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Cancer is a major global health problem and the second leading cause of death
worldwide. When detected early, surgery provides a potentially curative intervention for
many solid organ tumours. Unfortunately, cancer frequently recurs postoperatively.
Evidence from laboratory and retrospective clinical studies suggests that the choice of
anaesthetic and analgesic agents used perioperatively may influence the activity of
residual cancer cells and thus affect subsequent recurrence risk. The amide local
anaesthetic lidocaine has a well-established role in perioperative therapeutics, whether
used systemically as an analgesic agent or in the provision of regional anaesthesia. Under
laboratory conditions, lidocaine has been shown to inhibit cancer cell behaviour and exerts
beneficial effects on components of the inflammatory and immune responses which are
known to affect cancer biology. These findings raise the possibility that lidocaine
administered perioperatively as a safe and inexpensive intravenous infusion may
provide significant benefits in terms of long term cancer outcomes. However, despite
the volume of promising laboratory data, robust prospective clinical evidence supporting
beneficial anti-cancer effects of perioperative lidocaine treatment is lacking, although trials
are planned to address this. This review provides a state of the art summary of the current
knowledge base and recent advances regarding perioperative lidocaine therapy, its
biological effects and influence on postoperative cancer outcomes.
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INTRODUCTION

The burden of cancer as a global health issue is enormous –with an estimated 18.1 million new cases
and 9.6 million related deaths in 2018, it is the second leading cause of death worldwide (1).
Although the discovery of new chemotherapeutic agents and radiotherapy techniques continues to
promise significant results, surgery is the mainstay of treatment for the majority of solid tumours
that are detected prior to metastasis. Indeed, over 80% of all patients diagnosed with cancer will
undergo a surgical procedure of some nature, for diagnostic or therapeutic purposes, with
approximately 45 million surgical procedures estimated to be required per year by 2030 (2).
Unfortunately, and despite optimal care, cancer often recurs following intended curative surgery in
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the form of metastatic disease. Metastatic cancer is typically
refractory to treatment and is the most common cause of death
in cancer patients (3). Therefore the importance of minimising
recurrence risk is paramount. The physiological stress response
induced by surgery stimulates inflammation and angiogenesis,
eventually leading to fibrosis and wound healing. Paradoxically,
these pro-inflammatory and pro-angiogenic stimuli also facilitate
the survival and proliferation of residual cancer cells (4, 5). In
recent years other perioperative events and conditions have been
suspected of modifying the risk of metastatic disease
development. Factors such as hypothermia, blood transfusion,
and use of open (rather than minimally-invasive) surgical
techniques are hypothesised as having detrimental effects on
recurrence risk (6–8). Among these modifiable factors is the
choice of anaesthetic and analgesic agents used perioperatively
(9). A large volume of laboratory research has identified
numerous pro- and anti-neoplastic effects associated with
commonly used anaesthetic agents (10). Some retrospective
clinical evidence has also pointed to a beneficial effect on
cancer outcomes associated with the choice of anaesthetic used
(e.g. intravenous agents such as propofol versus inhalational
agents such as sevoflurane) (11, 12). There are multiple biologic
pathways through which these agents may exert such effects, with
modulation of the immune and inflammatory responses, as well
as direct effects on cancer cells among the most likely candidates
(13). The following sections will outline the perioperative use of
lidocaine and our current understanding of the pathophysiology
underlying postoperative cancer recurrence, before summarising
recent laboratory, preclinical and clinical studies as well as
planned trials examining lidocaine’s influence on cancer
biology and outcomes.
METHODS

The keywords ‘lidocaine cancer’ were used to search the Medical
Literature Analysis and Retrieval System (MEDLINE), Excerpta
Medica database (EMBASE) and Web of Science databases.
Studies from 1 January 2000 until 10 March 2021 were
included as well as any referenced articles deemed significant
irrespective of publication date. Randomised controlled trials,
retrospective studies, meta‐analyses and systematic reviews were
included. Articles were assessed for relevance and data were
qualitatively analysed.
PHYSICOCHEMICAL PROPERTIES OF
LIDOCAINE AND CLINICAL USES

Lidocaine (or 2-diethylaminoaceto-2’,6’xylidide, C14H22N2O) is
the prototype amide local anaesthetic (LA) and clinically used
both as an anaesthetic and analgesic agent, as well as an anti-
arrhythmic. Lidocaine principally acts by blocking voltage-gated
sodium channels, preventing the rapid influx of sodium required
to depolarise the cell and thereby blocking neural impulse
conduction. Hence, the transmission of pain signals from
Frontiers in Oncology | www.frontiersin.org 2
peripheral tissue to the central nervous system (CNS) is
blocked (14). Lidocaine also possesses activity at a wide range
of other ion channels and cell receptors which potentially
contributes to its observed analgesic effects (15). Compared to
the other amide LAs (e.g. bupivacaine), lidocaine has a shorter
half-life and is less toxic - as a result, it is the only amide LA
compatible with intravenous administration. Lidocaine toxicity
manifests as CNS involvement (tinnitus, altered consciousness,
seizures, coma) followed by cardiac signs (arrhythmias
potentially resulting in cardiac arrest). Toxicity is rare when
plasma concentrations are maintained below 5 µg.ml-1 (~22µM)
(16). In the perioperative setting, lidocaine is typically
administered either systemically (intravenously) or to provide
regional anaesthesia. Systemic lidocaine is given as an infusion
during surgery (and often continued post-operatively) primarily
for analgesic purposes; intravenous use has also been associated
with faster return of gastrointestinal motility following bowel
surgery, although evidence remains uncertain (17). One
suggested regime consists of a maximum loading dose of 1.5
mg.kg-1 followed by a maximal infusion rate of 1.5 mg.kg-1.hr-1

for up to 24 hours (18), although 2 mg.kg-1.hr-1 may achieve
better analgesic effects (19). Resultant plasma concentrations are
in the range of 0.5 – 5 µg.ml-1 (2 – 22µM) (20).
PATHOPHYSIOLOGIC BASIS OF
POSTOPERATIVE CANCER RECURRENCE

Surgery, Circulating Tumour Cells and the
Pre-Metastatic Niche
Metastasis begins when cancer cells are liberated from the
primary tumour, enter the lymphatics or bloodstream (forming
circulating tumour cells, CTCs) and subsequently seed distant
tissues. Intraoperatively, CTCs may inadvertently be created
when cancer cells are dislodged during tumour manipulation
(Figure 1). Even after CTCs deposit in remote tissues, much
adversity has to be overcome to successfully endure hostile
immune surveillance and inadequate local homeostatic
supports. Cancers, however, possess a remarkable ability to
precondition distant organs to form pre-metastatic niches
(PMNs) to aid the future survival and proliferation of arriving
CTCs (5). PMNs are pre-programmed by extracellular vesicles
(EVs) released by the primary tumour - these are cell-derived,
membranous structures containing proteins, lipids, messenger
RNAs and microRNAs (21, 22). MicroRNAs in particular are
potent contributors to PMN formation, allowing malignancies to
achieve remote ‘epigenetic regulation’ by altering gene
expression in PMN cells to establish a pro-neoplastic milieu
facilitating vascular permeability, angiogenesis and stromal
degradation (5, 23, 24).

