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Impact of sandwiched strain
periodic multilayer AIN/GaN

on strain and crystalline quality
of a-plane GaN

Anas Kamarundzaman'*!, Ahmad Shuhaimi Abu Bakar'™?, Adreen Azman?, Al-Zuhairi Omar?,
Noor Azrina Talik!, Azzuliani Supangat! & Wan Haliza Abd Majid*

We demonstrated high-quality single crystalline a-plane undoped-gallium nitride grown on a
nonpatterned r-plane sapphire substrate via metal-organic chemical vapor deposition. The effect

of four different numbers of sandwiched strain-periodic AIN/GaN multilayers on the strain state,
crystal quality, optical and electrical properties was investigated. Field emission scanning electron
microscopy and atomic force microscopy showed that the surface morphology was improved upon
insertion of 120 pairs of AIN/GaN thin layers with a root-mean-square roughness of 2.15 nm. On-axis
X-ray w-scan rocking curves showed enhanced crystalline quality: the full width at half maximum
decreased from 1224 to 756 arcsec along the [0001] direction and from 2628 to 1360 arcsec along
the [1-100] direction for a-GaN grown with 120 pairs of AIN/GaN compared to a-GaN without AIN/
GaN pairs. Reciprocal space mapping showed that a-plane GaN with a high number of AIN/GaN pairs
exhibits near-relaxation strain states. Room-temperature photoluminescence spectra showed that
the sample with the highest number of AIN/GaN pairs exhibited the lowest-intensity yellow and blue
luminescence bands, indicating a reduction in defects and dislocations. The a-plane InGaN/GaN LEDs
with 120 pairs of SSPM-L AIN/GaN exhibited a significant increase (~250%) in light output power
compared to that of LEDs without SSPM-L AIN/GaN pairs.

The performance of gallium nitride (GaN)-based light-emitting devices has improved tremendously in recent
years. Outstanding performance has recently been reported for InGaN/GaN-based LEDs along c¢-plane
orientation!?. However, it is commonly known that growing LEDs along the c-plane results in high built-in
spontaneous and piezoelectric polarization, which leads to the quantum confined Starks effect (QCSE)*-®. There-
fore, several groups have expended considerable effort in growing epitaxial layers along nonpolar surfaces in
the absence of piezoelectric and polarization fields. The energy band of a-plane GaN lies perpendicular to the
polarization field, which presents a significant advantage over a-plane devices with no polarization in the active
region”®. The resulting increment in the electron-hole recombination rate increases the quantum efficiencies.
Hence, this growth strategy produces considerable advantages for light emitting devices.

However, the growth of a-plane GaN on foreign substrates has been hindered thus far by the formation of
high densities of basal stacking faults (BSFs) and threading dislocations (TDs) during the growth process®!°. The
anisotropic properties of nonpolar GaN have become the main challenge in growing a-plane GaN. The lattice
mismatch and thermal expansion coefficient differential along the [11-20] and [0001] directions induce distor-
tions in the grown GaN unit cell that interrupt hexagonal symmetry. This phenomenon promotes defects and
increases the densities of dislocations, such as BSFs and TDs, leading to challenges in determining the lattice
parameters, because more variables need to be considered'!™'. Several strategies have recently been developed
to overcome this challenge, including patterning of hole arrays, patterning of stripped SiO, and regrowth on Ni
nanopatterned a-GaN templates'>~'”. However, these techniques are time-consuming because other processes
(ex situ) are required to supplement the epitaxial process.

Growing GaN along the a-plane direction limits the accessible lattice points for reciprocal space mapping
using X-ray diffraction (XRD) measurements; thus, different approaches have been developed to estimate the
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Figure 1. (a) Schematic and (b) epitaxial process flow for a-GaN film grown with and without SSPM-L AIN/
GaN.

lattice parameters of a-plane GaN. Darakchieva et al. suggested measuring 26-w symmetrically at 90° intervals of
the azimuth angle and at a few asymmetric planes within the edge-symmetric geometry'®. Roder et al. followed
a different approach by measuring the full width at half maximum (FWHM) from the w-scan at nine different
planes under symmetric, asymmetric and skew symmetric conditions within the diffraction geometry'®. In this
study, we used reciprocal space mapping (RSM) to directly access the (11-22) lattice point to measure the lattice
size along the [11-20] and [0001] directions, while considering other important parameters of the distorted
wurtzite structure.

