Farley MM, Beall B,
McGee L, Gierke R, Pondo T, Kim L. 2016. Prevention of antibiotic-nonsus-
ceptible invasive pneumococcal disease with the 13-valent pneumococ-
cal conjugate vaccine. Clin Infect Dis 62:1119–1125. https://doi.org/10
.1093/cid/ciw067.

7. Demczuk WHB, Martin I, Desai S, Griffith A, Caron-Poulin L, Lefebvre B,
McGeer A, Tyrrell GJ, Zhanel GG, Gubbay J, Hoang L, Levett PN, Van
Caeseele P, Raafat Gad R, Haldane D, Zahariadis G, German G, Daley
Bernier J, Strudwick L, Mulvey MR. 2018. Serotype distribution of invasive
Streptococcus pneumoniae in adults 65 years of age and over after the
introduction of childhood 13-valent pneumococcal conjugate vaccina-
tion programs in Canada, 2010–2016. Vaccine 36:4701–4707. https://doi
.org/10.1016/j.vaccine.2018.06.018.

8. Liñares J, Ardanuy C, Pallares R, Fenoll A. 2010. Changes in antimicrobial
resistance, serotypes and genotypes in Streptococcus pneumoniae over a
30-year period. Clin Microbiol Infect 16:402–410. https://doi.org/10.1111/j
.1469-0691.2010.03182.x.

9. Golden AR, Baxter MR, Davidson RJ, Martin I, Demczuk W, Mulvey MR,
Karlowsky JA, Hoban DJ, Zhanel GG, Adam HJ, Canadian Antimicrobial Re-
sistance Alliance (CARA), CANWARD. 2019. Comparison of antimicrobial
resistance patterns in Streptococcus pneumoniae from respiratory and
blood cultures in Canadian hospitals from 2007–16. J Antimicrob Chemo-
ther 74(Suppl 4):iv39–iv47. https://doi.org/10.1093/jac/dkz286.

10. Metcalf BJ, Chochua S, Gertz RE, Li Z, Walker H, Tran T, Hawkins PA,
Glennen A, Lynfield R, Li Y, McGee L, Beall B, Reingold A, Brooks S, Randel
H, Miller L, White B, Aragon D, Barnes M, Sadlowski J, Petit S, Cartter M,
Marquez C, Wilson M, Farley M, Thomas S, Tunali A, Baughman W,
Harrison L, Benton J, Carter T, Hollick R, Holmes K, Riner A, Holtzman C,
Danila R, MacInnes K, Scherzinger K, Angeles K, Bareta J, Butler L, Khanlian
S, Mansmann R, Nichols M, Bennett N, Zansky S, Currenti S, McGuire S,
Thomas A, Schmidt M, et al. 2016. Using whole genome sequencing to
identify resistance determinants and predict antimicrobial resistance
phenotypes for year 2015 invasive pneumococcal disease isolates recov-
ered in the United States. Clin Microbiol Infect 22:1002.e1–1002.e8.
https://doi.org/10.1016/j.cmi.2016.08.001.

11. Dever LA. 1991. Mechanisms of bacterial resistance to antibiotics. Arch Intern
Med 151:886. https://doi.org/10.1001/archinte.1991.00400050040010.

12. Job V, Carapito R, Vernet T, Dessen A, Zapun A. 2008. Common alterations in
PBP1a from resistant Streptococcus pneumoniae decrease its reactivity toward
b-lactams: structural insights. J Biol Chem 283:4886–4894. https://doi.org/10
.1074/jbc.M706181200.

13. Dessen A, Mouz N, Gordon E, Hopkins J, Dideberg O. 2001. Crystal struc-
ture of PBP2x from a highly penicillin-resistant Streptococcus pneumoniae
clinical isolate: a mosaic framework containing 83 mutations. J Biol Chem
276:45106–45112. https://doi.org/10.1074/jbc.M107608200.