Influence of Inflammation, Angiogenesis
and the Surgical Stress Response on
Cancer Progression
Surgery may not only disseminate tumour cells - it further
promotes cancer development via the surgical stress response,
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inflammation and immunosuppression. Although vital for
wound healing to occur, these physiological processes are
strongly implicated in driving cancer progression; indeed,
cancer has been called ‘a wound that does not heal’ (25). These
processes may also cause previously formed micro-metastases to
awake from dormancy and develop into significant metastatic
disease. Thus excising cancerous tissue creates conditions which
enhance the malignant potential of remaining cells (6).

Inflammation
Tissue injury creates an inflammatory state necessary to recruit
and activate the cellular components responsible for wound
healing (10). Macrophages and dendritic cells are activated and
produce chemokines and pro-inflammatory cytokines including
interleukins (such as IL-1, IL-1b, IL-6, IL-8, IL-12), tumour
necrosis factor alpha (TNFa), and prostaglandins (26). Rapid
increases in inflammatory mediators not only promotes local
tissue healing but also stimulates cancer cell survival and
proliferation (27). The immune system and the sensory
nervous system (SNS) are tightly integrated: pro-inflammatory
cytokines modulate pain transmission, causing peripheral and
central pain sensitisation, increasing SNS and hypothalamic-
pituitary-adrenal (HPA) axis outflow, in turn stimulating
cytokine expression by immune cells (28). Expression of
numerous signalling pathway elements are altered in the post-
Frontiers in Oncology | www.frontiersin.org 3
surgical inflammatory milieu, many of which are associated with
cancer progression, including enzymes such as cyclo-oxygenase-
2 (COX-2) and matrix-metalloproteinases (MMPs), and
transcription factors such as nuclear factor kappa-beta (NF-
kB) (29). Inflammatory cytokines impair endothelial integrity
and endothelial function has been demonstrated to deteriorate
for several days following surgery (30). Loss of endothelial
function enables leucocyte transmigration and potentially
facilitates the extravasation of CTCs into remote tissues (31).
The tyrosine kinase enzyme Src contributes to this process via its
actions as an important regulator of endothelial barrier integrity
(32). Src is activated by inflammatory mediators, including
TNFa, resulting in disruption of tight junctions between
endothelial cells and eventual loss of endothelial function (32).

Angiogenesis
Surgical tissue injury causes localised tissue hypoxia, resulting in
upregulation of hypoxia-inducible factor (HIF), in turn
stimulating expression of vascular endothelial growth factor
(VEGF). VEGF drives the synthesis of numerous tissue
components involved in angiogenesis including integrins and
extracellular matrix (33). Similarly, rapid growth of cancerous
tissue creates a hypoxic cellular microenvironment, stimulating
HIF and VEGF expression to create new blood vessels to supply
the oxygen and nutrients necessary for further neoplastic
FIGURE 1 | Schematic overview of pathophysiological mechanisms involved in peri-operative metastasis formation. ① As it develops, the primary tumour releases
extracellular vesicles (EVs) containing growth factors, miRNAs etc. ② EV-contained factors create a pre-metastatic niche in distant organs by stimulating local cells
such as fibroblasts, macrophages and mesenchymal stem cells to promote pro-neoplastic processes such as angiogenesis, inflammation and stromal remodelling.
③ During surgery, malignant cells are dispersed from the primary tumour and are released into the bloodstream to form circulating tumour cells (CTCs). ④ CTC are
borne in the circulation to distant tissue beds where they arrest and extravasate into a pre-metastatic niche. ⑤ Survival conditions for the tumour cell are rendered
even more favourable by the effects of mediators of the surgical stress response and inflammation, furthering the processes of angiogenesis, immune evasion etc.
thus enabling the cancer cell to survive and proliferate and eventually form a clinically significant metastasis. (Created with BioRender®).
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expansion. Overexpression of HIF and VEGF is associated with
poorer prognosis in certain cancer types, including pancreatic
and ovarian cancer (34, 35).

The Surgical Stress Response
and Immunosuppression
The innate and adaptive components of the immune system act
in unison to eliminate cancerous cells. Natural killer (NK) cells of
the innate system, and T-cells (helper CD4+ Th1 cells and
cytotoxic CD8+ T-cells) of the adaptive system provide cell-
mediated immunity (CMI), the most important cellular anti-
cancer immune response (36). This activity is influenced by post-
operative pathophysiological changes - the initial inflammatory
state is followed by a period of immunosuppression during
which CMI is diminished (37). When the surgical stimulus
activates the SNS and HPA axis, cortisol and catecholamines
are released which inhibit the anti-tumour activity of NK cells
and CD8+ T cells (6, 38). NK cytotoxicity is also reduced by
increases in IL-6 and prostaglandin E2 (39). CMI is influenced by
helper T-lymphocytes, which can be divided into two groups:
Th1 cells favouring an anti-cancer CMI effect, and Th2 cells
favouring antibody-mediated immunity (40). Post-operatively,
Th2 proliferation increases, shifting the Th1/Th2 balance from a
Th1-predominant CMI phenotype towards Th2 dominance,
protecting cancer cells from immune attack (6).

Once considered relatively passive players, mounting evidence
points to neutrophils having complex yet crucial roles in
carcinogenesis (41). Circulating neutrophil counts are often
increased by the post-operative inflammatory state, leading to an
increased neutrophil-to-lymphocyte ratio (NLR) (42). NLR
elevation is associated with poorer survival in some cancers – but
whether this reflects causation ormerely correlation is unclear (43).
Circulating neutrophils can migrate into the tumour
microenvironment where they adopt an anti- or pro-tumour
phenotype, termed N1 and N2 respectively (44). N1 neutrophils
phagocytose cancer cellswhereasN2neutrophils promote cancer in
numerous ways, including reshaping stroma by expressing VEGF
or MMP-9 (45). Neutrophils can also extrude decondensed
chromatin to form web-like structures called neutrophil
extracellular traps (NETs) (46). This process (termed NETosis) is
implicated in neoplasia with elevated serum markers of NETosis
associated with poorer prognosis in certain cancers, and poorer
post-operative outcomes in metastatic colorectal cancer (47, 48).
How NETs promote metastasis is unclear - NETs may sequester
CTCs without killing them, facilitating their arrest and possibly
shielding them from cytotoxic immune cells (49, 50).
EXPERIMENTAL EVIDENCE OF
LIDOCAINE’S ANTINEOPLASTIC EFFECTS

