

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5,6-Dimethyl-1*H*-benzimidazol-3-ium nitrate

Bao-Cheng Liu, Shou-Jin Zhu and Fa-Qian Liu*

Key Laboratory of Advanced Materials, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: qdplastics@163.com

Received 22 September 2013; accepted 9 October 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.136; data-to-parameter ratio = 13.6.

The title salt, $C_9H_{11}N_2^+ \cdot NO_3^-$, features a planar cation (r.m.s. for 11 non-H atoms = 0.016 Å). In the crystal, $N-H \cdots O$ hydrogen bonds link nitrate and benzimidazole ions into a three-dimensional network.

Related literature

For background to benzimidazole, see: Roderick *et al.* (1972). For related crystal structures, see: Lee & Scheidt (1986), Liu (2012), Cui *et al.* (2009).

Experimental

Crystal data

$C_9H_{11}N_2^+ \cdot NO_3^-$	c = 10.379 (6) Å
$M_r = 209.21$	$\beta = 108.598 \ (9)^{\circ}$
Monoclinic, $P2_1/c$	$V = 1002.8 (10) \text{ Å}^3$
$a = 6.938 (4) \text{ Å}_{-}$	Z = 4
$b = 14.694 \ (8) \ \text{\AA}$	Mo $K\alpha$ radiation

 $0.29 \times 0.27 \times 0.22 \text{ mm}$

 $\mu = 0.11 \text{ mm}^{-1}$ T = 296 K

Data collection

5401 measured reflections
1973 independent reflections
1617 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.028$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.045 & \text{H atoms treated by a mixture of} \\ wR(F^2) = 0.136 & \text{independent and constrained} \\ S = 1.05 & \text{refinement} \\ 1973 \text{ reflections} & \Delta\rho_{\max} = 0.18 \text{ e } \text{\AA}^{-3} \\ 145 \text{ parameters} & \Delta\rho_{\min} = -0.16 \text{ e } \text{\AA}^{-3} \end{array}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdotsO1^{i}$	0.96 (3)	2.31 (3)	3.043 (3)	133.0 (15)
$N2-H2 \cdot \cdot \cdot O3^{i}$	0.96 (3)	1.86 (3)	2.797 (3)	165 (2)
$N1 - H1 \cdots O1^{ii}$	0.90 (3)	2.60(2)	3.191 (3)	123.8 (17)
$N1 - H1 \cdots O2^{ii}$	0.90 (3)	1.89 (2)	2.797 (3)	178 (2)

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x - 1, y, z - 1.

Data collection: *RAPID-AUTO* (Rigaku, 2004); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the NSF of Shandong Province (No. 2009ZRA02071) and the Scientific Development Plan of Universities in Shandong Province (No. J09LB53)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5349).

References

Cui, Y., Gao, Q., Zhang, C.-Y. & Xie, Y.-B. (2009). Acta Cryst. E65, o1335.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Lee, Y. J. & Scheidt, W. R. (1986). Acta Cryst. C42, 1652–1654.
Liu, H.-L. (2012). Z. Kristallogr. New Cryst. Struct. 227, 339–340.
Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Roderick, W. R., Nordeen, C. W., Von Esch, A. M. & Appell, R. N. J. (1972). J.

Roderick, W. R., Nordeen, C. W., Von Esch, A. M. & Appell, R. N. J. (1972). J. Med. Chem. 15, 655–658.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2013). E69, o1645 [doi:10.1107/S1600536813027578]

5,6-Dimethyl-1H-benzimidazol-3-ium nitrate

Bao-Cheng Liu, Shou-Jin Zhu and Fa-Qian Liu

1. Comment

Benzimidazole and its derivatives have attracted increased interest, not only because of their biological activity, but their abilities to bind to different metal ions (Roderick *et al.*, 1972). In this paper, we describe the synthesis and structure of the title compound $C_9H_{11}N_3O_3$. In the title compound the molecules are linked by N—H···O hydrogen bonds between nitrate and benzimidazole ions into a three-dimensional network structure. Some 5,6-dimethylbenzimidazole derivatives with similar structures have been reported, which include 5.6-Dimethylbenzimidazole (Lee & Scheidt, 1986), 5,6-dimethyl-lH-benzo[*d*]imidazol-3-ium 2-(4-chlorophenoxy)acetate (Liu, 2012),and Bis(5,6-dicarboxybenzimidazolium) sulfate monohydrate (Cui *et al.*, 2009).