14. Diawara I, Nayme K, Katfy K, Barguigua A, Kettani-Halabi M, Belabbes H,
Timinouni M, Zerouali K, Elmdaghri N. 2018. Analysis of amino acid motif
of penicillin-binding proteins 1a, 2b, and 2x in invasive Streptococcus
pneumoniae nonsusceptible to penicillin isolated from pediatric patients
in Casablanca, Morocco. BMC Res Notes 11:632. https://doi.org/10.1186/
s13104-018-3719-5.

15. Hackel M, Lascols C, Bouchillon S, Hilton B, Morgenstern D, Purdy J. 2013.
Serotype prevalence and antibiotic resistance in Streptococcus pneumo-
niae clinical isolates among global populations. Vaccine 31:4881–4887.
https://doi.org/10.1016/j.vaccine.2013.07.054.

16. Ghuysen JM. 1991. Serine beta-lactamases and penicillin-binding proteins.
Annu Rev Microbiol 45:37–67. https://doi.org/10.1146/annurev.mi.45.100191
.000345.

17. Contreras-Martel C, Dahout-Gonzalez C, Martins ADS, Kotnik M, Dessen A.
2009. PBP active site flexibility as the key mechanism for b-lactam

resistance in pneumococci. J Mol Biol 387:899–909. https://doi.org/10
.1016/j.jmb.2009.02.024.

18. Li Y, Metcalf BJ, Chochua S, Li Z, Gertz RE, Walker H, Hawkins PA, Tran T,
Whitney CG, McGee L, Beall BW. 2016. Penicillin-binding protein transpepti-
dase signatures for tracking and predicting b-lactam resistance levels in
Streptococcus pneumoniae. mBio 7:e00756-16. https://doi.org/10.1128/mBio
.00756-16.

19. Depardieu F, Courvalin P. 2001. Mutation in 23S rRNA responsible for re-
sistance to 16-membered macrolides and streptogramins in Streptococcus
pneumoniae. Antimicrob Agents Chemother 45:319–323. https://doi.org/
10.1128/AAC.45.1.319-323.2001.

20. Ng LK, Martin I, Liu G, Bryden L. 2002. Mutation in 23S rRNA associated with
macrolide resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemo-
ther 46:3020–3025. https://doi.org/10.1128/AAC.46.9.3020-3025.2002.

21. Tankovic J, Perichon B, Duval J, Courvalin P. 1996. Contribution of mutations
in gyrA and parC genes to fluoroquinolone resistance of mutants of Strepto-
coccus pneumoniae obtained in vivo and in vitro. Antimicrob Agents Chemo-
ther 40:2505–2510. https://doi.org/10.1128/AAC.40.11.2505.

22. Leclercq R. 2002. Mechanisms of resistance to macrolides and lincosa-
mides: nature of the resistance elements and their clinical implications.
Clin Infect Dis 34:482–492. https://doi.org/10.1086/324626.

23. Horinouchi S, Weisblum B. 1982. Nucleotide sequence and functional
map of pC194, a plasmid that specifies inducible chloramphenicol resist-
ance. J Bacteriol 150:815–825. https://doi.org/10.1128/jb.150.2.815-825
.1982.

24. Nichol KA, Zhanel GG, Hoban DJ. 2002. Penicillin-binding protein 1A, 2B,
and 2X alterations in Canadian isolates of penicillin-resistant Streptococ-
cus pneumoniae. Antimicrob Agents Chemother 46:3261–3264. https://
doi.org/10.1128/AAC.46.10.3261-3264.2002.

25. Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C,
Grundman H, Hasman H, Holden MTG, Hopkins KL, Iredell J, Kahlmeter G,
Köser CU, MacGowan A, Mevius D, Mulvey M, Naas T, Peto T, Rolain J-M,
Samuelsen Ø, Woodford N. 2017. The role of whole genome sequencing
in antimicrobial susceptibility testing of bacteria: report from the EUCAST
Subcommittee. Clin Microbiol Infect 23:2–22. https://doi.org/10.1016/j
.cmi.2016.11.012.