Lidocaine’s ability to inhibit cancer biology in vitro has been
recognised for many years. Four decades ago, researchers
identified that lidocaine exposure enhanced the cytotoxic
effects of chemotherapeutic agents on cancer cells, with some
authors attributing this phenomenon to inhibition of DNA
Frontiers in Oncology | www.frontiersin.org 4
damage repair (51). Since then, many cancers have been
examined with numerous possible mechanisms of action
proposed (52). To date, the accumulated evidence from many
laboratory studies (Table 1) suggests that lidocaine possesses
anti-neoplastic effects exerted viamultiple biological pathways or
components within cancer cells, and not just via voltage-gated
sodium channels (31). In addition to direct effects on cancer cells,
lidocaine also possesses anti-inflammatory properties which may
modulate the pro-cancer effects of the stress response and
preserve or enhance immune cell function (Figure 2) (82).
Although in vitro studies are useful for establishing biological
plausibility, their findings are not automatically transferrable to
in vivo settings (83). Laboratory studies have often used human-
toxic lidocaine concentrations, limiting the clinical applicability
of their results. In addition, cancer in a host exists in a complex
inter-relationship of cells, stroma, and cytokines, which is
impossible to replicate in vitro. Lidocaine’s effect on cancer in
vivo has historically been infrequently examined; however,
results from several recent animal studies have supported the
largely beneficial effects of lidocaine observed in vitro (Table 2).
EFFECTS ON CANCER CELL BIOLOGY

Effects on Bax/Bak/Bcl-2 and Apoptosis
Whether a damaged or pre-cancerous cell undergoes
programmed cell death or not depends on the intracellular
balance between pro- and anti-apoptotic mediators. The pro-
apoptotic proteins, Bax and Bak, induce the mitochondrial
release of cytochrome c and other apoptosis-regulating factors
(94). These in turn activate caspases (proteolytic enzymes) which
degrade cellular components causing cell fragmentation and
phagocytosis by macrophages (94, 95). Countering Bax and
Bak is the protein Bcl-2 which exerts anti-apoptotic effects
favouring cell survival (96). Aberrant regulation of these
pathways is linked to carcinogenesis. Lidocaine has been
shown to induce apoptosis in multiple cancer cell lines in vitro
across numerous studies (Table 1). Ye et al. observed that
lidocaine inhibited gastric cancer cell proliferation, migration
and invasion as well as promoting apoptosis – a finding
associated with decreased Bcl-2 and increased Bax expression
(62). Similar lidocaine-induced alterations in the Bax/Bcl-2 ratio
to favour apoptosis were also detected in lung cancer cells (76).
Separate studies examining osteosarcoma, thyroid cancer and
hepatocellular carcinoma cells found that lidocaine-associated
apoptosis was accompanied not only by alteration of the Bax/Bcl-
2 ratio but also activation of caspases (80, 81, 93).

Effects on EGFR and the MAPK Pathway
The epidermal growth factor receptor (EGFR) is a widespread
transmembrane receptor activated by a number of extracellular
ligands including the mitogens EGF and TGF-a. Binding of
ligands activates complex downstream signalling cascades,
including mitogen-activated protein kinase (MAPK) systems
such as the extracellular signal-regulated kinase (ERK1/2) and
p38 pathways (97). This results in DNA transcription and
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promotion of processes leading to cell proliferation, migration
and angiogenesis. MAPK pathways also play a role in apoptosis,
where highly complex MAPK signalling may have either a pro-
or anti-apoptotic effect depending on the cell type and stimulus
involved (98). Defective EGFR signalling plays a major role in
Frontiers in Oncology | www.frontiersin.org 5
carcinogenesis, and many oncological therapies specifically
target this signalling cascade (99). Lidocaine may also influence
EGFR pathways resulting in antineoplastic effects. Researchers
found lidocaine increased expression of miR-539 (an EGFR
suppressor) in lung cancer cells treated in vitro resulting in
TABLE 1 | Selected in vitro studies examining the effects of lidocaine treatment on cancer cell biology.

First author Year Cancer Anti-neoplastic lidocaine effects detected Proposed mechanism involved

D’Agostino (53) 2018 Breast Inhibition of cancer cell migration Inhibited CXCL12/CXCR4 signalling
Li (54) 2018 Breast Only high concentration (over toxic concentrations)

of lidocaine inhibited affected cell viability or
migration

Cancer cells arrested in S phase of cell cycle

Zhu (55) 2019 Cervical Inhibition of cancer cell viability and promotion of
apoptosis

Modulation of lncRNA-MEG3/miR-421/BTG1 signalling

Zhang (56) 2019 Chorio-
carcinoma

Lidocaine stimulates apoptosis in high
concentrations, potentiation of the cytotoxicity of
5-FU

Reduction of ATP-binding cassette (ABC) transport protein expression

Qu (57) 2018 CRC Inhibition of cancer cell proliferation and promotion
of apoptosis

Suppression of EGFR expression by upregulation of microRNA
miR-520a-3p

Siekmann (58) 2019 CRC High concentration (1000µM) lidocaine reduced cell
proliferation but low concentrations promote cell
viability in metastatic cell lines

Not assessed

Tat (59) 2019 CRC Reduced cell proliferation Altered expression of caspase-8, HSP-27/60, IGF-II, IGF binding protein,
p53, survivin

Bundscherer (60) 2017 CRC Cell cycle arrest induced in two CRC cell lines by
1000µM lidocaine, but no change in cell proliferation
noted

Cell cycle arrest

Zhu (61) 2020 Esophageal Decreases cell growth, migration and survival Causes mitochondrial dysfunction and oxidative damage, anti-migratory
effects linked to decreased Rac1 activity

Ye (62) 2019 Gastric Inhibition of cancer cell proliferation, migration,
invasion and promotion of apoptosis

Decreased Bcl-2 expression, increased Bax expression, alteration of MAPK
pathway

Sui (63) 2019 Gastric Reduced cell viability, proliferation, migration and
invasion, promoted apoptosis

Enhanced expression of miR-145, inactivation of MEK/ERK and NF-kB
pathways, downregulated Bcl-2 expression, upregulated cleaved caspase-
3/-7/-9 expression, decreased MMP-2/-9

Yang (64) 2018 Gastric Inhibition of cancer cell proliferation and migration Down-regulation of p-ERK1/2
Zhang (65) 2020 Gastric Lidocaine inhibited cell migration and invasion, as

well as reducing resistance to cisplatin
Inhibition of B-catenin and AKT/mTOR pathways by decreased expression
of miR-10b

Izdebska (66) 2019 Glioma (rat) Increased apoptosis and necrosis of cancer cells Cytoskeletal reorganisation, possible induction of cytoprotective autophagy
Leng (67) 2017 Glioma (rat) Lidocaine inhibits glioma cell proliferation Inhibition of TRPM7 currents
Liu (68) 2018 HCC Decreased HCC cell viability and colony formation Upregulation of cytoplasmic polyadenylation element binding protein