Considering the abovementioned factors, we inserted a sandwiched strain-periodic multilayer (SSPM-L)
structure into our a-plane epitaxial layer, that is, an AIN/GaN thin layer was sandwiched between two thick
a-plane GaN layers. The objective of this study was to investigate how different numbers of SSPM-Ls enhance
the surface morphology, crystalline quality and strain state of a-GaN epitaxial layers grown on r-sapphire for
application to light-emitting devices. The effect of different numbers of SSPM-L AIN/GaN pairs on the electri-
cal properties of InGaN/GaN-based LEDs grown on our a-GaN film was also investigated. The results showed
the surface morphology, crystalline quality and strain state of the a-GaN epitaxial layer were clearly enhanced
for a large number of SSPM-L AIN/GaN. The a-plane InGaN/GaN LEDs exhibited a high output power and
high indium (In) incorporation for a InGaN/GaN multiple-quantum well (MQW) grown on a large number of
SSPM-L AIN/GaN pairs.

Experimental methods

An a-plane GaN epitaxial layer (11-20) was grown on a two-inch nonpatterned (1-102) r-plane sapphire sub-
strate via metal organic chemical vapor deposition (MOCVD) using a Taiyo Nippon Sanso SR2000 reactor with
a horizontal flow. A total of four a-GaN films were grown using different numbers of SSPM-L AIN/GaN pairs,
as shown in Fig. 1a, namely, 0, 40, 80 and 120 pairs, where the corresponding samples are denoted by S1, S2, S3
and S4, respectively. Trimethylgallium (TMGa), trimethylaluminium (TMAI), trimethylindium (TMI), biscy-
clopentadienylmagnesium (Cp,Mg), disilane (Si,H) and ammonia (NH;) precursors were used as Ga, Al In,
Mg, Si and N sources, respectively. Hydrogen (H,) was used as the main carrier gas for the epitaxial processes,
and nitrogen (N,) was used as the carrier gas for the growth of InGaN/GaN MQW. The r-sapphire substrate
was prepared for the epitaxial process by baking at 1125 °C in ambient H, to remove surface contamination®,
followed by a 10-min nitradation step at 1050 °C. Thereafter, a 90-nm thin GaN nucleation layer (NL) was
grown at 700 °C as a nucleation site for the subsequent layer. The temperature was then increased to 1050 °C,
and 20 SLM of TMGa flow was released into the reactor to grow 1-um-thick GaN. Epitaxial growth continued
as SSPM-L AIN/GaN was deposited with a thickness of 5/20 nm and different numbers of pairs (0, 40, 80 and
120). Subsequently, 3-pum-thick GaN was grown on SSPM-L AIN/GaN under the same conditions as the initial
1-um-thick GaN was grown. The process flow for the epitaxial process is presented in Fig. 1b. The a-GaN epitaxial
layer grown with different pairs of SSPM-L AIN/GaN was characterized using an Olympus optical microscope
(OM), a Hitachi SU8220 field emission scanning electron microscope (FESEM), a Bruker Multimode 8 atomic
force microscope (AFM), a Rigaku SmartLab high resolution X-ray diffractometer (HR-XRD) and a LabRAM
HR Horiba (to perform room-temperature photoluminescence (RT-PL)). Subsequently, 500-nm-thick Si-doped
GaN was grown on the a-GaN templates, followed by 5 pairs of InGaN/GaN MQW to serve as the active region.
Finally, 100-nm-thick Mg-doped GaN was grown on the MQW. The IV characteristics of the LED were measured
at the wafer stage using an Agilent Technologies B1505A power device analyzer/curve tracer. The wavelength
emission was measured using an OceanView spectrometer.
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Figure 2. Surface structure images for samples S1, S2, S3 and S4: optical microscope images at 20 times
magnification: (a—d), respectively; FESEM surface images: (e-h), respectively; and AFM images: (i-1),
respectively.

