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Abstract: Potassium voltage-gated channel subfamily g member 4 (KCNQ4) is a voltage-gated potas-
sium channel that plays essential roles in maintaining ion homeostasis and regulating hair cell
membrane potential. Reduction of the activity of the KCNQ4 channel owing to genetic mutations
is responsible for nonsyndromic hearing loss, a typically late-onset, initially high-frequency loss
progressing over time. In addition, variants of KCNQ4 have also been associated with noise-induced
hearing loss and age-related hearing loss. Therefore, the discovery of small compounds activating
or potentiating KCNQA4 is an important strategy for the curative treatment of hearing loss. In this
review, we updated the current concept of the physiological role of KCNQ4 in the inner ear and the
pathologic mechanism underlying the role of KCNQ4 variants with regard to hearing loss. Finally, we
focused on currently developed KCNQ4 activators and their pros and cons, paving the way for the
future development of specific KCNQ4 activators as a remedy for hearing loss.

Keywords: potassium voltage-gated channel subfamily q member 4; potassium; hearing loss;
nonsyndromic hearing loss; KCNQ4 activator

1. Introduction

Hearing impairment, the most common sensory deficit in humans, affects 466 mil-
lion people (over 6% of the world’s population) according to the World Health Organiza-
tion (WHO) (https:/ /www.who.int/news-room/fact-sheets/detail /deafness-and-hearing-
loss) (accessed on 20 January 2021) [1,2]. Approximately 1 in 500-1000 individuals suffer
from congenital hearing loss, of which approximately 50% are known to be caused by
genetic mutations [3,4]. The prevalence of hearing loss has been reported to double with
every 10-y increase in age, with almost two-thirds of individuals over the age of 70 y having
a hearing impairment associated with sounds > 25 dB [2]. The main causes of adult-onset
hearing loss are noise exposure, aging, genetic mutations, exposure to therapeutic drugs
that have ototoxic side-effects, viruses, or ototoxic drugs or chemicals, resulting in damage
to the auditory hair cells and neurons [1,2]. As the number of aging adults is increasing
globally, hearing loss poses a high economic burden, with an estimated cost of $750 billion
annually [5]. Despite this, all available treatment options for hearing loss to date are limited
to hearing devices, such as hearing aids and cochlear implants. Medical treatments are
both lacking and required.

As with almost all other sensory transduction systems, hearing involves the modula-
tion of potassium (K*) channels at an early stage of the process of turning mechanical sound
into electrical signals. Potassium voltage-gated channel subfamily g member 4 (KCNQ4) is
known to play an essential role in the auditory function of the inner ear, contributing to
potassium recycling and homeostasis maintenance. Reduction of the activity of the KCNQ4
channel has been associated with a genetic form of hearing loss, noise-induced hearing
loss, and age-related hearing loss [6-8]; therefore, small compounds that activate KCNQ4,
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the so-called “channel openers”, have been developed as a strategy for the treatment of
these hearing impairments [9]. In this review, we focused on the developmental status
of KCNQ4 activators and compared their advantages and shortcomings in terms of their
potential to be used for the specific activation of KCNQA4.

2. KCNQ Potassium Channels

The KCNQ family of voltage-gated potassium channels (Kv7) includes five mem-
bers (Kv7.1-Kv7.5) that have important roles in the brain, heart, kidney, and inner
ear [10]. In particular, KCNQ channels consist of a K* channel pore-forming subunit
(o-subunit) with six transmembrane domains (51-56) and a single pore-loop (P-loop),
and two intracellular termini (Figure 1). Functional KCNQ channels are assembled
in homo- or heterotetramer pore-forming subunits. The proteins have been shown to
share between 30 and 65% amino acid identity, with particularly high homology in the
transmembrane regions (Figure 1) [11,12]. The 54 transmembrane domain containing a
regular distribution of positively charged amino acids acts as the voltage sensor, while
the P-loop contains the K* pore TxxTxGYG signature sequence (Figure 1). The length
of the N-terminus, which is in the order of 100 amino acids, is similar between the five
subtypes, whereas the length of the C-terminus varies greatly between the subtypes.
All five proteins display a highly homologous region on their intracellular C-terminus
termed “A-domain” (Figure 1) [11]. The high homology in critical residues, such as the
voltage sensor domain and P-loot, has hindered the development of subtype-specific
activators, including KCNQ4-specific activators.