3 (CPEB3)
Jurj (69) 2017 HCC Inhibition of cell proliferation Reduced expression level of p53
Le Gac (70) 2017 HCC Lidocaine decreased viability and proliferation of HCC

cell, increased apoptosis of HCC progenitor cells
Increased mRNA of APC, an antagonist of the Wnt/B-catenin pathway

Ni (71) 2018 Leukaemia
stem cells

Lidocaine inhibited proliferation and colony
formation of LSCs

Inhibition of Wnt/B-catenin signalling

Sun (72) 2019 Lung Inhibited viability, migration, invasion; promotion of
apoptosis

Increased expression of miR-539, inhibited EGFR signalling

Zhang (73) 2017 Lung Reduced cancer cell proliferation Downregulation of GOLT1A expression
Yang (74) 2019 Lung Lidocaine reduced cancer cell viability, migration

and invasion, as well as reducing resistance of lung
cancer cells to cisplatin

Down-regulation of miR-21

Piegeler (75) 2015 Lung Lidocaine reduced cancer cell invasion Lidocaine reduced TNFa-induced activation of Akt, FAK, caveolin-1 and
reduced MMP-9 secretion.

Dong (76) 2019 Lung Lidocaine reduced viability of lung ca cells Increased Bax/Bad expression, decreased Bcl-2 expression
Wang (77) 2016 Lung Lidocaine decreases viability, invasion, migration

and promotes apoptosis in NSCLC cells
Downregulation of DYm, provoked DNA damage, upregulated ROS
production and activated MAPK pathways

Zheng (78) 2020 Melanoma Lidocaine inhibited migration and proliferation of
melanoma cells and increased apoptosis

Inhibition of small GTPases RhoA, Rac1 and Ras

Wang (79) 2017 Melanoma Lidocaine sensitizes the cytotoxicity of 5-FU in
melanoma cells

Upregulation of miR-493, potentially affecting SOX4-mediated pathways

Mirshahidi (80) 2020 Osteo-
sarcoma

Lidocaine reduced viability of cancer cells, increased
apoptosis

Bcl-2 and survivin expression decreased; Bax, cleaved caspase-3 and
cleaved poly (ADP-ribose) polymerase-1 were increased.

Chang (81) 2014 Thyroid Decreases cell viability and colony formation,
induces apoptosis

Activation of caspase 3/7, alters ratio of Bax/Bcl-2, attenuates ERK1/2
activity, activation of MAPK
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EGFR inhibition and reduced viability, migration and invasion as
well as apoptosis (72). To reinforce these findings, the anti-
neoplastic effects of lidocaine were attenuated when miR-539 was
silenced (72). Another miRNA-based effect on EGFR was
detected when the mechanisms by which lidocaine inhibited
proliferation and enhanced apoptosis in colorectal cancer cells
were examined (57). In this instance miR-520a-3p directly
targeted EGFR and lidocaine increased its expression (albeit at
500-1000µM). Similar lidocaine-induced alteration of the miR-
520a-3p/EGFR relationship leading to anti-neoplastic effects was
also noted in retinoblastoma cells (92).

Alteration of p38 and ERK1/2 pathways have been
hypothesised as underlying lidocaine’s anti-cancer effects in
multiple in vitro experiments. In one study, lidocaine was
noted to induce p38 phosphorylation in gastric cancer cells
alongside an increase in apoptosis and decrease in proliferation,
migration and invasion - the authors hypothesising that
lidocaine-activated p38-MAPK signalling was the underlying
mechanism (62). Other groups detected inactivation of both
p38 and ERK1/2 pathways as well as activation of caspase 3
and alteration of the Bcl-2/BAX ratio when HCC cells were
treated with lidocaine; in addition, viability was reduced and
Frontiers in Oncology | www.frontiersin.org 6
apoptosis increased in exposed cells (93). Further evidence
linking anti-cancer effects of lidocaine to altered ERK signalling
has been found in experiments examining gastric cancer, thyroid
cancer and melanoma cells (64, 81, 90).
Effects on NF-kB
NF-kB is a protein transcription factor and regulator of
numerous cellular processes occurring in response to tissue
injury including immune response, inflammation, angiogenesis
and apoptosis, in addition to playing a crucial role in cancer
development (100). Cell stress signals (such as TNFa-receptor
binding) are linked via intermediate steps to the translocation of
the NF-kB complex into the cell nucleus whereupon
transcription of potentially hundreds of target genes is
activated or repressed (101). The exact nature of the resultant
cellular response depends on complex, context-specific factors
including cell type, cell health, and the nature of the stimulus.
Adding to the complexity of NF-kB‘s functions, multiple points
of crosstalk exist between the NF-kB pathway and disparate
signalling pathways involving transcription factors, microRNAs
and cytokines, amongst others (100).
FIGURE 2 | Potential anti-neoplastic mechanisms of action of systemic lidocaine during surgery. As a colonic tumour is excised (marked with *), tumour cells are
released into the circulation to form circulating tumour cells (CTCs). These CTCs arrest within liver parenchyma where the likelihood of forming future clinically
significant metastatic disease depends on the balance of pro- and anti-neoplastic processes present in the tumour microenvironment. Perioperative systemic
lidocaine bathes the tumour cells and their microenvironment during this sensitive period and potentially beneficially alters the odds of host survival via an effect on
any of ① - ④ outlined in the figure. (Created with BioRender®).
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Alteration of NF-kB signalling by lidocaine has been
demonstrated in a number of cancer types. Sui et al. detected
inhibitory effects of lidocaine on gastric cancer cells, a finding
attributed to upregulation of miR-145 resulting in inactivation of
NF-kB and MEK/ERK pathways (63). miR-145 has been
hypothesised as a potential gastric cancer suppressor and
indeed Sui demonstrated that transfection with an miR-145
inhibitor reversed the anti-neoplastic effects of lidocaine on the
cancer cells and the NF-kB and MEK/ERK pathways (63).
Lidocaine has also been shown in vivo (in animal models of
sepsis and sterile inflammation) to inhibit expression of the
inflammatory mediator high mobility group box 1 (HMGB1),
which in turn suppresses activation of NF-kB (102, 103). These
findings are supported by a randomised control trial (RCT)
which allocated patients undergoing radical hysterectomy to
intraoperative i.v. lidocaine or placebo and found that
lidocaine reduced serum HMGB1 and inhibited its expression
by peripheral monocytes (104). Beneficial lidocaine-related NF-
kB changes have also been detected in immune cells - Lahat et al.
found that lidocaine reduced nuclear NF-kB in T-cells, inhibited
T-cell proliferation in vitro and inhibited T-cell production of the
pro-inflammatory cytokines IL-2, TNFa and IFN-g (105).