Results and discussions
Optical microscopy (OM) was first used to investigate the effect of SSPM-L AIN/GaN on the surface morphology.
Figure 2a-d shows OM images for a-GaN grown with 0, 40, 80 and 120 pairs of SSPM-L AIN/GaN, respectively.
All samples clearly exhibit anisotropy-induced stripe-like and arrowhead mosaic structures along (0001) c-plane
direction, which are commonly observed for a-GaN growth*'~2%. Note that the stripe-like and arrowhead struc-
tures decreased in size as the number of SSPM-L AIN/GaN increased. As shown in Fig. 2a, sample S1 exhibited
the highest surface roughness with a pronounced stripe-like structure and arrowhead, whereas sample S4 had a
smoother film surface than the other samples. It is noteworthy that the stripe-like and arrowhead structures were
generated from asymmetric lattice mismatches of 16.1% and 1.1% between the substrate and a-GaN film along
the [1-100] and [0002] directions, respectively?. This result could be attributed to the different probabilities
for surface atom incorporation and diffusion lengths along these non-identical crystallographic directions®.

Next, FESEM surface analysis was conducted to further investigate how the SSPM-L changed the surface
morphology, and the results are shown in Fig. 2e-h. All the samples clearly exhibit black spots (voids), which
could be attributed to v-pit defects in the a-GaN structure. This defect structure may have been caused by dif-
ferent growth rates along the [1-100] and [1000] directions and adatom diffusion kinetics during the growth
process?’~%°. Moreover, the large asymmetric lattice mismatch between a-GaN and the substrate produces an in-
plane strain distribution because of the absence of six-fold symmetry in the crystal arrangement'®. Consequently,
it is difficult for a-GaN to form a fully abrupt structure over the entire two-inch sapphire substrate. However,
the sample with 120 pairs of SSPM-L AIN/GaN exhibits fewer voids than the other samples, assuming that the
lowest number of defects were generated on the surface of this sample. Increasing the number of SSPM-L AIN/
GaN pairs induced a suitable lattice size and improved the strain state for subsequent thick a-GaN growth. AFM
measurements were carried out to further investigate the morphological behaviour of a-GaN films grown on
different numbers of SSPM-L AIN/GaN pairs, as shown in Fig. 2i-1. The measured root-mean-square (RMS)
roughness for samples S1, S2, S3 and S4 are 6.93 nm, 4.13 nm, 2.70 nm and 2.15 nm, respectively. These results
suggest that the number of SSPM-L AIN/GaN pairs strongly affects the morphological structure of the grown
a-GaN: a-GaN grown with 120 pairs of SSPM-L AIN/GaN had a ~ 68% lower surface roughness than a-GaN
without SSPM-L AIN/GaN. All the AFM images show significant colouration similar to the FESEM images, and
the v-pit defects observed in both the AFM and FESEM images contribute to an increase in the surface rough-
ness of the grown GaN.

The HR-XRD phase analysis for 20-w scans of a-GaN epitaxial layers with different numbers of SSPM-L
AIN/GaN pairs is shown in Fig. 3. The two dominant peaks observed at ~ 52.7° and 57.6° for all the samples
corresponded to the diffractions of the r-plane sapphire substrate [2-204] and a-GaN [11-20], respectively. The
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Figure 3. HR-XRD phase analysis 20-w scan of a-GaN grown using 0, 40, 80 and 120 pairs of SSPM-L AIN/
GaN.
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Figure 4. TEM cross sectional images of SSPM-L AIN/GaN.

clearly observable Pandellosung fringes resulted from the interface formed using different numbers of SSPM-L
AIN/GaN pairs™. This result showed the abrupt structure and good crystalline quality of the SSPM-L AIN/GaN
grown on the a-GaN epitaxial layer. The results of simulations performed using Rigaku Global Fit software for
the satellite peaks showed that each SSPM-L period was 20 nm thick, which was confirmed by the transmission
electron microscopy (TEM) images shown in Fig. 4.