26. Eyre DW, De Silva D, Cole K, Peters J, Cole MJ, Grad YH, Demczuk W,
Martin I, Mulvey MR, Crook DW, Walker AS, Peto TEA, Paul J. 2017. WGS to
predict antibiotic MICs for Neisseria gonorrhoeae. J Antimicrob Chemo-
ther 72:1937–1947. https://doi.org/10.1093/jac/dkx067.

27. Demczuk W, Martin I, Sawatzky P, Allen V, Lefebvre B, Hoang L, Naidu P,
Minion J, VanCaeseele P, Haldane D, Eyre DW, Mulvey MR. 2020. Equa-
tions to predict antimicrobial MICs in Neisseria gonorrhoeae using molec-
ular antimicrobial resistance determinants. Antimicrob Agents Chemo-
ther 64:e02005-19. https://doi.org/10.1128/AAC.02005-19.

28. Demczuk W, Martin I, Peterson S, Bharat A, Van Domselaar G, Graham M,
Lefebvre B, Allen V, Hoang L, Tyrrell G, Horsman G, Wylie J, Haldane D,
Archibald C, Wong T, Unemo M, Mulvey MR. 2016. Genomic epidemiol-
ogy and molecular resistance mechanisms of azithromycin-resistant Neis-
seria gonorrhoeae in Canada from 1997 to 2014. J Clin Microbiol 54:
1304–1313. https://doi.org/10.1128/JCM.03195-15.

29. Smith AM, Klugman KP. 1998. Alterations in PBP 1a essential for high-level
penicillin resistance in Streptococcus pneumoniae. Antimicrob Agents
Chemother 42:1329–1333. https://doi.org/10.1128/AAC.42.6.1329.

30. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon
A, Allesoe RL, Rebelo AR, Florensa AF, Fagelhauer L, Chakraborty T,
Neumann B, Werner G, Bender JK, Stingl K, Nguyen M, Coppens J, Xavier
BB, Malhotra-Kumar S, Westh H, Pinholt M, Anjum MF, Duggett NA,
Kempf I, Nykäsenoja S, Olkkola S, Wieczorek K, Amaro A, Clemente L,
Mossong J, Losch S, Ragimbeau C, Lund O, Aarestrup FM. 2020. ResFinder
4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemo-
ther 75:3491–3500. https://doi.org/10.1093/jac/dkaa345.

31. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar
K, Canova MJ, De Pascale G, Ejim L, Kalan L, King AM, Koteva K, Morar M,
Mulvey MR, O'Brien JS, Pawlowski AC, Piddock LJV, Spanogiannopoulos P,
Sutherland AD, Tang I, Taylor PL, Thaker M, Wang W, Yan M, Yu T, Wright
GD. 2013. The comprehensive antibiotic resistance database. Antimicrob
Agents Chemother 57:3348–3357. https://doi.org/10.1128/AAC.00419-13.

32. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L,
Rolain JM. 2014. ARG-annot, a new bioinformatic tool to discover antibiotic
resistance genes in bacterial genomes. Antimicrob Agents Chemother 58:
212–220. https://doi.org/10.1128/AAC.01310-13.

33. Pikis A, Donkersloot JA, Rodriguez WJ, Keith JM. 1998. A conservative
amino acid mutation in the chromosome-encoded dihydrofolate