Inhibition of the Wnt/b-catenin Pathway
Wnt pathways are complex signalling systems that direct cellular
processes influencing organogenesis including cell fate
determination, motility and stem cell renewal amongst others
(106). b-catenin is a crucial component of the ‘canonical’ or
Wnt/b-catenin pathway and acts as a transducer of this
signalling mechanism which determines cell proliferation.
Dysregulation of Wnt pathways is associated with development
Frontiers in Oncology | www.frontiersin.org 7
of numerous malignancies including colorectal cancer (107). The
protein known as adenomatous polyposis coli (APC) contributes
to the formation of the b-catenin destruction complex which
degrades b-catenin leading to reduced Wnt/b-catenin signalling
thereby inhibiting cell proliferation and migration (108). Recent
experimental evidence has suggested that lidocaine’s observed in
vitro antineoplastic properties are potentially related to an effect
on the Wnt/b-catenin pathway. One study identified that
lidocaine increases the mRNA of the b-catenin antagonist APC
ten-fold when applied to HCC cells, a finding associated with
decreased cell viability and proliferation (70). Lidocaine
repressed Wnt/b-catenin activity in two other in vitro studies
examining gastric cancer and leukaemia cells respectively (65,
71). To the best of our knowledge, lidocaine’s effect on this
pathway has yet to be examined in an animal model.

Inhibition of Transient Receptor
Potential Channels
Transient receptor potential (TRP) channels are a large family of
widely expressed membrane ion channels, playing a role in cell
growth, survival and proliferation (109). Several TRP family
members (including TRPV1, TRPV6 and TRPM7) have been
associated with oncogenesis, and increased TRP expression
correlates negatively with tumour grade and patient survival in
some cancers (110). Lidocaine can inhibit TRPM7 channel current,
and TRMP7 suppression is associated with reduced proliferation,
migration and invasion of glioma and breast cancer cells in vitro (67,
111–113). Similarly, lidocaine reduced TRPV6 expression, migration
and invasion in TRPV6-positive breast, prostate and ovarian cancer
cells (114). Lidocaine also increased apoptosis in glioma cells, an effect
attributed to activation of the TRPV1 gene (115).
TABLE 2 | Selected in vivo studies examining the effects of lidocaine treatment on cancer progression, metastasis or survival.

First Author Year Cancer Study Type Anti-neoplastic Lidocaine Effects Detected Proposed Mechanism(s) Involved

Chamaraux-Tran (84) 2018 Breast In vitro & in
vivo (mouse)

Inhibition of cancer cell migration and viability; improved
survival of mice with peritoneal carcinomatosis

Not assessed

Yang (85) 2018 Bladder in vitro & in
vivo (mouse)

Inhibition of cancer cell proliferation in vitro; in vivo intravesical
lidocaine and mitomycin C combined prolonged survival and
reduced bladder weight

Not assessed

Wall (86) 2019 Breast In vivo
(mouse)

Reduced post-surgical pulmonary metastasis count Reduced MMP-2 expression

Johnson (87) 2018 Breast In vivo
(mouse)

Reduced post-surgical pulmonary metastasis count Reduced pro-inflammatory and pro-
angiogenic cytokine expression

Freeman (88) 2018 Breast In vivo
(mouse)

Decreased post-surgical pulmonary metastasis count when
combined with cisplatin

No attributable change in cytokine
expression detected

Freeman (89) 2018 Breast In vivo
(mouse)

Reduced post-surgical pulmonary metastasis count No attributable change in cytokine
expression detected

Chen (90) 2019 Melanoma In vitro & in
vivo (mouse)

Reduced cancer cell proliferation in vitro; in vivo lidocaine
reduced tumour volume and weight

Cell cycle arrest in G1 phase, inhibited Ki-67
expression, inhibited ERK phosphorylation

Gao (91) 2019 Melanoma
(in vivo)

In vitro
(HUVEC) &
in vivo
(mouse)

In vitro lidocaine inhibited angiogenesis, in vivo lidocaine
inhibited tumour angiogenesis and reduced tumour growth
(mouse melanoma model)

Suppression of VEGF-activated
phosphorylation of VEGF receptor 2
(VEGFR2), PLCg-PKC-MAPK and FAK-
paxillin

Xia (92) 2019 Retino-
blastoma

In vitro & in
vivo (mouse)

In vitro lidocaine inhibits proliferation and induces apoptosis; in
vivo lidocaine reduces volume and weight of tumours

Increased expression of miR-520a-3p,
decreased expression of EGFR

Xing (93) 2017 HCC In vitro & in
vivo (mouse)

Lidocaine inhibited HCC cell viability at higher concentrations
(>0.5mM), apoptosis increased, cell arrest in G0/G1 phase; in
vitro lidocaine inhibited tumour growth

Activation of caspase 3, decreased Bcl-2
and Bax expression, inactivation of ERK1/2
and p38 pathways
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Effects on Src Signalling
Src is a non-receptor tyrosine kinase protein widespread in
human cells and its encoding gene was the first proto-
oncogene to be identified (116). Src is activated by various
stimuli, such as TNFa binding to its receptor; activated Src
phosphorylates a range of targets including the membrane
protein caveolin-1. Src activation results in reduced endothelial
barrier function and promotes cellular survival, proliferation,
migration, invasion and angiogenesis (32, 117). Predictably then,
activated Src in tumour cells is a potent oncogenic promoter and
drives the pathogenesis of multiple cancers including colon,
prostate and breast carcinomas (118, 119). Activated Src
induces the expression of the enzymes MMP-2 and -9 which
degrade basement membrane, thereby facilitating tumour cell
migration and invasion (120). The effects of lidocaine on Src and
associated signalling by-products have been studied both in vitro
and in vivo. In separate experiments Piegeler et al. examined lung
adenocarcinoma and lung endothelial cells in vitro and
demonstrated that lidocaine not only inhibited TNFa-induced
Src activation in both cell types, but also reduced cancer cell
migration and endothelial cell permeability, as well as neutrophil
adhesion (121, 122). In a subsequent study, the same group
showed that lidocaine-related inhibition of TNFa-induced, Src-
dependent signalling in lung adenocarcinoma cells resulted in
reduced MMP-9 expression and reduced cancer cell invasion
(75). Although Src inhibition by lidocaine has consistently
demonstrated anti-tumour effects in vitro, this effect is yet to
be confirmed in vivo. Our group examined whether an effect on
Src underpinned lidocaine-related inhibition of pulmonary
metastasis in a mouse model of breast cancer surgery by
introducing an Src inhibitor alongside lidocaine. Although
Frontiers in Oncology | www.frontiersin.org 8
postoperative serum MMP-2 was reduced in lidocaine-treated
animals, the results could not confirm an Src-dependent
mechanism (86).
EFFECTS ON INFLAMMATORY
CYTOKINE PRODUCTION

Lidocaine has long been known to possess anti-inflammatory
properties (82). What has been more difficult to determine is the
mechanism(s) by which inflammation is suppressed and the
resulting clinical significance, if any. In vitro evidence from a
number of studies has demonstrated that lidocaine inhibits
release of leukotrienes, histamine and IL-1a from leukocytes -
all potent inflammatory mediators (123, 124). Lidocaine may
also inhibit the ‘priming’ or potentiation of neutrophil response
to certain triggers of inflammation and thus reduce cytokine
expression (125). In addition, lidocaine experimentally inhibits
immune cell adhesion, migration and proliferation within areas
of tissue injury (126). This may result from a protective effect of
lidocaine on endothelium, preventing inflammatory mediator-
induced injury and thus preserving endothelial barrier integrity
(127). Conceptually then, perioperative lidocaine may inhibit
immune cell infiltration into the pre-metastatic niche and
prevent such cells releasing pro-metastatic inflammatory
cytokines into this nascent tumour microenvironment, so
reducing the risk of future metastasis development.