The crystal quality was further assessed by characterizing the anisotropic properties of the grown a-GaN film.
Figure 5 shows the FWHM of the w-scans as a function of the phi angles. The XRC w-scan was performed at phi
angle intervals of 30°, where the X-ray beam was placed parallel to the c- and m-axes along the (11-20) plane at
0° and 90° phi angles, respectively. The FWHM plot exhibits the same trend as the nonpolar XRC measurements,
that is, the anisotropy of nonpolar GaN results in an “M”-shaped plot with respect to the phi angle'®'>!. The
lowest FWHMs are observed at a phi angle of 0°, corresponding to 1224, 1044, 864 and 756 arcsec for samples
S1, S2, S3 and S4, respectively. The FWHM values broaden with the phi angle rotation, and the highest values
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Figure 5. XRC FWHM values from on-axis (11-20) w-scan as a function of phi angle for a-GaN grown using 0,
40, 80 and 120 pairs of SSPM-L AIN/GaN.
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Figure 6. Schematic of perfect (red line) and distorted (dark blue line) wurtzite crystal structure.

0f 2628, 1911, 1581 and 1360 arcsec are obtained at a phi angle of 90° for samples S1, S2, S3 and S4, respectively.
The reduction in the FWHM as the number of pairs increases shows that SSPM-L AIN/GaN reduced the defect
density in the grown a-GaN film. Moram et al. have reported that FWHM broadening can significantly affect the
surface morphology of a grown GaN layer, which is in agreement with the FESEM micrographs shown above®.
Increasing the number of SSPM-L AIN/GaN pairs further improved the FWHM ratios from 90° to a minimum
of 0°, namely, to 2.14, 1.86, 1.83 and 1.80 for samples S1, S2, S3 and S4, respectively. This result indicates that
isotropy enhancement reduced the distortion of the wurtzite crystal structure caused by the enormous twist
and tilt mosaicity along the c- and m-directions®. Hence, it is deduced that the FWHM decrements reflected a
reduction in the number of surface voids and the roughness as the number of SSPM-L AIN/GaN pairs increased.

Note that the anisotropy of nonpolar GaN induces orthorhombic distortion in the grown a-GaN'">**, The
asymmetric crystal arrangement consequently distorts the wurtzite structure'®. In Fig. 6, the red line represents
a perfect crystal arrangement for the wurtzite structure, and the blue line represents the distorted crystal struc-
ture resulting from the a-GaN film grown in this study. The 20 values for the (2-1-10), (-12-10) and (11-20)
planes were measured to determine the interplanar distance (dy;) using Bragg’s law (dpq=M\/2 sin 8y,,)*°. The 20
values for the (2-1-10), (-12-10) and (11-20) planes of all the samples are listed in Table 1. The 26 values for
the (2-1-10) and (-12-10) planes are similar but differ significantly from that of the (11-20) plane. These results
suggest that large lattice stretching within the [2-1-10] and [-12-10] directions leads to hexagonal symmetry
angle distortion and persistent orthorhombic distortion of the grown GaN. Increasing the number of SSPM-L
AIN/GaN pairs results in a linear decrease in the 20 values for the (2-1-10) and (-12-10) planes to nearly that
of undistorted GaN, reflecting a reduction in the distortion of the crystal structure. Hence, the distorted angle
(Y’) depends strongly on the offset of the basis angle (§), which corresponds to the difference between y and y..
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Number of pairs

26 (°)

(2-1-10) | (-12-10) | (11-20)

0

58.107 58.106 57.767

40

57.986 57.984 57.656

80

57.957 57.956 57.637

120

57.929 57.929 57.619

Table 1. Value of 26 from phase analysis along (2-1-10), (-12-10) and (11-20) planes.
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Figure 7. HR-XRD RSM scan along (11-22) for samples (a) S1, (b) S2, (c) S3 and (d) S4.
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Lattice parameters Elastic stiffness constant
ay(A) ¢ (A) mq (A) ¢; (Gpa) ¢, (Gpa) 13 (Gpa) ¢33 (Gpa)
3.1893 5.1851 2.762 390 145 106 398

Table 2. Lattice constants and elastic stiffness coefficients for perfect hexagonal GaN.

