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Over one-third of stroke patients has long-term cognitive impairment. The likelihood of cognitive dysfunction is poorly predicted

by the location or size of the infarct. The macro-scale damage caused by ischaemic stroke is relatively localized, but the effects of

stroke occur across the brain. Structural covariance networks represent voxelwise correlations in cortical morphometry. Atrophy

and topographical changes within such distributed brain structural networks may contribute to cognitive decline after ischaemic

stroke, but this has not been thoroughly investigated. We examined longitudinal changes in structural covariance networks in

stroke patients and their relationship to domain-specific cognitive decline. Seventy-three patients (mean age, 67.41 years;

SD¼ 12.13) were scanned with high-resolution magnetic resonance imaging at sub-acute (3 months) and chronic (1 year) time-

points after ischaemic stroke. Patients underwent a number of neuropsychological tests, assessing five cognitive domains including

attention, executive function, language, memory and visuospatial function at each timepoint. Individual-level structural covariance

network scores were derived from the sub-acute grey-matter probabilistic maps or changes in grey-matter probability maps from

sub-acute to chronic using data-driven partial least squares method seeding at major nodes in six canonical high-order cognitive

brain networks (i.e. dorsal attention, executive control, salience, default mode, language-related and memory networks). We then

investigated co-varying patterns between structural covariance network scores within canonical distributed brain networks and do-

main-specific cognitive performance after ischaemic stroke, both cross-sectionally and longitudinally, using multivariate behaviour-

al partial least squares correlation approach. We tested our models in an independent validation data set with matched imaging

and behavioural testing and using split-half validation. We found that distributed degeneration in higher-order cognitive networks

was associated with attention, executive function, language, memory and visuospatial function impairment in sub-acute stroke.

From the sub-acute to the chronic timepoint, longitudinal structural co-varying patterns mirrored the baseline structural covariance

networks, suggesting synchronized grey-matter volume decline occurred within established networks over time. The greatest

changes, in terms of extent of distributed spatial co-varying patterns, were in the default mode and dorsal attention networks,

whereas the rest were more focal. Importantly, faster degradation in these major cognitive structural covariance networks was asso-

ciated with greater decline in attention, memory and language domains frequently impaired after stroke. Our findings suggest that

sub-acute ischaemic stroke is associated with widespread degeneration of higher-order structural brain networks and degradation

of these structural brain networks may contribute to longitudinal domain-specific cognitive dysfunction.
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Introduction
Cognitive decline is common after ischaemic stroke

(Hochstenbach et al., 1998; Levine et al., 2015) and is

associated with poor quality of life for stroke patients

(Cumming et al., 2014). Cognitive decline after stroke

may be global in nature, or may be associated with one

or more cognitive domains, such as memory, attention or
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language. Surprisingly, infarct location does not closely

predict the severity of the post-stroke cognitive deficit

(Fox, 2018). Infarcts in different regions of the brain can

result in similar cognitive deficits, whereas infarcts in the

same region can result in different profiles of cognitive

impairments (Fox, 2018). Since no single brain region

works in isolation, it stands to reason that an infarct will

have distributed consequences, affecting incoming and

outgoing connections to the damaged area (Grefkes and

Fink, 2011, 2014). This disruption appears to be both in

terms of brain function (Siegel et al., 2016) and in terms

of white-matter (WM) connectivity (Stinear et al., 2007),

which have been studied extensively in stroke (Grefkes

and Fink, 2014). The impact of stroke on structural co-

variance networks (SCNs) has not been thoroughly inves-

tigated, despite evidence of atrophy after stroke that is

remote from the infarct location (Firbank et al., 2007;

Werden et al., 2017; Veldsman et al., 2018). Structural

covariance networks are constructed based on shared

inter-regional morphological characteristics, such as grey-

matter (GM) volume or cortical thickness that are esti-

mated across populations (Evans, 2013). These SCNs

closely mirror intrinsic functional networks and have

aided understanding of a diverse range of neurological

diseases, including epilepsy, schizophrenia and

Alzheimer’s disease (Evans, 2013).