KCNQ1 1©7 PISIIDLIVVVASMVVLCVG 218 LPAGILGSGFAL 33
KCNQ2 167 PFCVIDIMVLIASIAVLAAG 186 LPAGILGSGFAL 31
KCNQ3 197 PLCMLDIFVLIASVPVVAVG 216 LPAGILGSGLAL 37
KCNQ4 " PFCVIDFIVFVASVAVIAAG 12 LPAGILGSGFAL 32
KCNQ5 2! PFCVIDTIVLIASIAVVSAK 220 LPAGILGSGFAL 322
|
|
KCNQ1 127 FAVFLIVLVCLIFSVL
KCNQ2 97 AYVELLVFSCLVLSVF
KCNQ3 27 ALVFLIVLGCLILAVL
KCNQ4 "3 VFIFLLVFSCLVLSVL
KCNQ5 “'AFVFLLVFGCLILSVF
\
N KCNQ1 : NP_000209.2
KCNQ2 : NP_742105.1
. KCNQ3 : NP_004510.1
KCNQ family KCNQ4 : NP_004691.2
basic structure KCNQS : NP_001153605.1
KCNQ1 151 LATGTLFWMEIVLVVFFGT TVITI
KCNQ2 1215 S EGALYILEIVTIVVEGY 13 / 26 DALWWGLITLTTI
KCNQ3 151V S GDWLLLLETFAIFIFGA 16 / %S DALWWGLITLATIG
KCNQ4 1277 LANECLLILEFVMIVVEGL 145 W2 DSLWWGTITLTTIGYGDKTPH 202 \
KCNQS'55LASSCLLILEFVM1VVFGL173/ 20 DALWWGTITLTTIGYGDKTPL 320
) \
T |
- |
KCNQ1 220 QVFATSAIRGIRFLQILRMLHVDRO2 s2YFVAKKKFOQOARKPYDVRDVIEQYSQOGHLNLMYRIKELQRRLDQSIGKPS 57
KCNQ2 190 NVFATSALRS LRFLQILRMIRMDRR2 &&FLVSKRKFKEGLRPYDVMDVIEQYSAGHLDMLSRIKSLQSRVDQIVGRGP 57
KCNQ3 20 NVLATS-LRSLRFLQILRMLRMDRR22 E2TFTRLYKKKFKCTLRPYDVKDVIEQYSAGHLDMLSRIKYLQTRIDMITTPGP E78
KCNQ4 ' NIFATSALRSMRFLQILRMVRMDRR220 =2F LVAKRKFKETLRPYDVKDVIEQYSAGHLDMLGRIKSLQTRVDQIVGRGP o1
KCNQ5 2¢NTFATSALRSLRFLQILRMVRMDRR2: 50 FHVAKRKFKETLRPYDVKDVIEQYSAGHLDMLCRIKSLQTRVDQILGKGQ 58

Figure 1. Comparative sequence analysis among voltage-gated channel subfamily q (KCNQ) family genes and mutational

spectrum in protein sequences. Conserved sequences are presented in bold characters. Amino acids affected by pathogenic

mutations reported in associated Mendelian diseases were collected from the HGMD and ClinVar databases and are

presented in red characters

. KCNQ2—4 share the tryptophan residue (Trp242 in KCNQA4, highlighted in yellow), which is

critical for the activity of several KCNQ activators, including retigabine; however, KCNQ1 has a leucine at this position, and

not a tryptophan.

All five Kv7 members map to a human disease locus. Mutations in KCNQ genes have
been shown to cause inherited syndromic diseases. More specifically, mutations of KCNQ1
are known to cause heart diseases, including long QT syndrome (MIM 192500), and Jervell
and Lange-Nielsen syndrome (MIM 220400) in autosomal dominant and recessive manners,
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respectively [13-15]. Mutations of KCNQ?2 have been found to cause autosomal dominant
benign familial neonatal seizures (MIM 121200) [16,17]. Mutations of KCNQ3 have also
been shown to cause autosomal dominant benign neonatal seizures (MIM 121201) [18],
while mutations of KCNQ4 result in autosomal dominant nonsyndromic hearing loss
(DFNA2, MIM 600101) [6]. Finally, mutations of KCNQ5 have been reported to cause
autosomal dominant intellectual disability (MIM 617601) [19].