Number of pairs | a(A) |c(A) |m(A) |y(°) €.(%) €,,(%) £,,(%) o, (Gpa) | oy, (Gpa)
0 3195 |5.175 |2.764 |119.782 | +0.182 |-0.181 |+0.072 | +0.287 —-0.156
40 3194 |5.177 |2.763 |119.779 | +0.164 | -0.155 |+0.053 | +0.222 -0.155
80 3.191 |5.178 |2.761 |119.778 | +0.062 |-0.138 |-0.049 |-0.278 - 0.646
120 3.188 |5.179 |2.758 |119.777 |-0.040 |-0.122 |[-0.152 | -0.776 -1.137

Table 3. Lattice parameters for grown GaN obtained from RSM scan along (11-22) plane. + tensile; —
compressive.

Figure 7a-d shows the HRXRD RSM along the [11-22] direction that was measured for all the samples
to investigate the lattice size and strain state of the grown a-GaN film. The RSM measurement was performed
along the (11-22) plane, because the interplanar spacing coordinates of g, and g, are proportional to 1/c and
1/a. This measurement was used to determine the lattice size in both the ¢ and a directions. Figure 7a shows a
single dominant peak for sample S1, which is ascribed to GaN, and a weak sapphire peak. The RSM images for
samples S2, S3 and S4 shown in Fig. 7b-d consist of satellite peaks of SSPM-L AIN/GaN and a sapphire peak.
The g, components of the a-plane GaN peaks for samples S1, S2, S3 and S4 are 3.863, 3.864, 3.957 and 3.862 (2n/
nm), respectively. The corresponding g, components are 6.261, 6.259, 6.201 and 6.273 (2n/nm). The differences in
both the g, and g, components indicate that the samples have different lattice sizes in both the a and ¢ directions.

The least-squares method developed by Laskar et al. was used to perform a highly accurate calculation of the
distortion angle, which plays an important role in lattice determination, especially in the m-direction'!. As the
a-GaN thin films grown in this study exhibit orthorhombic distortion (see Table 1), the lattice parameters for
the distorted a-GaN structure are determined using Eq. (1):

% ~ 13 a? 343 a2 c? (1)

1 [4 (n? + K +hk)} { 4 (20420 +5hk) P
where h, k and [ are the Miller indices; a and ¢ are the lattice constants; and § is the offset in the basis angle,
which was used to determine the distortion angle and the lattice parameter in the m-direction. The strains in the
(11-20), (0001) and (1-100) directions are determined using the equations given below**:

e — a—ap
W= )

e — c—C
2z o (©)

_ m — my
Rz 4)

where a,, ¢, and m, represent the lattice constants of the fully relaxed GaN structure, as shown in Table 2; €,
is the nominal out-of-plane strain in the [11-20] direction for a-GaN; and ¢,, and ¢, are both in-plane strains
along the c- and m-directions, respectively. As the stress along the growth direction is naturally zero''*, the

stress along the c- and m-directions can be measured using the following equations:

0zz = C136xx + C136)y + Cs382, (5)

Oyy = Cr2éxx + Clleyy + Ci3éz; (6)

where 0,, and o,, are the stresses along the c- and m-directions, respectively; and Cij are the elastic stiffness coef-
ficients presented in Table 2. All the data related to lattice parameters, strain and stress states calculated from
the RSM scan are tabulated in Table 3.