2. Experimental

A mixture of 5,6-Dimethylbenzimidazole (2.86 mg, 0.02 mmol) and Co(NO₃)₂.6H₂O (5.82 mg, 0.02 mmol) was added to H₂O (20 ml). The mixture was refluxed for half an hour then filtered. The resulting solution was allowed to stand at room temperature to give yellow block crystals suitable for structural determination after 3 weeks. Analysis, calculated for C₉H₁₁N₃O₃: C 51.67, H 5.30, N 20.09%; Found: C 51.61, H 5.25, N 20.19%.

3. Refinement

H atoms on N1 and N2 atoms were positioned geometrically and allowed to ride on their parent atoms with N—H = 0.90 or 0.96 Å. H atoms of the methyl groups were positioned geometrically (C—H = 0.96 Å) and allowed to ride on their parent atoms with $U_{iso}(H) = 1.5$ times $U_{eq}(C)$. All the other H atoms were positioned geometrically(C—H = 0.93 Å) and allowed to ride on their parent atoms with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$.

Computing details

Data collection: *RAPID-AUTO* (Rigaku, 2004); cell refinement: *RAPID-AUTO* (Rigaku, 2004); data reduction: *RAPID-AUTO* (Rigaku, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The crystal packing diagram viewed down the *a* axis.

5,6-Dimethyl-1*H*-benzimidazol-3-ium nitrate

Crystal data $C_9H_{11}N_2^+ \cdot NO_3^ M_r = 209.21$

Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.5 - 26.6^{\circ}$

 $\mu = 0.11 \text{ mm}^{-1}$ T = 296 K

Block, yellow

 $R_{\rm int} = 0.028$

 $k = -17 \rightarrow 18$

 $l = -8 \rightarrow 12$

 $0.29 \times 0.27 \times 0.22 \text{ mm}$

 $\theta_{\max} = 26.0^\circ, \ \theta_{\min} = 2.5^\circ$ $h = -8 \rightarrow 8$

intensity decay: none

1973 independent reflections

1617 reflections with $I > 2\sigma(I)$

13 standard reflections every 0 reflections

Cell parameters from 3271 reflections

a = 6.938 (4) Å b = 14.694 (8) Å c = 10.379 (6) Å $\beta = 108.598 (9)^{\circ}$ $V = 1002.8 (10) \text{ Å}^{3}$ Z = 4 F(000) = 440 $D_{x} = 1.386 \text{ Mg m}^{-3}$

Data collection

Rigaku R-AXIS Spider diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi 1995) $T_{\min} = 0.970, T_{\max} = 0.977$ 5401 measured reflections

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.045$ H atoms treated by a mixture of independent $wR(F^2) = 0.136$ and constrained refinement S = 1.05 $w = 1/[\sigma^2(F_0^2) + (0.0764P)^2 + 0.1519P]$ 1973 reflections where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ 145 parameters $\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$ 0 restraints $\Delta \rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant Extinction correction: SHELXL97 (Sheldrick, direct methods 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Secondary atom site location: difference Fourier Extinction coefficient: 0.102 (10) map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C6	0.3017 (3)	0.52774 (14)	0.13819 (18)	0.0638 (5)	
H6A	0.3096	0.5767	0.1965	0.077*	
C3	0.2734 (3)	0.38091 (11)	-0.03709 (17)	0.0545 (4)	
H3A	0.2625	0.3319	-0.0956	0.065*	
N3	0.9477 (2)	0.33163 (9)	0.55623 (14)	0.0615 (4)	
C4	0.2174 (2)	0.46728 (10)	-0.08774 (14)	0.0451 (4)	
C1	0.4099 (4)	0.27501 (17)	0.1557 (2)	0.0936 (8)	