Brain atrophy is a normal part of healthy aging, but it

is accelerated in the presence of dementia causing path-

ologies (Spreng and Turner, 2013) and cerebrovascular

burden (Veldsman, 2017). Across dementia sub-types,

the pattern of brain atrophy mirrors the healthy struc-

tural and functional networks responsible for the domin-

antly impaired function (Seeley et al., 2009; Zhou et al.,

2010; Zhou et al., 2012; Zhou and Seeley, 2014). For

example, language networks show widespread atrophy

in patients with primary progressive aphasia where lan-

guage is the dominant deficit. The integrity of the net-

works underlying different cognitive functions may be

critical for the preserved functioning of cognitive

domains after stroke.

We examined structural covariance in our discovery

data set in canonical higher-order cognitive brain net-

works in 73 stroke patients 3 months and 1 year after

ischaemic stroke. We predicted that the integrity of

SCNs at 3-month post-stroke would reflect cognitive

performance. If longitudinal changes in SCNs were to

be associated with longitudinal cognitive decline, the

relationship at the sub-acute phase is unlikely to be epi-

phenomenal. Therefore, to further test our hypothesis,

we investigated whether changes in SCNs from

3-month to 1-year post-stroke would be associated with

changes in cognitive function. We tested our models in

our validation data set, an independent data set with

matched imaging and neuropsychological and cognitive

testing and performed split-half analysis for longitudin-

al validation.

Materials and methods

Participants

Stroke patient data from the Cognition and Neocortical

Volume after Stroke study (Brodtmann et al., 2014) were

used in this study. Our discovery data set included data

from 80 stroke patients who underwent 3-Tesla magnetic

resonance imaging (MRI) and detailed neuropsychological

tests at the 3-month and 1-year timepoints. Here, we

refer to the 3-month timepoint as sub-acute and the 12-

month timepoint as chronic. Three months is the most

commonly used timepoint for assessing outcomes after

stroke. Among 80 participants, three participants were

excluded due to excessive head movement during brain

scans and four participants were excluded based on the

lack of image homogeneity evaluated by mean correlation

after voxel-based morphometry (VBM). The remaining 73

participants (mean age, 67.41 years; SD¼ 12.13, Table 1)

were included in the analysis. Our validation data set

was made up of data from 26 patients from the same co-

hort scanned at a later date with the same scanner, MRI

sequences and neuropsychological and cognitive testing.

Matched quality control to our discovery data set

excluded three patients on the basis of excessive move-

ment in their sub-acute scans. One patient lacked all cog-

nitive data and was excluded on this basis; this left a

total of 22 patients (mean age, 68.77 years; SD¼ 9.65;

Supplementary Materials Section 6 and Supplementary

Table 3). All participants gave written informed consent

for the study that was approved by local hospital ethics

committees in line with the Declaration of Helsinki.

Neuropsychological testing

Neuropsychological and cognitive tests were administered

at each timepoint, as outlined in the published protocol

(Brodtmann et al., 2014) and detailed in Supplementary

Materials Section 1 and Supplementary Table 1 (includ-

ing percentage of missing data for each test at each time-

point; <5% missing in any cognitive domain). Missing

data were imputed using the Missing Data Imputation

(MDI) Toolbox for MATLAB (Folch-Fortuny et al.,

2016, 2017). Briefly, missing data were first replaced by

the mean of their corresponding test scores and partial

least squares (PLS) was used to build the statistical model

with a response matrix. The original test score matrix

and the response matrix were auto-scaled to fit a PLS

model to predict the missing values. Auto-scaling and

model fitting were iterated until convergence was

reached.