A number of small RCTs have examined the effect of i.v.
lidocaine on post-operative cytokine expression (Table 3). Ortiz
et al. randomised laparoscopic cholecystectomy patients (n=44)
TABLE 3 | Selected RCTs comparing the effects of systemic lidocaine versus saline placebo on serum cytokine concentration.

First Author Year Surgery Type & No. Recruited I.V. Lidocaine Dosing Effects on Postoperative Serum Inflammatory
Marker Concentrations

Ortiz (128) 2016 Laparoscopic cholecystectomy
(n=44, 22 per group)

1.5 mg.kg-1 bolus then 3 mg.kg-1.h-1

until 1 hour post-surgery
IL-1, IL-6, IFN-g, and TNFa reduced in i.v. lidocaine group
and IL-10 increased compared with placebo group

Song (129) 2017 Laparoscopic cholecystectomy
(n=80, 40 per group)

1.5 mg.kg-1 bolus then 2 mg.kg-1.h-1

until end of surgery
IL-6 and IL-8 reduced in i.v. lidocaine group and no effect
on IL-1ra compared with saline placebo

Kuo (130) 2006 Colon cancer surgery
(n=60, 30 per group)

2 mg.kg−1 bolus then 3 mg.kg−1.h−1

until end of surgery
IL-6, IL-8 and IL-1ra reduced by both i.v. and epidural
lidocaine compared with saline placebo

Herroeder (131) 2007 Colorectal surgery
(n=60, 30 per group)

1.5 mg.kg-1 bolus then 2 mg.kg-1.h-1

until 4 hours post-surgery
Lidocaine attenuated increase of IL-6 and IL-8, no effect
on IL-1b and TNF-a

Yardeni (132) 2009 Open hysterectomy (n=65, 32/33 in
each group)

2 mg.kg−1 bolus then 1.5
mg.kg−1.h−1 until end of surgery

Lidocaine attenuated the increase of IL-6 and IL-1ra
produced by lipopolysaccharide–stimulated peripheral
blood mononuclear cells

Sridhar (133) 2015 Open abdominal surgery
(n=134, 67 per group)

2 mg.kg−1 bolus then 1.5
mg.kg−1.h−1 until 1 hour post-surgery

Lidocaine attenuated IL-6 compared to saline placebo

Dewinter (134) 2017 Spinal surgery
(n=70, 35 per group)

1.5 mg.kg-1 bolus then 1.5 mg.kg-1.
h-1 until 6 hours post-surgery

No significant differences between IL-6 and IL-1ra
between the lidocaine and placebo groups

van den Heuvel (135) 2020 Breast cancer surgery
(n=48, 24 received lidocaine)

1.5 mg.kg-1 bolus then 2 mg.kg-1.h-1

until 1 hour post-surgery
No effect attributed to lidocaine on serum IL-1b, IL-6, IL-
10, IL-1ra

de Oliveira (136) 2015 Open hysterectomy
(n=40, 20 per group)

No bolus, 2 mg.kg-1.h-1 infusion
during surgery

No difference in serum IL-6 detected

Xu (137) 2021 Laparoscopic hysterectomy
(n=160, 4 groups of 40)

1.5 mg.kg-1 bolus then 1.5 mg.kg-1.
h-1 until 30 mins before end of
surgery

No difference in serum IL-1, IL-6 and TNF-a between
control group receiving saline and group receiving
lidocaine
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to receive either i.v. lidocaine (1.5 mg.kg-1 bolus at surgical start
then 3 mg.kg-1.h-1 until 1 hour after surgery) or i.v. saline as
placebo (128). At 24 hours post-surgery compared to those
receiving saline, i.v. lidocaine recipients had significantly
reduced serum levels of pro-inflammatory cytokines (IL-1, IL-
6, TNFa, IFN-g) and an increase in the anti-inflammatory
cytokine IL-10 suggestive of an overall anti-inflammatory
effect. 5 other RCTs have detected that lidocaine has an
inhibitory effect on serum cytokine concentrations following
abdominal surgery, with IL-6 expression the most consistently
suppressed; effects on clinical cancer outcomes were not assessed
(129–133).

Not every RCT published to date has demonstrated lidocaine-
related anti-inflammatory effects. Similar studies examining
breast surgery, spinal surgery and hysterectomy patients found
no difference in post-operative serum cytokines in their lidocaine
treatment arms (134, 135, 137). There may be a number of
reasons underlying the variable results observed in these trials.
The enrolled numbers in the RCTs performed were small and
most were powered to detect clinical outcomes (such as pain) as
the primary outcome rather than cytokine changes. Significant
heterogeneity existed not only in the dose and duration of
infusion administered, but also in the time points at which
cytokines were measured. Notably, all the RCTs reporting
lidocaine-related cytokine reductions examined abdominal
surgery, and indeed lidocaine’s clinical benefits in terms of
analgesic effects, hastening return of bowel function and
decreasing hospital stay appear most pronounced in this
cohort (16).
EFFECTS ON ANGIOGENESIS

Given that inflammation and angiogenesis are often inextricably
linked, it is difficult experimentally to isolate purely angiogenic
pathways from inflammatory ones (138). There is significant
overlap between the intracellular signalling pathways activated
by both hypoxia and inflammation – hypoxia inducible factors
(HIFs) increase transcription of NF-kB in the same way that
inflammatory stimuli do, leading to amplification of
inflammatory mediator production, as well as increasing
expression of pro-angiogenic VEGF (138). The effects of
lidocaine on HIF or VEGF specifically has infrequently been
studied in laboratory or preclinical experiments. Gao et al.
examined endothelial cells in vitro and found that VEGF-
stimulated cell migration and proliferation was inhibited by
lidocaine (50µM), as well as suppression of VEGF/VEGF
receptor 2 (VEGFR2) signalling at 100µM (91). Using a mouse
melanoma model, the same group found that intraperitoneal
lidocaine treatment resulted in smaller tumours with reduced
blood vessel formation. Separately, Suzuki et al. detected similar
lidocaine-associated anti-angiogenic effects on endothelial cells
in vitro although at lower concentrations (4 - 44µM), with similar
suppression of VEGF/VEGFR2 signalling noted (139). In
contrast, Nishi et al. reported that lidocaine (lowest
concentration 30µM) did not affect hypoxia-induced HIF
Frontiers in Oncology | www.frontiersin.org 9
activation or alter expression of hypoxia-induced genes (140).
Although choice of anaesthetic technique can alter post-
operative serum VEGF in certain cohorts of cancer patients,
the clinical significance of any such change is unknown and no
definite effect on cancer outcomes has been proven (141, 142).
Only one RCT has examined the effect of systemic lidocaine on
serum VEGF (though not as the primary outcome): breast cancer
surgery patients (n=120) were randomised to anaesthesia using
propofol or sevoflurane, with or without i.v. lidocaine – post-
operative serum VEGF concentrations were unaffected by any
treatment (143).
EFFECTS ON IMMUNE CELLS