The grown a-GaN film has different lattice constants a, ¢ and m for different numbers of SSPM-L AIN/GaN
pairs, which are in good agreement with the aforementioned RSM measurements. This result shows that the
number of SSPM-L AIN/GaN pairs can be varied to control both the lattice size and the degree of the distortion
of nonpolar a-GaN. Table 3 shows the out-of-plane strain along the growth direction [11-20]. The out-of-plane
strain along the growth direction [11-20] tends to decrease as the number of SSPM-L AIN/GaN pairs increases.
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The out-of-plane strain along the [11-20] direction is in a tensile state and changes to a compressive state once
the number of SSPM-L AIN/GaN pairs reaches 120, as shown in Table 3. These results are in good agreement
with a report by Yigiang et al. that increasing the number of AIN/GaN pairs changes the strain state of the GaN
surface from tensile to compressive.

Figure 8a-c shows the strain state of the a-GaN samples grown with different numbers of SSPM-L AIN/GaN
pairs along the [11-20], [1-100] and [0001] directions. A similar trend in the strain along [11-20] and [1-100]
can be clearly observed: the strain decreases as the number of pairs increases and is transformed from a com-
pressive to tensile state. Figure 8a shows that the strain in the [11-20] direction decreases from 0.17% to 0.05%
as the number of SSPM-L AIN/GaN pairs increases, whereas the strain in the [1-100] direction decreases from
0.07% to — 0.15%, as shown in Fig. 8b. Figure 8c shows the compressive strain changes from — 0.18 to — 0.12%.
A similar trend in the strain is observed for the hexagonal wurtzite crystal structure along the [11-20] and
[1-100] directions, whereas an opposite trend is observed along [0001], because the angles from [11-20] are
much closer to [1-100] and completely opposite to the [0001] direction. These results show that the presence of
SSPM-L AIN/GaN induces a compressive strain along the [11-20] and [1-100] directions and a tensile strain
along the [0001] direction within the epi layer. Figure 8a—c shows that the strain state is highly sensitive to the
number of SSPM-L AIN/GaN pairs along the aforementioned directions. This result could be attributed to the
difference between the lattice sizes of AIN and GaN in SSPM-L AIN/GaN, which creates a large compressive
strain in the GaN epilayer along the nominal growth direction. Therefore, the compressive strain along the
[0001] direction increases with the number of pairs in the SSPM-L AIN/GaN structure to counter the tensile
strain induced by the difference between the lattices of the r-sapphire substrate and the initial layer of grown
a-GaN. Consequently, a state of near-relaxation strain occurs at the top of the a-GaN epitaxial growth. Hence,
the grown a-GaN exhibits a near-relaxation strain along the [11-20] and [1-100] directions, which increases
the strain along the [0001] direction.

Figure 9a is a schematic representation of a-GaN growth in the presence of SSPM-L AIN/GaN, in which
the strain growth mechanism is elucidated in depth. The direct growth of a-GaN on the r-sapphire substrate
induces a compressive strain in the thin film, particularly in the [0001] direction, as shown in Fig. 9b. This result
can mainly be attributed to the large in-plane lattice constants in both the [0001] and [1-100] directions of the
sapphire substrate'®. SSPM-L AIN/GaN induces a large compressive strain in the AIN layer at the bottom of the
SSPM-L AIN/GaN stack because of the lattice mismatch between AIN and GaN. The atomic arrangement of the
AIN layer within SSPM-L stretches to adjust to the large lattice in the GaN layer in SSPM-L. However, the atomic
arrangement of the GaN layer in SSPM-L contracts to adjust to the small lattice of the AIN layer in SSPM-L. The
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Figure 9. (a) Schematic of a-GaN growth on r-plane sapphire using SSPM-L AIN/GaN and schematized strain
growth in samples (b) S1, (c) S2, (d) S3 and (e) S4.

stretching and contraction of the atomic arrangement in SSPM-L AIN/GaN induces a tensile strain state in the
topmost GaN layer, resulting from the increase in the tensile strain for consequent a-GaN growth. Sample S2
undergoes a slight compressive strain, because the tensile strain for 40 pairs of SSPM-L AIN/GaN is insufficient
to completely transform the compressive strain state to the tensile strain state, as shown in Fig. 9c. Increasing
the number of SSPM-L AIN/GaN pairs induces a tensile state in the topmost GaN layer, as shown in Fig. 9d and
e, which is in accordance with the calculated strain based on the RSM measurement.