Among the 30 genes associated with autosomal dominant hearing loss, KCNQ4 is one
of the most commonly mutated genes [20,21]. KCNQ4 mutations explained 6.62% (19/287)
in Japanese families with autosomal dominant nonsyndromic hearing loss and c.211delC
was identified as a founder mutation in Japanese individuals, explaining 68.4% (13/19)
among families with KCNQ4 mutations [20]. In addition, in our Korean adult-onset hearing
loss patient cohort (i.e., Yonsei University Hearing Loss or YUHL cohort) without noise
exposure history, KCNQ4 presented the highest prevalence for mutations (9/213 patients,
unpublished). In particular, DENA2 resulting from mutations in KCNQ4 is characterized
by progressive sensorineural hearing loss at all frequencies [6,22]. The progressive nature
of DENAZ2 is advantageous for treatment because it provides a wide therapeutic window
if the causative mutations could be detected early. Since the first clinical report of a
mutation of KCNQ4 responsible for deafness in 1999 [6], over 40 pathogenic mutations
have been identified in individuals with DFNA2 (www.deafnessvariationdatabase.org or
www.hgmd.cf.ac.uk/ac/index.php, accessed on 31 December 2020) [21]. The mutation
hotspots in KCNQ4 associated with DFNA2 have been shown to be clustered around the
pore region [21]. Variants in the pore region of KCNQ4 are known to be unresponsive
to KCNQ activators, such as retigabine or zinc pyrithione [21,23,24]. In addition, it was
found that among pore region variants, variants that result in almost null potassium
activity did not respond to KCNQ activators, whereas variants with residual voltage-
activated K* currents could be activated by KCNQ activators [21]. In addition, variants
occurring in the N- and C-terminal cytoplasmic termini had higher chances to be rescued
by KCNQ4 activators [21,25]. However, the relationship between each mutation and drug
responsiveness remains unclear.

3. Potassium Recycling and KCNQ4 in the Inner Ear

The inner ear of mammals contains two sensory organs, the cochlea and the vestibule,
which are responsible for hearing and balance, respectively. The cochlea consists of three
fluid-filled compartments with different ion compositions: (1) scala vestibuli; (2) scala
media; and (3) scala tympani. The scala vestibule and scala tympani are filled with
perilymph, whereas the scala media is filled with the endolymph, which has a high K*
concentration and a positive potential [26]. The mammalian cochlear contains two types of
sensory cells with a bundle of actin-based stereocilia on their apical surface: (1) outer hair
cells (OHCs), which amplify sound stimuli; and (2) inner hair cells (IHCs), which transmit
sound stimuli to the central nervous system [27]. The sensory cells of cochlea are bathed in
endolymph and a difference in K* concentration is maintained between the endolymph
and the sensory cells in the scala media. As K* is the major charge carrier for the sensory
transduction, its proper recycling is of great importance for the process of hearing. Briefly,
K* ions are secreted into the endolymph by the stria vascularis, enter the sensory OHCs
through apical mechanosensitive K* channels, probably including transmembrane channel
like 1 (TMC1) and TMC2 [28], thereby triggering neurotransmission, and are released from
these cells into the perilymph via basolateral K* channels, including KCNQ4. Then, they
migrate through supporting cells and fibrocytes toward the stria vascularis using a network
of gap junctions [26]. Accordingly, K* recycling genes were shown to be indispensable
for the process of hearing, as evidenced by the fact that multiple mutations in these genes
(GJB1 (Cx32), GJB2 (Cx26), GJB3 (Cx31), GJB4 (Cx30.3), G/B6 (Cx30), KCNE1, KCNQ1,
and KCNQ4) lead to both syndromic and nonsyndromic forms of hearing loss [6,14,15].
Moreover, mice deficient for SLC12A2, a Na* /2Cl~ /K* cotransporter, and KCNJ10 were
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reported to develop hearing loss due to collapsed endolymphatic spaces and the inability
to generate an endocochlear potential, respectively [29,30].