Image acquisition

Participants were scanned on a 3-Tesla Siemens Tim Trio

scanner using a 12-channel head coil (Erlangen,
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Germany). The scan protocol comprised a high-resolution

magnetization prepared rapid gradient recalled echo se-

quence [repetition time (TR) ¼ 1900 ms, echo time (TE)

¼ 2.55 ms, inversion time ¼900 ms, flip angle ¼ 9�, 160

sagittal slices, matrix size ¼ 256� 256, voxel size ¼
1 mm isotropic] and a 3D SPACE-fluid attenuated inver-

sion recovery (FLAIR) sequence (TR ¼ 6000 ms, TE ¼
380 ms, inversion time ¼ 2100 ms, flip angle ¼ 120�,

160 axial slices, matrix size ¼ 256� 256, voxel size

¼1 mm isotropic).

Image processing

Infarcts were manually traced on the FLAIR image and

verified by a stroke neurologist (A.B.). Infarcts were con-

verted into a binary lesion map (see Supplementary

Materials Section 3 and Supplementary Fig. 1 for the

group lesion overlap map). The individual FLAIR image,

T1-weighted image and binarized lesion maps were used

as inputs to perform lesion filling to correct the intensity

of the lesions using the Lesion Segmentation Tool (LST)

(Schmidt et al., 2012) for Statistical Parametric Mapping

(SPM12; Wellcome Trust Centre for Neuroimaging). The

LST creates a lesion probability map from the GM, WM

and cerebrospinal fluid (CSF)-segmented T1-weighted

image. The intensity distribution is calculated using the

FLAIR image based on these three tissue classes. The re-

sultant lesion probability map combined with a binarized

lesion map was used to fill lesions based on local infor-

mation, to increase the accuracy of lesion filling. After le-

sion filling, we then applied the longitudinal VBM

pipeline using a computational anatomy toolbox

(CAT12) for SPM12 on the lesion-filled T1-weighted

images. Subject-level GM probability maps were obtained

from T1-weighted images by following our previously

published approach (Ng et al., 2016), including (i) inter-

participant image realignment across timepoints and

intra-participant signal inhomogeneity correction for each

participant to create a mean reference image for each

subject; (ii) segmentation of the bias-corrected and

reference images into GM, WM and CSF using an

Adaptive Maximum A Posterior technique (Rajapakse

et al., 1997); (iii) an initial affine registration applied to

the bias-corrected image to improve the initial SPM seg-

mentation; (iv) non-linear Diffeomorphic Anatomical

Registration Through Exponentiated Lie Algebra registra-

tion (Ashburner, 2007) from all subjects to create a

study-specific template in MNI space; (v) spatial normal-

ization of each segmented GM/WM reference image and

individual GM/WM probability maps to the customized

template in MNI space; (vi) modulation by multiplying

voxel values with the linear and non-linear component of

the Jacobian determinant; (vii) smoothing on the normal-

ized GM and WM probability maps with an isotropic 8-

mm Gaussian kernel. An overview of the preprocessing

and structural covariance pipeline is shown in Fig. 1.

Structural covariance network
analysis

Region of interest derivation

Six canonical brain networks were selected corresponding

to cognitive domains tested in this study, including the

dorsal attention (DAN), executive control (ECN), salience

(SN), default mode (DMN), language-related (LN) and

memory (MN) networks. For each network, two ROIs

were chosen from the peak foci reported in the previous

studies (Supplementary Table 2; Fig. 1). We selected seed

regions for each network on the basis that they have

been shown to reliably produce the relevant network

across a range of methods and imaging modalities. In

particular, we selected networks that have been shown to

be related to the associated cognitive domain tested here

and have been shown to be mirrored within SCNs. The

seed for the dorsal attention network represents the peak

region derived from a meta-analysis of attention-related

tasks (Corbetta and Shulman, 2002). We chose this re-

gion because it is reliably activated in response to the

top-down directed, voluntary deployment of attention as

required by the behavioural attention tasks in our cogni-

tive battery (Corbetta and Shulman, 2002; Fox et al.,

2006). Furthermore, the network shows correlated spon-

taneous activity even in the absence of a task (Fox et al.,

2006; Vossel et al., 2014). The seeds for the salience and

executive control networks were derived from Seeley

et al. (2007). The seeds represent the peak regions of ac-

tivation from executive control tasks and tasks requiring

personal salience or interoceptive processing (Seeley et al.,
2007). The resultant dissociable networks can be reliably