Photoluminescence (RT-PL) measurements were used to investigate the effect of different numbers of SSPM-
L AIN/GaN pairs on the optical properties at room temperature. Figure 10 shows the RT-PL spectra for a-GaN
grown on different numbers of SSPM-L AIN/GaN pairs. The RT-PL spectra were normalized using the near-band-
edge emission (NBE) centred at 3.4-eV. Yellow luminescence (YL) and blue luminescence (BL) bands centred at
2.2 eV and 2.9 eV, respectively, can be clearly discerned for all the samples. Sample S1 exhibits the highest relative
intensity for both the YL and BL bands. However, the relative intensities for the YL and BL bands decrease as
the number of SSPM-L AIN/GaN pairs increase. Sample S4 exhibits the least intense YL and BL bands, show-
ing that increasing the number of SSPM-L AIN/GaN pairs effectively improves the PL properties of the grown
GaN. Other research groups have attributed the YL and BL bands to the formation of gallium particles, nitrogen
vacancies and deep level impurities®~*. It is safe to presume that the rough surface of the grown a-GaN is highly
correlated with the occurrence of YL and BL bands, where the FESEM and HRXRD shows improved results with
the enhanced PL properties as the number of SSPM-L AIN/GaN pairs increase. The obtained PL spectra are in
good agreement with the RSM measurements, that is, the sample without SSPM-L AIN/GaN exhibits the highest
on-axis strain as well as the highest YL and BL band intensities. Furthermore, increasing the number of SSPM-L
AIN/GaN pairs caused the YL and BL band intensities to weaken, which promoted an on-axis near-relaxation
strain state. Dislocations and defects tend to create a local strain field within a crystal structure to produce a
one-dimensional electronic potential®®. Consequently, the binding excitations of the PL reflection increase in
intensity. The implantation of SSPM-L AIN/GaN promoted the near-relaxation strain state within the crystal
structure, which reduced defects and weakened the YL and BL intensities. Several reports on -III-nitride have
shown a correlation between the YL and BL bands with carbon impurities*’~*°. As low pressure and low V/III ratio
conditions increase the growth window of nonpolar GaN*'-*, significant unintended carbon doping results from
the decomposition of TMG and/or TMA during the growth process. This result is strongly correlated with the
on-axis XRC measurements, where the highest FWHM is obtained for a-GaN growth without SSPM-L AIN/GaN.

Finally, the electrical properties of the a-GaN LEDs grown with different numbers of SSPM-L AIN/GaN
pairs were studied to determine whether the enhancement in the microstructural quality of a-GaN makes the
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Figure 10. RT-PL spectra for samples S1, S2, S3 and S4.