The ability of some anaesthetic and analgesic agents to modify
immune cell numbers and function is supported by laboratory
evidence, although definitive clinical evidence of effects on
patient outcomes is not confirmed (13, 38). Similarly,
experimental evidence has accumulated indicating that
lidocaine may modulate various cellular components of the
immune system (31). As immune function and inflammation
are closely associated, this effect may result from lidocaine’s anti-
inflammatory properties as outlined previously. Or it may result
from a direct action of lidocaine on immune cells, or indirectly
via effects on SNS or HPA axis activity, or from some
combination of these. Systemic lidocaine reduced circulating
cortisol levels in parturients undergoing caesarean section in
one trial, and post-operative urinary catecholamines in
cholecystectomy patients in another (144, 145). Conversely,
this effect was not observed in studies examining cortisol and/
or catecholamine levels in colectomy or hysterectomy patients
(146, 147). Based on this admittedly small body of evidence, SNS/
HPA suppression cannot convincingly be identified as the
primary means by which lidocaine influences immune cells.

Dendritic cells and macrophages treated with lidocaine in
vitro express reduced amounts of inflammatory cytokines, a
potentially beneficial anti-inflammatory and anti-cancer effect
(148, 149). Conversely, lidocaine-related suppression of Th1
differentiation was detected both in vitro and in a mouse
model, a potentially detrimental effect as Th1 cells contribute
to cell mediated immunity (CMI). Clinically achievable
concentrations of lidocaine may also benefit CMI by enhancing
the cytotoxic effects of NK cells - in vitro NK cytotoxicity against
leukaemia cells was promoted by lidocaine treatment (at 0.01µM
to 50µM), an effect attributed experimentally to enhanced lytic
granule release (150). Similar NK cytotoxicity enhancement was
identified in a study which isolated NK cells from healthy donors
and cancer patients (both pre- and post-operatively) - NK cells
treated in vitro with lidocaine had greater cytotoxic effects
against cancer cells (151).

A small RCT randomised 30 patients undergoing radical
hysterectomy to i.v. lidocaine (1.5 mg.kg-1 bolus then 1.5
mg.kg-1.h-1 during surgery) or saline (152). Lidocaine
treatment preserved post-operative lymphocyte proliferation
and inhibited apoptosis. Another RCT, again involving
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hysterectomy patients (n=65), randomised subjects to i.v.
lidocaine (2 mg.kg-1 bolus then 2 mg.kg-1.h-1 during surgery)
or saline (132). Again an immune protective effect was detected -
lidocaine attenuated suppression of the lymphocyte proliferative
response, in addition to inhibiting expression of IL-6 and IL-1ra.
Not all clinical studies have demonstrated beneficial immune
effects - i.v. lidocaine (1 mg.kg-1 bolus) in patients with herpes
zoster-related pain did not affect NK numbers or activity (153).

Lidocaine inhibits neutrophil adhesion and migration in vitro,
with effects on the integrin member CD11b-CD18 or the Nav1.3
voltage-gated sodium channel among the mechanisms
postulated (154, 155). Evidence of lidocaine’s effects on
neutrophils has also been established by several animal and
human studies. One in vivo study found that lidocaine
(administered intra-peritoneally in a mouse peritonitis model)
inhibited neutrophil apoptosis and macrophage clearance and
delayed the resolution of the inflammatory response and return
to normal homeostasis (156). Systemic lidocaine also inhibited
leukocyte accumulation in animal models of peritonitis and
myocardial ischaemia (157, 158). Clinical evidence is limited –
in an RCT conducted by Berger et al., intravenous lidocaine
administered to septic patients reduced chemokine-induced
adhesion and transmigration of neutrophils through
endothelium without affecting expression of adhesion
molecules (159).

Lidocaine has long been recognised as affecting neutrophil
phagocytic function (160), although accumulated evidence
appears contradictory as to whether function is enhanced or
impaired. Kawasaki et al. treated human neutrophils with
lidocaine (at supraclinical 400µM) in vitro and found
respiratory burst and phagocytic ability were impaired (161).
Similar effects on respiratory burst have also been reported in
neutrophils isolated from umbilical cord blood from newborns
and treated in vitro with high concentration lidocaine (4mM),
whereas low concentrations (2µM) appeared to increase reactive
oxygen species production (162). However, other groups did not
detect any lidocaine-related effect on in vitro neutrophil function
or reactive oxygen species production when clinically achievable
concentrations were tested (163–165). One clinical study
examining neutrophils taken from lidocaine-treated patients
detected significantly reduced superoxide anion release
compared to patients who didn’t receive lidocaine (166).
Contrary to this finding, a clinical trial studying bolus
lidocaine (1.5 mg.kg-1) administered at induction of
anaesthesia found that lidocaine actually preserved neutrophil
respiratory burst compared to neutrophils from control patients
who received saline (167).

The choice of anaesthetic technique can modulate the
neutrophil-to-lymphocyte ratio (NLR) post-operatively,
however significant effects on clinical outcomes are not proven
(168, 169). Evidence from one small RCT also suggests beneficial
effects of lidocaine on post-operative NLR following breast
cancer surgery although, again, clinical outcomes were not
assessed (170). Unsurprisingly given the relatively recent
discovery of the phenomenon of NETosis, it has infrequently
been studied in the context of cancer surgery. However, one RCT
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found that i.v. lidocaine reduced serum biomarkers of NETosis
(namely neutrophil myeloperoxidase and citrullinated histone
H3) after breast cancer surgery (143).
PRECLINICAL STUDIES OF
CANCER OUTCOMES