derived from task-based functional MRI, seed-based and

independent component analysis of resting-state MRI

(Seeley et al., 2007). Importantly, these networks are also

mirrored in SCNs which show syndrome specific atrophy

across dementia sub-types (Seeley et al., 2009; Zhou

et al., 2010). Language network seeds were selected in a

similar way, from the peak regions in a language

Table 1 Participant demographic and behavioural

characteristics

Demographics Statistics

Age (years), mean (SD) 67.41 (12.13)

Sex (male/female) 51/22

Handedness (left/right) 6/67

Education (years), mean (SD) 12.89 (3.75)

Infarct volume (mm3), mean (SD) 5786.62 (9316.65)

NIHSS on admission, median (25th, 75th percentile) 2 (1,4)

NIHSS at 3 months, median (25th, 75th percentile) 0 (0,2)

mRS on admission, median (25th, 75th percentile) 1 (1,2)

mRS at 3 months, median (25th, 75th percentile) 1 (1,2)

MoCA, mean (SD) 24.26 (3.43)

Scan interval (days), mean (SD) 276.92 (26.14)

MoCA ¼ Montreal Cognitive Assessment; mRS ¼ modified Rankin Score; NIHSS ¼
National Institute of Health Stroke Scale; SD ¼ standard deviation.
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network derived in healthy controls that was mirrored as

a SCN and that showed atrophy in language-impaired de-

mentia syndromes (Seeley et al., 2009; Zielinski et al.,

2010). For the default mode network, seeds that have

been used previously in the derivation of task-based

(Sridharan et al., 2008), resting-state (Greicius et al.,

2003; Chong et al., 2017) and SCNs (Zhou et al., 2012)

were used. Finally, ROIs for the memory network were

derived from peak regions in memory task-based fMRI

(Koechlin et al., 1999) that also produces the hippocam-

pal cortical network when used in seed-based resting state

functional connectivity analysis (Vincent et al., 2008).

We quantified the degree of overlap between the group

lesion map and a conjunction map of all the ROI seeds

Figure 1 Overview of study design schematic. For each participant, we first used a Lesion Segmentation Tool (LST) (Schmidt et al., 2012)

with a lesion mask as well as FLAIR and T1-weighted images to generate a lesion-filled T1-weighted image for each participant. Then, we applied

the longitudinal VBM pipeline using a computational anatomy toolbox (CAT12) to obtain smoothed and normalized GM images. With pre-

defined regions of interest based on canonical brain networks, we extracted the mean GM volume of each seed. Seed PLS was used to co-vary

the seed and whole-brain GM for deriving the SCNs at 3-month post-stroke (sub-acute timepoint) and change from 3-month to 1-year (chronic

timepoint) post-stroke, respectively, for all participants. Finally, SCN scores and neuropsychological test scores at the sub-acute timepoint were

input into a behavioural PLS model to examine the covariance between SCNs and cognition for all participants. The SCN change scores and

changes of neuropsychological test scores were input into another behavioural PLS model to investigate the cognitive decline over time based on

SCN degradation from 3-month to 1-year post-stroke for all participants. Abbreviations: FLAIR ¼ fluid-attenuated inversion recovery; GM ¼
grey matter; PLS ¼ partial least squares; SCN ¼ structural covariance network; VBM ¼ voxel-based morphometry.
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(Supplementary Materials Section 3 and Supplementary

Fig. 1) to ensure that our results were not driven by

damage within the seed regions. Spherical ROIs of 4 mm

radius were used to extract the mean GM volume from

the pre-processed GM probability maps using MarsBaR

region of interest toolbox for SPM12. Notably, for the

change of GM volume, we subtracted the GM probability

maps at the sub-acute timepoint from the maps at the

chronic timepoint for each subject and the resultant GM

probability maps were used to extract mean change of

GM volume with 12 4-mm radius spherical ROIs.