H1A	0.3917	0.2333	0.0816	0.140*
H1B	0.3287	0.2558	0.2102	0.140*
H1C	0.5506	0.2761	0.2104	0.140*
C2	0.3452 (3)	0.36885 (13)	0.10052 (19)	0.0613 (5)
C8	0.4308 (4)	0.4293 (2)	0.3399 (2)	0.1049 (9)
H8A	0.4287	0.4865	0.3839	0.157*
H8B	0.5670	0.4058	0.3678	0.157*
H8C	0.3432	0.3870	0.3647	0.157*
C7	0.3576 (3)	0.44249 (15)	0.18821 (18)	0.0645 (5)
C5	0.2327 (2)	0.53977 (10)	-0.00159 (17)	0.0493 (4)
N2	0.1683 (2)	0.61491 (10)	-0.08221 (17)	0.0609 (4)
C9	0.1169 (3)	0.58998 (12)	-0.20846 (19)	0.0602 (5)
H9A	0.0678	0.6289	-0.2824	0.072*
N1	0.1439 (2)	0.50169 (10)	-0.21736 (13)	0.0519 (4)
01	0.9388 (3)	0.31136 (10)	0.66814 (13)	0.0858 (5)
O2	1.0253 (3)	0.40438 (9)	0.53833 (14)	0.0857 (5)
O3	0.8828 (3)	0.27846 (9)	0.45932 (13)	0.0829 (5)
H1	0.108 (3)	0.4713 (15)	-0.297 (2)	0.082 (7)*
H2	0.156 (4)	0.6760 (18)	-0.053 (2)	0.097 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C6	0.0503 (9)	0.0868 (13)	0.0550 (10)	-0.0109 (9)	0.0176 (7)	-0.0263 (9)
C3	0.0557 (9)	0.0498 (9)	0.0583 (9)	-0.0039 (7)	0.0187 (7)	-0.0015 (7)
N3	0.0792 (10)	0.0433 (7)	0.0533 (8)	0.0036 (7)	0.0090 (7)	0.0041 (6)
C4	0.0417 (8)	0.0517 (8)	0.0436 (7)	-0.0050 (6)	0.0161 (6)	-0.0024 (6)
C1	0.0874 (16)	0.0854 (15)	0.0949 (16)	-0.0108 (12)	0.0109 (12)	0.0373 (12)
C2	0.0511 (9)	0.0712 (11)	0.0599 (10)	-0.0090 (8)	0.0155 (7)	0.0135 (8)
C8	0.0874 (16)	0.175 (3)	0.0469 (11)	-0.0045 (17)	0.0142 (10)	0.0111 (14)
C7	0.0479 (9)	0.0968 (14)	0.0472 (9)	-0.0077 (9)	0.0128 (7)	0.0073 (9)
C5	0.0413 (8)	0.0518 (9)	0.0559 (9)	-0.0042 (6)	0.0172 (6)	-0.0079 (7)
N2	0.0529 (8)	0.0488 (8)	0.0779 (10)	0.0012 (6)	0.0163 (7)	-0.0064 (7)
C9	0.0499 (9)	0.0584 (10)	0.0699 (11)	0.0022 (7)	0.0156 (8)	0.0138 (8)
N1	0.0517 (8)	0.0601 (9)	0.0442 (7)	-0.0023 (6)	0.0157 (6)	-0.0004 (6)
01	0.1216 (13)	0.0780 (9)	0.0593 (8)	-0.0232 (8)	0.0309 (8)	-0.0002 (7)
02	0.1434 (14)	0.0470 (7)	0.0653 (9)	-0.0202 (7)	0.0315 (9)	0.0006 (6)
03	0.1287 (13)	0.0498 (7)	0.0549 (7)	-0.0080 (7)	0.0078 (7)	-0.0012 (6)
	· · ·					

Geometric parameters (Å, °)