In order for the cochlear to respond to the dynamic range and speed of sound, fast
electromechanical amplification of sound and fast repolarization of the receptor potential
by OHCs is required [31]. The K* current that is known to dominate in OHCs is termed
Ik n [32]. Mechanoelectrical transducer channels have been shown to be opened by de-
flections of the hair cell bundles at cochlear regions of specific frequencies, causing an
influx of K*, which would in turn lead to the depolarization of the membrane and contrac-
tion of OHCs by the motor protein prestin [33]. The fast amplification process depends
on the capacitance of OHCs at resting membrane potential, which is determined by the
conductance of OHCs maintained through the KCNQ4-mediated efflux current Ix , [34].
The expression and current of KCNQ4 were reported to be detected prior to hearing onset
along the entire basolateral membrane of OHCs in mice [34,35]; however, after the onset of
hearing (postnatal day 12-14), its expression was redistributed and restricted to the basal
pole [36]. This expression pattern was demonstrated to correlate with its function in extrud-
ing K* ions [32,37,38]. Moreover, KCNQ4 is known to be also expressed in IHCs, spiral
ganglion neurons, and several nuclei along the auditory pathway, for example, cochlear
nuclei and inferior colliculus [37,39,40]. However, it remains controversial whether it is
expressed in IHCs or spiral ganglions, and whether there is a tonotopy in the expression in
THCs [41,42]. Accordingly, Kcng4~—/~ mice were reported to exhibit progressive hearing
loss, with OHCs slowly decreasing at a young age with increasing cell loss leading up to
complete degeneration at the oldest ages [42,43]. Degeneration of IHCs, particularly at the
basal turn was also observed, but only in the adult stage [30]. The loss of this important K*
channel in OHCs is known to result in a chronic depolarization, possibly increasing Ca®*
influx through voltage-gated Ca?* channels and causing their subsequent degeneration
due to chronic cellular stress [44].

When expressed alone in CHO cells, KCNQ4 displays a half-activation voltage of —19 mV
and a slope constant of 10 mV. The activation onset has been found to be exponential, except at
very positive voltages, displaying little or no inactivation [45]. In oocytes, the half-activation
voltage has been demonstrated to be —10 mV, the slope constant 18 mV, and the activation
slow, with a time constant of 600 msec at +40 mV [6].

4. Association of KCNQ4 and Noise-Induced Hearing Loss

Noise-induced hearing loss is estimated to affect 12% or more of the global population
and has become a leading occupational health risk in developed countries [46]. The World
Health Organization estimated that 1.1 billion young people worldwide are at risk of
developing hearing loss due to noise exposure [47].