Structural covariance network derivation

Seed PLS was used to estimate structural covariance of

each canonical brain network (McIntosh and Lobaugh,

2004). Open-source PLS software written in MATLAB

(https://www.rotman-baycrest.on.ca/index.php?section¼84;

28 September 2020, date last accessed) (Krishnan et al.,

2011) was used for all PLS analyses. The input to the

seed PLS was the extracted mean GM volume of each

seed and the pre-processed, whole-brain GM images

(thresholded at signal intensity of 0.45). To derive the

co-varying pattern between the seed GM volume and the

rest of the brain, we performed singular value decompos-

ition on the mean-centred and normalized input (Eckart

and Young, 1936), a matrix in which rows correspond

to participants and columns correspond to brain GM

voxels. As such, structural covariance is estimated on a

group level in order to show dominant co-variation pat-

terns in morphology across the brain. The co-variation

pattern, formally known as latent variables (LVs), carries

two key pieces of information. The first one is a voxel-

wise ‘brain salience’ 3D volume that shows the structural

co-variation pattern. Voxels showing higher salience value

have stronger associations with the seed GM; that is, the

core regions in the SCN. The second one is a set of sum-

mary scores, called ‘brain scores’, which can be used to

make individual level inferences. Briefly, a brain score for

each participant was derived by multiplying the whole-

brain GM images and the right singular matrix (i.e. brain

salience), serving as an estimate of individual-level covari-

ance. Thus, participants whose GM morphology showed

higher resemblance to the group-level structural covari-

ance had higher brain scores. The statistical significance

of an LV was evaluated using a permutation test (i.e. if

the covariance accounted for by the seed GM exceeded

what could be obtained by chance, estimated by random-

ly permuting the input matrix rows 5000 times). The sta-

bility of each voxel in the brain salience of the LV was

quantified using a bootstrap ratio, calculated by dividing

the voxel salience value by its standard error (i.e. akin to

a Z-score), estimated by bootstrapping (re-sampling of in-

put matrix rows 1000 times). Voxels with high bootstrap

ratios contribute most to the brain co-variation pattern.

To control for potential influences of confounding vari-

ables, separate linear regression analyses were performed

on the brain scores of each seed for the sub-acute

timepoint and longitudinal change. For the sub-acute

timepoint, the variable of interest was the brain score of

the seed. The confounding variables were age, sex, hand-

edness, log-transformed infarct volume and total intra-

cranial volume. For change, the scan interval was input

as an additional confounding variable. The unstandar-

dized residual brain scores of 12 seeds, referred to as the

SCN scores, were used for further behavioural PLS

analysis.

To ensure that the results were not driven by global at-

rophy, we also tested the discovery and validation mod-

els, replacing total intra-cranial volume with GM volume

or total brain volume (GM and WM volume) normalized

by total intra-cranial volume (Supplementary Materials

Section 5). For the longitudinal analyses, we additionally

controlled for change in global atrophy (chronic�sub-

acute global atrophy; see Supplementary Materials

Section 5.2).

Statistical analysis

Behavioural PLS analysis

Similar to the seed PLS, behavioural PLS was performed

to investigate the multivariate relationships between the

neuropsychological test scores and the SCN scores. The

neuropsychological test scores were unstandardized resid-

uals after linear regression to control for confounding

variables. The dependent variable was the score of each

neuropsychological test and the confounding variables

were age, sex, handedness, log-transformed infarct vol-

ume and total intra-cranial volume. Similarly, the scan

interval was input as an additional confounding variable

in the longitudinal analysis. The behavioural PLS model

examined the 17 neuropsychological test scores and 12

network-specific SCN scores at the sub-acute timepoint.