С6—С7	1.364 (3)	C1—H1B	0.9600	
C6—C5	1.386 (3)	C1—H1C	0.9600	
С6—Н6А	0.9300	C2—C7	1.399 (3)	
C3—C2	1.366 (3)	C8—C7	1.505 (3)	
C3—C4	1.381 (2)	C8—H8A	0.9600	
С3—НЗА	0.9300	C8—H8B	0.9600	
N3—01	1.2197 (19)	C8—H8C	0.9600	
N3—O2	1.237 (2)	C5—N2	1.371 (2)	
N3—O3	1.2393 (19)	N2—C9	1.296 (2)	

C4—C5	1.373 (2)	N2—H2	0.96 (3)
C4—N1	1.374 (2)	C9—N1	1.318 (2)
C1—C2	1.505 (3)	С9—Н9А	0.9300
C1—H1A	0.9600	N1—H1	0.90 (2)
C7—C6—C5	118.47 (16)	С7—С8—Н8А	109.5
С7—С6—Н6А	120.8	C7—C8—H8B	109.5
С5—С6—Н6А	120.8	H8A—C8—H8B	109.5
C2—C3—C4	118.80 (16)	C7—C8—H8C	109.5
С2—С3—Н3А	120.6	H8A—C8—H8C	109.5
С4—С3—Н3А	120.6	H8B—C8—H8C	109.5
O1—N3—O2	120.70 (15)	C6—C7—C2	120.78 (17)
O1—N3—O3	120.23 (15)	C6—C7—C8	118.5 (2)
O2—N3—O3	119.06 (15)	C2—C7—C8	120.7 (2)
C5—C4—N1	106.25 (15)	N2—C5—C4	106.54 (15)
C5—C4—C3	120.73 (15)	N2—C5—C6	132.67 (16)
N1—C4—C3	133.01 (14)	C4—C5—C6	120.79 (16)
C2C1H1A	109.5	C9—N2—C5	108.69 (15)
C2—C1—H1B	109.5	C9—N2—H2	124.2 (14)
H1A—C1—H1B	109.5	C5—N2—H2	127.1 (14)
C2—C1—H1C	109.5	N2	110.46 (16)
H1A—C1—H1C	109.5	N2—C9—H9A	124.8
H1B—C1—H1C	109.5	N1—C9—H9A	124.8
C3—C2—C7	120.41 (18)	C9—N1—C4	108.06 (14)
C3—C2—C1	118.79 (19)	C9—N1—H1	123.2 (14)
C7—C2—C1	120.80 (18)	C4—N1—H1	128.6 (14)
C2—C3—C4—C5	-0.2 (2)	C3—C4—C5—N2	179.37 (14)
C2—C3—C4—N1	179.02 (15)	N1—C4—C5—C6	179.55 (13)
C4—C3—C2—C7	1.3 (2)	C3—C4—C5—C6	-1.0 (2)
C4—C3—C2—C1	-178.89 (16)	C7—C6—C5—N2	-179.34 (16)
C5—C6—C7—C2	-0.1 (3)	C7—C6—C5—C4	1.2 (2)
С5—С6—С7—С8	-179.48 (16)	C4—C5—N2—C9	0.16 (18)
C3—C2—C7—C6	-1.1 (3)	C6—C5—N2—C9	-179.36 (17)
C1—C2—C7—C6	179.06 (18)	C5—N2—C9—N1	-0.22 (19)
C3—C2—C7—C8	178.23 (17)	N2-C9-N1-C4	0.19 (18)
C1—C2—C7—C8	-1.6 (3)	C5—C4—N1—C9	-0.09 (16)
N1-C4-C5-N2	-0.04 (16)	C3—C4—N1—C9	-179.40 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H…A
N2—H2···O1 ⁱ	0.96 (3)	2.31 (3)	3.043 (3)	133.0 (15)
N2—H2···O3 ⁱ	0.96 (3)	1.86 (3)	2.797 (3)	165 (2)
N1—H1···O1 ⁱⁱ	0.90 (3)	2.60 (2)	3.191 (3)	123.8 (17)
N1—H1…O2 ⁱⁱ	0.90 (3)	1.89 (2)	2.797 (3)	178 (2)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) *x*-1, *y*, *z*-1.