Genetic factors are also known to contribute to noise-induced hearing loss [48]. There-
fore, the association of K* recycling gene variants with susceptibility to noise has been
examined. Van Laer et al. investigated the association of 35 single nucleotide polymor-
phisms (SNPs) in 10 genes including GJB1, GJ/B2, GJB3, GJB4, GJB6, KCNJ10, KCNQ4,
KCNQ1, KCNE1, KCNQ3, and SLCI12A2 on 104 noise-susceptible and 114 noise-resistant
individuals selected from a population of 1261 Swedish noise-exposed workers [7]. They
found that three SNPs in KCNE1, one SNP in KCNQ1, and one SNP in KCNQ4 were sig-
nificantly associated with noise-induced hearing loss [7]. Another association study was
performed in 119 noise-susceptible and 119 noise-resistant individuals selected from a
population of 3860 Polish noise-exposed workers [49]. Pawelczyk et al. examined 99 SNPs
in 10 K* recycling genes and found a significant association of SNPs in 7 out of 10 genes
(KCNE1, KCNQ4, GJB1, GJB2, G/B4, KCNJ10, and KCNQT1) [49]. Two SNPs, the rs2070358 G
allele in KCNE1 and rs34287852 G allele (c.1365T>G, p.H455Q) in KCNQ4, were reported to
be significant in both populations, with the rs2070358 G allele increasing the susceptibility
to noise-induced hearing loss [7,49]. Interestingly, the rs34287852 G allele in KCNQ4 exhib-
ited the opposite effect in these two populations, as it was found to decrease the risk of
developing noise-induced hearing loss in the Swedish population, but increased the sus-
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ceptibility of noise-induced hearing loss in the Polish population [7,49]. This discrepancy
could be theoretically explained by differences in allele frequency or linkage disequilibrium
patterns in both populations, slightly different selection procedures applied in both studies,
the influence of various environmental factors, or, finally, by a false positive association
with noise-induced hearing loss of the rs34287852 G allele of KCNQ4 [50]. The allele
frequency of rs34287852 is 0.1763 in total; however, ethnic differences exist. It has been
shown to be more common in Europeans with an allele frequency of over 0.15, whereas it
is less than 0.07 in eastern Asians and Africans. This SNP is known to result in a missense
change (p.H455Q). Jung et al. showed that the activity of the K channel of this variant was
not different from that of wild-type KCNQ4 and increased to a level similar to wild-type
KCNQ4 following administration of retigabine [21]. Last, Guo et al. examined three SNPs
(rs709688, 152769256 and rs4660468) for an association with noise-induced hearing loss
on 571 cases and 639 normal controls selected from about 2700 noise-exposed Chinese
workers [51]. They found that one synonymous SNP, the rs4660468 T allele, was significant,
conferring a higher risk of noise-induced hearing loss [51].

Acoustic noise exposure has been suggested to decrease the functionality of KCNQ4
on the surface membrane, thereby playing a pivotal role in noise-induced hearing loss.
Loss of KCNQ4 on the membranes of OHCs in cochlear regions of high frequency was
reported to precede the loss of OHCs in mouse models [44,52]. Likewise, KCNQ4 was
also reported to be lost from the surface membrane of OHCs in cochlear regions of low
frequency following exposure to low frequency noise [53]. Therefore, KCNQ4 was assumed
to protect OHCs from Ca?* overload triggered by noise exposure [42,53].

5. KCNQ4 Activators

As we discussed, the common molecular basis of DFNA2 and noise-induced hearing
loss is the reduction of the activity of KCNQ4 in OHCs, resulting from either mutations
or noise exposure; therefore, restoration of the activity of KCNQ4 is a logical strategy
for the treatment and prevention of these conditions. To this end, a number of synthetic
compounds that potentiate KCNQ channels have been developed to treat diseases resulting
from neuronal hyperexcitability, such as epilepsy and neuropathic pain [54]. Some of these
chemicals have been examined for their ability to activate KCNQ4. In addition, efforts
have been made to develop compounds specific to KCNQ4 over other KCNQ channels.

5.1. Retigabine

Retigabine, also known as ezogabine, is a first-in-class drug for the treatment of
epilepsy, approved by the US Food and Drug Administration [55-58]. Retigabine has been
the most characterized activator of KCNQ channels and has been shown to potentiate
KCNQ2, KCNQ3, KCNQ4, and KCNQ5, without activating KCNQ1, thereby avoiding
potential cardiac effects [56,59-61]. Due to its broad effect on various subtypes of KCNQ
channels, retigabine is also utilized as an antidepressant [62], an antihypertensive [63], an
analgesic [64], an anxiolytic [65], and even as an antimanic [66]. However, its administration
has been associated with side-effects, such as retinal pigmentation, urinary retention, and
skin discoloration [58,67]. Although it is known to serve as an activator, it has also been
shown to inhibit KCNQ channels at positive potentials [68]. In addition, retigabine is
known to act on other channels, including g-aminobutyric acid receptor channels [69].