The behavioural score was also derived by multiplying

neuropsychological test scores and behavioural salience to

estimate the test-dependent differences in the SCN–cogni-

tion correlation. Identical to the SCN only analysis, stat-

istical significance and the importance and reliability of

each test score in the SCN–cognition relationship were

evaluated with permutation tests based on 5000 repeti-

tions and bootstrapping based on 1000 repetitions,

respectively.

A second behavioural PLS model was built to study the

relationship between changes in neuropsychological test

scores and changes in SCNs from sub-acute (3 months) to

chronic (1 year) stroke after the procedure outlined in the

first behavioural PLS model. Changes in 17 neuropsycho-

logical test scores and 12 network-specific SCN change

scores were input into this second behavioural PLS model

with the same permutation and bootstrapping procedures.

Two additional infarct volume control analyses for the

sub-acute timepoint and change from sub-acute to chron-

ic timepoint were performed without controlling for the

infarct volume (Supplementary Materials Section 4).
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The independent validation data set was processed in

exactly the same way, without any exceptions, at the

sub-acute timepoint (Supplementary Materials Section 5).

Due to a low sample size at the chronic timepoint, we

used split-half validation, repeated five times with ran-

dom sampling (Supplementary Materials Section 6.2).

Data availability

The data that support the findings of this study are avail-

able from the corresponding author upon reasonable

request.

Results

Relationship between SCNs and
cognitive function in sub-acute
stroke

We derived canonical SCNs using 12 seeds from six

major brain networks underlying cognitive function at

the sub-acute timepoint (Fig. 2, surface rendered in

Supplementary Materials Section 7, Supplementary Fig.

9). A LV1 significantly contributed to 12 SCNs

(P¼ 0.001) and explained 99.83% of the variance in the

behavioural PLS model. There was a positive correlation

between the behavioural and brain scores (r¼ 0.194,

P< 0.001, Fig. 3A). All SCNs contributed fairly equally

and significantly to LV1 with less than �2 bootstrap

ratio (akin to Z-score) (Krishnan et al., 2011) (Fig. 3B).

The corresponding neuropsychological tests revealing the

strongest correlations of LV1 were the Digit Span Task [r

¼ �0.222; 95% confidence interval (CI)¼�0.379 to

�0.059], Trail-Making test (A) (TMT-A) (r¼�0.311,

95% CI¼�0.437 to �0.181) and Simple Reaction Time

task (r¼�0.213, 95% CI¼�0.374 to �0.047) in the at-

tention domain, the Trail-Making test (B) (TMT-B)

(r¼�0.175, 95% CI¼�0.333 to �0.039) in the execu-

tive function domain, the Boston Naming Test (BNT)

(r¼�0.254, 95% CI¼�0.411 to �0.037) and

Controlled Oral Word Association Test (COWAT)-ani-

mals (r¼�0.178, 95% CI¼�0.337 to �0.037) in the

language domain, the Hopkins Verbal Learning Test

(HVLT)-Delay (r¼�0.146, 95% CI¼�0.280 to �0.012)

in the memory domain and the Rey Complex Figure

(RCF)-copy (r¼�0.165, 95% CI¼�0.334 to �0.009) in

the visuospatial function domain (Fig. 3C). These results

suggested that more damaged SCNs were related to

worse attention, executive function, language, memory

and visuospatial function performance at the sub-acute

timepoint. An additional control analysis without correct-

ing for infarct volume revealed highly similar results,

indicating that our findings were robust (Supplementary

Materials Section 4 and Supplementary Fig. 2). Further

analyses controlling for global brain atrophy also repli-

cated these findings (Supplementary Section 5.1 and

Supplementary Fig. 4). Finally, we tested the model in an

independent validation. Replicating the main results, a

single LV explained 87.18% of the variance in the behav-

ioural PLS model (P< 0.001) and all 12 SCNs signifi-

cantly contributed to this LV (Supplementary Materials

Section 6.1 and Supplementary Fig. 6). The significant

correlation between brain and behavioural scores was

also replicated (r¼ 0.325, P< 0.001). Additional analyses

controlling for GM/TIV or GM þ WM/TIV again dem-

onstrated similar findings (Supplementary Materials

Section 6.1 and Supplementary Fig. 7).