Although to date far fewer preclinical studies have been
conducted than laboratory experiments, a number of animal
studies have identified beneficial effects of lidocaine on in vivo
cancer growth and outcomes (Table 2). Chamaraux-Tran et al.
injected immunodeficient mice intraperitoneally with human
breast cancer cells, randomised the animals to weekly intra-
peritoneal lidocaine or saline treatment, and demonstrated that
lidocaine treatment significantly improved survival and reduced
tumour growth (84). Similarly, lidocaine treatment has been
proven to reduce tumour size and improve survival when
administered intravesically alongside mitomycin C in a mouse
model of bladder cancer (85). Lidocaine also decreased tumour
size when administered intraperitoneally in mouse models of
melanoma and hepatocellular carcinoma, and intravenously in
models of melanoma and retinoblastoma (90–93). We previously
established a syngeneic mouse breast cancer model to mimic the
effects of anaesthesia and surgery on postoperative metastatic
progression (87). In this model, animals that received an
intravenous lidocaine infusion alongside sevoflurane
anaesthesia during resection of primary breast tumours had
consistently fewer pulmonary metastases when measured two
weeks postoperatively (86, 88, 89).
CLINICAL STUDIES OF
CANCER OUTCOMES

Following reports from retrospective analyses suggesting decreased
cancer recurrence rates associated with regional anaesthetic
techniques in breast and prostate cancer surgery, there has been
an increased focus on establishing which anaesthetic technique, if
any, provides the greatest outcome benefit following surgery (171,
172). Evidence accumulated from laboratory and retrospective
clinical studies suggests that intravenous (i.e. propofol-based) and
regional anaesthesia are potentially beneficial in terms of effects on
cancer outcomes compared to volatile anaesthesia and opioids (10).
However, the first large RCT examining this topic, which
randomised breast cancer surgery patients to a propofol-regional
anaesthesia technique versus a volatile-opioid technique, found no
difference in recurrence rates between the two groups (173). Given
the huge degree of biological heterogeneity between different
malignancies, it is difficult to determine how applicable these
findings may be to other cancer surgery types e.g. colorectal
cancer surgery. Other trials currently underway, assessing
anaesthetic technique and cancer outcomes across a range of
different cancer types, will go some way towards addressing
this uncertainty.
August 2021 | Volume 11 | Article 688896

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wall and Buggy Perioperative Intravenous Lidocaine and Metastasis
Although numerous studies have examined the effects of
intravenous lidocaine on biochemical or haematological
markers of inflammation, angiogenesis and immune function,
to the best of our knowledge, only one study to date has reported
on clinical outcomes. Zhang et al. in a recent retrospective study
of 2239 patients undergoing resection of pancreatic carcinomas
found that those who received perioperative i.v. lidocaine (1.5
mg.kg-1 bolus followed by 2 mg.kg-1.hr-1) had significantly better
overall survival at 1 and 3 years (68.0% vs 62.6%, p<0.001; 34.1%
vs 27.2%, p=0.011), although disease-free survival was
unaffected (174).
FUTURE RCTs - ESTABLISHING
SYSTEMIC LIDOCAINE’S EFFECT ON
CANCER OUTCOMES

The question of whether perioperative systemic lidocaine has any
influence on postoperative cancer outcomes can only be
answered by the completion of a suitably powered RCT. No
such trial has ever been completed, which is understandable
considering the cost, patient number and length of follow up
required. However, this question will be addressed for a subset of
cancers by the Volatile Anaesthesia and Perioperative Outcomes
Related to Cancer trial (VAPOR-C, NCT04316013) which is
planned to complete in 2025. VAPOR-C will recruit 5736
colorectal and lung cancer patients and in a 2x2 factorial study
randomise them to either sevoflurane or propofol anaesthesia,
plus lidocaine infusion (1.5 mg.kg-1 bolus followed by 2 mg.kg-1.
hr-1 for 4 hours then 1.5 mg.kg-1.hr-1 thereafter) or saline placebo
(175). The primary outcome measure will be disease-free
survival, with overall survival as a secondary endpoint.

The ALLEGRO RCT (ISRCTN52352431), which is currently
ongoing and aims to recruit 562 patients, is examining the effect
of systemic lidocaine (1.5 mg.kg-1 bolus followed by 1.5 mg.kg-1.
hr-1 for 6 or 12 hours) during colorectal surgery on post-
operative bowel function. Cancer outcomes will be also be
studied up to 10 years post enrolment, although these are
tertiary endpoints so will likely be underpowered but will
potentially be a useful addition to the knowledge base (176).
Other small trials are examining perioperative systemic lidocaine
and cancer outcomes in colorectal surgery (NCT02786329) and
pancreatic surgery (NCT04449289).
LICENCING AND SAFETY CONCERNS

The appropriateness of intravenous use of lidocaine given the
potential risks and as yet inconclusive benefits has recently been
questioned (177). Lidocaine remains unlicensed for intravenous
use for analgesic purposes, although many drugs used routinely in
anaesthesia are similarly used in an ‘off-label’ manner. The
likelihood of encountering toxicity appears very small when
carefully dosed and under continuous monitoring, with one
surgical unit reporting over 2200 patients treated with
perioperative i.v. lidocaine with no reported adverse effects (20).
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Despite this, the potential for toxicity can never be completely
excluded and therefore the potential risks and benefits of systemic
lidocaine should be carefully considered by the practitioner for
each patient prior to commencing treatment. Recently published
dosage guidelines may aid in ensuring safe practice, with dosages
reduced accordingly (or usage avoided) in the presence of
conditions known to enhance toxicity (18). In addition, as
recently proposed, adoption of institutional guidelines regarding
administration, monitoring, detection and treatment of systemic
toxicity appears prudent wherever i.v. lidocaine is administered,
and training of all involved staff should be mandatory (178).
Perhaps, as recently suggested by Pandit and McGuire, use of
intravenous lidocaine is currently best confined to subjects
participating in clinical trials (including VAPOR-C) under
rigorous safety conditions and where the results of usage can
contribute to establishing definitive evidence of clinical benefits or
otherwise (179).
CONCLUSION

The cancer patient’s perioperative course is increasingly
recognised as a period during which future malignant
progression may be influenced for better or worse. Cancer
progression appears dependent on the development of a
harmful imbalance between pro- and anti-neoplastic humoral
and cellular effects, in favour of the malignancy. Circulating
tumour cells released by dissection, which under normal
conditions would be eradicated by the immune surveillance
system, may instead establish themselves in pre-metastatic
niches in distant organs, where their survival is facilitated by
the pathophysiological effects generated by the surgical insult. Or
pre-established micro-metastatic deposits may be woken from
their dormancy in the tumour microenvironment by the same
processes. Any intervention made during this critical time which
can rebalance these systems in favour of host survival holds
tremendous promise for improving patient outcomes. Lidocaine
has been shown experimentally to possess numerous beneficial
effects, potentially affecting multiple biological pathways to act as
an anti-inflammatory, immune cell modulator and/or direct
inhibitor of cancer cells. An intravenous infusion of lidocaine
administered perioperatively may act as a simple, inexpensive and
effective chemotherapeutic agent in addition to its potential
analgesic properties. Only evidence from adequately powered,
randomised, controlled clinical trials will confirm lidocaine’s
efficacy in improving cancer outcomes - the planned VAPOR-C
trial should go some way towards establishing this.
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