Retigabine has an effective concentration for half-maximum response (ECs) of
1.4 uM at =30 mV [70] and 3.7 pM at 0 mV [23] for KCNQA4 in vitro, with 10 pM of retiga-
bine increasing the native Iy ,, currents by 1.4-fold at —60 mV to 2.2-fold at —110 mV [23].
Moreover, retigabine has been shown to shift voltages of activation to hyperpolarized
potentials [23]. Li et al. determined the structures of KCNQ4 and its complex with retiga-
bine using cryoelectron microscopy [71]. Four retigabine molecules were demonstrated
to bind to one KCNQ4 tetramer, with each retigabine residing in a single hydropho-
bic fenestration site in the middle of the membrane. Retigabine contains three major
functional groups: the fluorophenyl group, the middle phenyl ring, and the carbamate
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group (Figure 2). The Trp242, Phe246, Leu249, Leu305, Leu306, Ser309, Phe310, Phe311,
Pro314, and Leu318 residues of KCNQ4 have been shown to be involved in the binding
of retigabine (Figure 2) [71]. Using systematic mutagenesis studies, it was identified
that the tryptophan residue (Trp242 in KCNQ4) in S5 was crucial for the activity of
retigabine and was further shown that it is conserved from KCNQ2 to KCNQ5 [61,72],
but replaced by Leu266 in KCNQ1 (Figure 1) [71]. Both the side chain of Ser309 and the
carbonyl oxygen of Leu305 can form hydrogen bonds with the amino group from the
carbamate group of retigabine [71]. In addition, both the side chain of Ser309 and the
carbonyl oxygen of Phe311 can form hydrogen bonds with the amino group from the
middle phenyl ring of retigabine [71]. The side chain of Trp242 and the aromatic ring
of Phel10 have been reported to interact with the carbonyl oxygen from the carbamate
group and the fluorine atom of retigabine, respectively [71]. In particular, KCNQ4 was
shown to be modulated by phosphatidylinositol 4,5-bisphosphate (PIP;) which is known
to activate KCNQ channels by coupling voltage-sensing domains and the central pore
domain [73,74]; a single molecule of PIP; inserts its head group into a cavity within each
voltage-sensing domain [71].

phenyl
ring
carbamate . B i fluorophenyl
group R/&\'Q R o-d %‘O{ group
Q
‘“ o Retigabine

(—*ﬁ

Ill M KCNQ4
(1] 52 [ 9] o4 [ 55 Bpseon] 56
U L - J I NP_004691
: 695 a.a.
........................................... Mt Fasudl g4 4.3
* Maxipost ML213 Zinc pyrithione
(BMS-204352)

%1«%

B‘,‘;‘} xo")f‘> Hydrogen (H)
. P ) Hydrogen
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..........................

Fluorine (F)

&% Sulfur (S)

..............................

Figure 2. Pharmacological action sites of KCNQ4 activators along functional domains. Critical amino acid residues for

the action of KCNQ4 activators are mostly located in the S5 and S6 regions, including the crucial site Trp242. Retigabine,

maxipost, acrylamide (S)-1, and ML213 require this tryptophan residue for their activity.

Even though retigabine has been extensively studied and shown to prevent salicylate-
induced ototoxicity in rats [75], its use against hearing loss has been limited due to the
potential side-effects resulting from its broad action on KCNQ channels.

5.2. Retigabine Derivatives

Wang et al. reported several compounds that were made by modifying retigabine and
showed better selectivity for KCNQ4 and KCNQS5 [76]. For instance, a N-1/3 substitution
resulted in improved specificity for KCNQ4 and KCNQ5 compared with naive retiga-
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bine [76]. Especially, 10 g of one of those derivatives showed the best potency for KCNQ4
and KCNQ5 with ECsg values of 0.78 and 1.68 pM, respectively, and had a minimal effect on
homomeric KCNQ2 [76]. More specifically, 10 uM of 10 g of this compound was reported to
increase the currents of KCNQ4 and KCNQS5 by 6.4- and 4.6-fold, respectively [76]. Further
modification of this compound may lead to a drug with better specificity for KCNQ4 over
KCNQS. This study also demonstrated that alteration of chemical subunits from currently
available KCNQ channel activators might serve as a promising platform for the discovery
of novel compounds targeting KCNQ4 with higher specificity [77].

NS15370, which was developed as a chemical retigabine analog with higher po-
tency [78], was shown to induce a shift in the voltage-dependence of activation, enhancing
KCNQ4-mediated currents at potentials negative to 0 mV, but suppressing them at more
positive membrane potentials [79].