Linear Regression Modeling To Predict MIC Antimicrobial Agents and Chemotherapy

January 2022 Volume 66 Issue 1 e01370-21 aac.asm.org 15

https://doi.org/10.1186/s12862-019-1403-6
https://doi.org/10.1186/s12862-019-1403-6
https://doi.org/10.1186/gb-2010-11-10-r107
https://doi.org/10.1186/gb-2010-11-10-r107
https://doi.org/10.1016/S0140-6736(09)61114-4
https://doi.org/10.1016/S0140-6736(09)61114-4
https://doi.org/10.1093/cid/ciw067
https://doi.org/10.1093/cid/ciw067
https://doi.org/10.1016/j.vaccine.2018.06.018
https://doi.org/10.1016/j.vaccine.2018.06.018
https://doi.org/10.1111/j.1469-0691.2010.03182.x
https://doi.org/10.1111/j.1469-0691.2010.03182.x
https://doi.org/10.1093/jac/dkz286
https://doi.org/10.1016/j.cmi.2016.08.001
https://doi.org/10.1001/archinte.1991.00400050040010
https://doi.org/10.1074/jbc.M706181200
https://doi.org/10.1074/jbc.M706181200
https://doi.org/10.1074/jbc.M107608200
https://doi.org/10.1186/s13104-018-3719-5
https://doi.org/10.1186/s13104-018-3719-5
https://doi.org/10.1016/j.vaccine.2013.07.054
https://doi.org/10.1146/annurev.mi.45.100191.000345
https://doi.org/10.1146/annurev.mi.45.100191.000345
https://doi.org/10.1016/j.jmb.2009.02.024
https://doi.org/10.1016/j.jmb.2009.02.024
https://doi.org/10.1128/mBio.00756-16
https://doi.org/10.1128/mBio.00756-16
https://doi.org/10.1128/AAC.45.1.319-323.2001
https://doi.org/10.1128/AAC.45.1.319-323.2001
https://doi.org/10.1128/AAC.46.9.3020-3025.2002
https://doi.org/10.1128/AAC.40.11.2505
https://doi.org/10.1086/324626
https://doi.org/10.1128/jb.150.2.815-825.1982
https://doi.org/10.1128/jb.150.2.815-825.1982
https://doi.org/10.1128/AAC.46.10.3261-3264.2002
https://doi.org/10.1128/AAC.46.10.3261-3264.2002
https://doi.org/10.1016/j.cmi.2016.11.012
https://doi.org/10.1016/j.cmi.2016.11.012
https://doi.org/10.1093/jac/dkx067
https://doi.org/10.1128/AAC.02005-19
https://doi.org/10.1128/JCM.03195-15
https://doi.org/10.1128/AAC.42.6.1329
https://doi.org/10.1093/jac/dkaa345
https://doi.org/10.1128/AAC.00419-13
https://doi.org/10.1128/AAC.01310-13
https://aac.asm.org


reductase confers trimethoprim resistance in Streptococcus pneumoniae. J
Infect Dis 178:700–706. https://doi.org/10.1086/515371.

34. Haasum Y, Ström K, Wehelie R, Luna V, Roberts MC, Maskell JP, Hall LMC,
Swedberg G. 2001. Amino acid repetitions in the dihydropteroate syn-
thase of Streptococcus pneumoniae lead to sulfonamide resistance with
limited effects on substrate Km. Antimicrob Agents Chemother 45:
805–809. https://doi.org/10.1128/AAC.45.3.805-809.2001.

35. Metcalf BJ, Gertz RE, Jr, Gladstone RA, Walker H, Sherwood LK, Jackson D,
Li Z, Law C, Hawkins PA, Chochua S, Sheth M, Rayamajhi N, Bentley SD,
Kim L, Whitney CG, McGee L, Beall B. 2016. Strain features and distribu-
tions in pneumococci from children with invasive disease before and af-
ter 13-valent conjugate vaccine implementation in the USA. Clin Micro-
biol Infect 22:60.e9–60.e29. https://doi.org/10.1016/j.cmi.2015.08.027.

36. Reasonover A, Zulz T, Bruce MG, Bruden D, Jetté L, Kaltoft M, Lambertsen
L, Parkinson A, Rudolph K, Lovgren M. 2011. The International Circumpo-
lar Surveillance Interlaboratory Quality Control Program for Streptococcus
pneumoniae, 1999 to 2008. J Clin Microbiol 49:138–143. https://doi.org/
10.1128/JCM.01238-10.

37. Sawatzky P, Liu G, Dillon JAR, Allen V, Lefebvre B, Hoang L, Tyrrell G, Van
Caeseele P, Levett P, Martin I. 2015. Quality assurance for antimicrobial
susceptibility testing of Neisseria gonorrhoeae in Canada, 2003 to 2012. J
Clin Microbiol 53:3646–3649. https://doi.org/10.1128/JCM.02303-15.