thin film viable for use in optoelectronic devices. A total of 5 pairs of InGaN/GaN were grown on the a-GaN
structure. Then, the I-V characteristics of the chip-on-wafer configuration were determined. The output power-
current characteristics are shown in Fig. 11a. The output power of the LEDs grown on S1 increase linearly and
begin to saturate at 70 mA. However, the LEDs grown on S2, S3 and S4 show a linear increase in the output
power without saturating. The LEDs with 120 pairs of SSPM-L AIN/GaN exhibit the highest output power up
to 70 uW at 100 mA compared to 10 uW for the device without SSPM-L AIN/GaN. The a-GaN crystal structure
has a rough surface morphology and poor crystallinity, such that there is a high tendency for charge carriers to
become trapped in the energy levels close to either the conduction or valence bands*>*. The resulting significant
reduction in the number of hole-electron recombinations within the energy band leads to defect level recombi-
nation, thereby increasing phonon generation. This mechanism is consistent with the PL spectra presented in
Fig. 10. Consequently, increasing the phonon concentration within the active region leads to additional heat that
can induce tensile strain in the InGaN/GaN layer*”*%. Therefore, increasing the number of SSPM-L AIN/GaN
pairs induces a near-relaxation strain in the crystal structure, increasing radiative recombination. These results
correlate well with the FESEM and HRXRD results that show an enhanced surface structure and crystalline
quality, which significantly increases the emission output power. Figure 11b—e shows the EL emission spectrum
of InGaN/GaN LEDs grown on an a-GaN film for different injection currents ranging from 30 to 90 mA. Similar
trends in the FWHM and the wavelength shift with increasing injection current are observed for all the LEDs.
The FWHM starts to narrow and exhibits a slight blueshift in the wavelength emission. The blueshift exhibits the
same trend reported by Yon et al. for orange a-plane LEDs, where increasing the current resulted in band filling,
such that the InGaN/GaN active region saturated to a lower energy. The slight broadening of the FWHM with
increasing current could be attributed to space separation within the In/GaN layer that induces compositional
fluctuations within the InGaN alloys*’. The measured FWHM peaks start to narrow as the number of SSPM-L
AIN/GaN pairs increases. The a-GaN film with 120 pairs of SSPM-L AIN/GaN exhibits the narrowest FWHM,
suggesting that the LED structure grown on the a-GaN with 120 pairs of AIN/GaN facilitates MQW growth
with a higher interfacial abruptness because of lower surface roughness and fewer v-pit defects. The subsequent
increase in the electron-hole recombination rate increases the output power. The previously presented results
for the crystalline analysis and surface properties show that increasing the number of SSPM-L AIN/GaN pairs
contributes significantly to increasing the crystal quality and the device performance. Note that the emission
peak wavelength starts to shift from 514 to 566 nm as the number of SSPM-L AIN/GaN pairs increase. There
is a redshift in the emission wavelength with the increasing number of SSPM-L AIN/GaN pairs: thus, we con-
sider that the most favourable indium (In) composition probably corresponds to the structure with 120 pairs of
SSPM-L AIN/GaN, which exhibits the lowest tensile strain, as shown in Fig. 8. It is challenging to incorporate
In in growing GaN-based LEDs, because excessive TMI flow during the growth process induces a compressive
strain state in the InGaN/GaN layer®**'. Our results suggest that growing an a-GaN layer with a large number of
SSPM-L AIN/GaN pairs would provide a tensile strain state for In incorporation that facilitates a near-relaxation
strain state within the epi layer. The smooth surface and high crystalline quality for a-GaN with 120 pairs of
SSPM-L AIN/GaN shown by the FESEM and XRC results facilitate In incorporation during the growth process®.

Conclusions

In conclusion, we successfully grew an a-plane GaN film using 0, 40, 80 and 120 pairs of SSPM-L AIN/GaN.
Increasing the number of SSPM-L AIN/GaN pairs was demonstrated to effectively reduce the surface roughness
and enhance the surface structure and crystalline properties. Moreover, SSPM-L AIN/GaN successfully induced a
near-relaxation strain state in both the [0001] and [11-20] directions of the grown (11-20) a-GaN film. We also
grew InGaN/GaN LEDs on the grown GaN, wherein the a-plane InGaN/GaN LED with 120 pairs of SSPM-L AIN
exhibited the highest output power (up to 70 uW at 100 mA), as well as highest In incorporation. Although the
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Figure 11. InGaN/GaN LEDs grown on a-GaN with different numbers of SSPM-L AIN/GaN pairs: (a) light
output power measured for substrates with injection currents from 10 to 100 mA and EL spectra measured at
injection currents of 20 mA-90 mA for (b) 0, (c) 40, (d) 80 and (e) 120 pairs of SSPM-L AIN/GaN.

grown InGaN/GaN LED has a lower output power than conventional c-plane LEDs, and this study represents a
pioneering step towards further improvement of a-plane light emitting devices.
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