5.3. Zinc Pyrithione

Zinc pyrithione (ZnPy), which is widely used for dandruff and psoriasis [80], has
been shown to activate KCNQ channels, except KCNQ3 and KCNQ5 [81]. Accordingly,
10 uM ZnPy increased KCNQ4-mediated currents by 76.1-fold at —30 mV and 23.5-fold at
+50 mV [81] and potentiated the native Iy ,, currents when combined with retigabine [23]. It
should be mentioned that ZnPy is unique in that it increases the open probability of KCNQ2
and KCNQ4 in addition to inducing a hyperpolarizing shift in the voltage dependence of
activation and increasing the current amplitude [81]. However, the activity of ZnPy does
not depend on the tryptophan residue in S5, which is different from retigabine, but on the
interaction with the pore region (Figure 2) [82]. Furthermore, both Zn?* and pyrithione
were demonstrated to be essential for activity, with the potency depending on the proper
stoichiometry of 1:2 zinc-to-pyrithione [81].

5.4. Maxipost

Maxipost, formerly known as BMS-204352, was identified as a potent opener of
calcium-activated maxi-K channels (BK channels) used for the control of convulsion and
stroke [83]. Maxipost is known to be a potent activator of KCNQ channels with an ECsg
of 2.4 uM for KCNQ4 at —30 mV [65,70], exhibiting protective effects against peripheral
salicylate ototoxicity [75], and reported to abolish behavioral evidence of tinnitus [84].
Maxipost has been found to shift the voltages of activation to hyperpolarized potentials,
which are dependent on the tryptophan residue in S5 (Figure 2) [65,70,85], but failed to
potentiate native Iy ,; therefore, its application for hearing loss has been limited [23].

5.5. Acrylamide (S)-1

Acrylamide (5)-1 was synthesized as an orally bioavailable KCNQ?2 activator for the
control of migraines [86]. Despite its development for KCNQ4, acrylamide S-(1) was shown
to be preferentially specific for KCNQ4 and KCNQ5 [85]. The EC5 for KCNQ4 determined
for acrylamide S-(1) in Xenopus oocytes was 10.4 uM at 0 mV, with 100 uM acrylamide
(S)-1 leading to a 20-fold enhancement of current amplitude [85]. The effect of acrylamide
(5)-1 on KCNQ4 was reported to be potentiated across all voltage levels [85], whereas its
effect on KCNQ2 and KCNQ3 was shown to be voltage-dependent [87]. Another study
revealed that the hyperpolarizing shift induced by acrylamide (S)-1 depended on the
conserved tryptophan residue in S5 (Figure 2) [79], which is also required for retigabine
and maxipost, suggesting that these three compounds might exert their effects on KCNQ4
in a similar manner.

5.6. Other KCNQ4 Activators

There have been additional compounds reported to activate KCNQ4. AaTXKp (2_44), a
toxin isolated from the North African scorpion, was shown to specifically activate KCNQ3
and KCNQ4, without affecting KCNQ1 and KCNQ2 [88]. This peptide had an ECsy of
58 ng/mL at 0 mV, inducing a hyperpolarizing shift, and increasing KCNQ4 currents
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by 2-fold at 0 mV [88]. Fasudil, a rho-associated kinase inhibitor and a vasodilator, was
found to potentiate KCNQ4 and KCNQ4/5 with ECsg values of 12.9 and 15.7 uM, at
—30 mV, respectively, without affecting KCN2 and KCNQ2/3 [89]. Fasudil shifted the
voltage-dependent activation curve in a more negative direction, for which the Val248 in
S5 and I1e308 in the S6 segment of KCNQ4 were required [89]. ML213, identified by a high
throughput fluorescent screen of the NIH Molecular Libraries Small Molecule Repository
and structure—activity relationship, was initially characterized as specific for KCNQ2 and
KCNQ4, with a 80-fold selectivity over other KCNQ channels [90]. The ECsy of ML213 for
KCNQ4 was shown to be 1.8 pM at —10 mV, with ML213 inducing a hyperpolarizing shift,
which was reported to be dependent on the crucial tryptophan residue in S5 and a 2-fold
increase in currents following administration of 10 uM of the drug (Figure 2) [79]. In the
cases of AaTXKp(ps4), fasudil, and ML213, it is necessary to examine whether these drugs
could induce the native Iy ,, currents of OHCs.