38. Sawatzky P, Martin I, Galarza P, Carvallo MET, Araya Rodriguez P, Cruz
OMS, Hernandez AL, Martinez MF, Borthagaray G, Payares D, Moreno JE,
Chiappe M, Corredor AH, Thakur SD, Dillon JAR. 2018. Quality assurance
for antimicrobial susceptibility testing of Neisseria gonorrhoeae in Latin
American and Caribbean countries, 2013–2015. Sex Transm Infect 94:
479–482. https://doi.org/10.1136/sextrans-2017-053502.

39. Croucher NJ, Finkelstein JA, Pelton SI, Mitchell PK, Lee GM, Parkhill J,
Bentley SD, Hanage WP, Lipsitch M. 2013. Population genomics of post-

vaccine changes in pneumococcal epidemiology. Nat Genet 45:656–663.
https://doi.org/10.1038/ng.2625.

40. Clinical and Laboratory Standards Institute. 2018. Methods for dilution anti-
microbial susceptibility tests for bacteria that grow aerobically, 11th ed. CLSI
standard M07. Clinical and Laboratory Standards Institute, Wayne, PA.

41. Clinical and Laboratory Standards Institute. 2021. Performance standards
for antimicrobial susceptiblity testing, 31st ed. CLSI supplement M100.
Clinical and Laboratory Standards Institute, Wayne, PA.

42. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local
alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/
S0022-2836(05)80360-2.

43. Wierzbowski AK, Boyd D, Mulvey M, Hoban DJ, Zhanel GG. 2005. Expres-
sion of the mef(E) gene encoding the macrolide efflux pump protein
increases in Streptococcus pneumoniae with increasing resistance to mac-
rolides. Antimicrob Agents Chemother 49:4635–4640. https://doi.org/10
.1128/AAC.49.11.4635-4640.2005.

44. Petkau A, Mabon P, Sieffert C, Knox NC, Cabral J, Iskander M, Iskander M,
Weedmark K, Zaheer R, Katz LS, Nadon C, Reimer A, Taboada E, Beiko RG,
Hsiao W, Brinkman F, Graham M, Van Domselaar G. 2017. SNVPhyl: a sin-
gle nucleotide variant phylogenomics pipeline for microbial genomic epi-
demiology. Microb Genom 3:e000116. https://doi.org/10.1099/mgen.0
.000116.

45. Triola MF, Goodman WM, Law R. 2002. Elementary statistics, p 462–521. In
Triola MF (ed), Elementary Statistics, 2nd ed. Pearson Education Canada,
Inc, Toronto, Ontario, Canada.

46. Parikh R, Mathai A, Parikh S, Chandra Sekhar G, Thomas R. 2008. Under-
standing and using sensitivity, specificity and predictive values. Indian J
Ophthalmol 56:45–50. https://doi.org/10.4103/0301-4738.37595.

Demczuk et al. Antimicrobial Agents and Chemotherapy

January 2022 Volume 66 Issue 1 e01370-21 aac.asm.org 16

https://doi.org/10.1086/515371
https://doi.org/10.1128/AAC.45.3.805-809.2001
https://doi.org/10.1016/j.cmi.2015.08.027
https://doi.org/10.1128/JCM.01238-10
https://doi.org/10.1128/JCM.01238-10
https://doi.org/10.1128/JCM.02303-15
https://doi.org/10.1136/sextrans-2017-053502
https://doi.org/10.1038/ng.2625
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1128/AAC.49.11.4635-4640.2005
https://doi.org/10.1128/AAC.49.11.4635-4640.2005
https://doi.org/10.1099/mgen.0.000116
https://doi.org/10.1099/mgen.0.000116
https://doi.org/10.4103/0301-4738.37595
https://aac.asm.org

	RESULTS
	DISCUSSION
	MATERIALS AND METHODS
	Training and validation data sets and antimicrobial susceptibility testing.
	Molecular analysis.
	Multiple-variable linear regression analysis.

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