Through the Cortellis Drugs Discovery Intelligence™ service by Clarivate, we found
that several pharmaceutical companies and universities are currently developing KCNQ4
activators. Most of them are being explored for their potential to treat neurological disor-
ders, including epilepsy, pain, migraines, and many more conditions, and are currently in
the phase of biological or preclinical testing. Acousia Therapeutics, which is a biotech com-
pany aiming for the development of small-molecule drugs for sensory neuronal hearing
loss, has eight compounds targeting KCNQ4 in its pipeline.

6. Conclusions and Future Directions

Understanding of the function, structure, physiology, pharmacology, and genetics of
KCNQ4 has indicated that KCNQ4 holds great promise for the discovery and development
of drugs useful in genetic, age-related, and noise-induced hearing loss. Due to the growing
prevalence and socioeconomic burden of hearing loss, the demand for drugs aimed in
controlling these conditions have been increasing.

Application of available KCNQ4 activators has been currently restricted due to the lack
of subtype specificity, especially for KCNQ2-KCNQS5, as well as due to their insufficient
in vivo efficacy. As a member of voltage-gated K* channels, KCNQ4 shares structural
and amino acid similarities with other KCNQ channels, which hinders the development
of KCNQ4-specific drugs. As other KCNQ channels are involved in the physiology of
diverse tissues and may also be associated with diseases, lack of specificity would lead to
unwanted side-effects. As such, the selectivity for KCNQ4 could be achieved by the further
refinement of existing compounds, as shown previously [76]. Based on the delineation of
the crucial residues of the specific binding of retigabine with KCNQ4 and the molecular
details of its activation [71], the discovery and optimization of related chemicals would
be accelerated. Knowledge of the structure of KCNQ4 should also enable the design of
compounds that induce conformational changes with an outcome similar to that normally
caused by membrane depolarization. Moreover, simultaneous application of two activators
with distinct modes of action may result in synergistic effects and reduced side-effects. In
addition, considering the anatomical characteristic of the inner ear, as an isolated organ,
using local administration as the effective delivery route might serve as both the main
point of concern in the pharmacological development process, as well as an opportunity
for reducing side-effects. Limited volume of therapeutic materials for administration in the
inner ear without overloading the cochlea might require high efficacy and concentrations
in order to reach the maximal impacts on hearing rescue.

Although some compounds could activate KCNQ4 in vitro, none of them were potent
in inducing the native Iy , currents in OHCs [23]. The molecular basis for this discrepancy
is not yet clear and OHC-specific modifiers were suggested [23]; however, more thorough
studies regarding this aspect are required because many compounds have not been properly
evaluated in this regard. The efficacy of KCNQ4 activators needs to be examined not only
in OHCs in explants, but also in Kcng4 mouse models. Besides, KCNQ4 activators would
not be effective in Kenqd~/~ mice as there is no KCNQ4 to be activated. Similarly, they
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would not be effective in knock-in mice harboring the p.G286S (c.856G>A) pore region
mutation, which results in unresponsiveness to KCNQ activators [21,42]. Therefore, it is
necessary to generate additional Keng4 mice that would harbor pore region mutations with
residual activity of K* channels or variants in the two cytoplasmic termini of KCNQ4 to
investigate the in vivo efficacy of channel openers. In addition, the effectiveness of KCNQ4
activators needs to be examined in mouse models of noise-hearing loss.

More importantly, KCNQ4 activators should be validated in clinical trials, as there
is no ongoing clinical trial targeting hearing loss by KCNQ4 activators currently. Target
population, such as individuals with genetic hearing loss or noise-induced hearing, should
be carefully selected. Both the therapeutic window and convenient application methods
are important issues to be discussed in clinical trials. Drug repurposing and optimization
for applicable specific KCNQ4 mutation might also be an option for clinical application
of KCNQ4 activators in deafness treatment with advantages of reducing the cost and
shortening the time when compared to de novo drug discovery. In addition, the half-life
duration and bioavailability of drugs targeting the activation of KCNQ4 would also be
required to satisfy clinical degrees.
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