Relationship between changes in
SCNs and changes in cognitive
function

We derived networks based on the covariance of the rate

of change in GM volume from sub-acute to chronic

stroke. Importantly, the regions showing significant co-

variation with the seeds mirror those shown in the SCNs

derived at the sub-acute timepoint (Fig. 2, surface ren-

dered Supplementary Fig. 9). This confirms co-variation

in the change in GM volume occurs within the domain-

specific canonical networks, albeit to a reduced spatial

extent. After applying behavioural PLS, one significant

LV was identified for SCNs (P< 0.001) and it explained

64.91% of variance of the PLS model. A positive correl-

ation between the behavioural and the brain scores

(r¼ 0.287, P< 0.001) was once again noted (Fig. 4A).

All SCNs except right hippocampus (HIPP) and right

dorsolateral prefrontal cortex (DLPFC) showed stable

negative weightings (Fig. 4B). The corresponding neuro-

psychological tests showing significant correlations were

the choice reaction time task (r¼ 0.256, 95%

CI¼ 0.449–0.078) in the attention domain, the controlled

word association test-FAS in the language domain

(r¼ 0.188, 95% CI¼ 0.357–0.010) and RCF-delay

(r¼ 0.316, 95% CI¼ 0.468–0.139) in the memory do-

main (Fig. 4C). Highly similar results were found in a

control analysis without correcting for infarct volume

(Supplementary Materials Section 4 and Supplementary

Fig. 3). In the split-half validation, we found a single LV

(P< 0.001) accounting for between 41.15 and 60.10% of

the variance in the PLS model across 10 split-half sam-

ples (Supplementary Materials Section 6.2 and

Supplementary Table 4). The first iteration of split-half

validation analysis showed a correlation between behav-

ioural change and change in SCN brain scores of similar

magnitude to the discovery analysis (r¼ 0.435, sample 1

and r¼ 0.465, sample 2 (P< 0.001), Supplementary

Materials Section 6.2 and Supplementary Fig. 8).

Discussion
Cognitive decline is common after ischaemic stroke

(Hochstenbach et al., 1998; Levine et al., 2015) but has
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proved difficult to predict because the effects of stroke

are not limited to the primary neuroanatomical location

of brain damage. Functional networks based on

correlated brain activity, and structural networks based

on WM fibre connections have been extensively studied

in stroke (Bullmore and Sporns, 2009; Grefkes and Fink,

Figure 2 Seed regions of canonical brain networks and structural covariance networks in sub-acute and chronic stroke

patients. For six canonical brain networks, two seed regions (red dot, first column) were selected for investigating the co-varying patterns of

SCNs. The derived SCNs at the sub-acute timepoint (second column in orange) and for change from sub-acute to chronic stroke (third column

in green). Abbreviations: DAN ¼ dorsal attention network; DMN ¼ default mode network; ECN ¼ executive control network; l_DLPFC ¼ left

dorsolateral prefrontal cortex; l_FI ¼ left frontal insula; l_HIPP ¼ left hippocampus; l_IFG ¼ left inferior frontal gyrus; l_IPS ¼ left intra-parietal

sulcus; l_mPFC ¼ left medial prefrontal cortex; l_PCC ¼ left posterior cingulate cortex; l_TPole ¼ left temporal pole; LN ¼ language-related

network; MN ¼ memory network; r_DLPFC ¼ right dorsolateral prefrontal cortex; r_HIPP ¼ right hippocampus; r_FI ¼ right frontal insula;

r_IPS ¼ right intra-parietal sulcus; SCN ¼ structural covariance network; SN ¼ salience network.
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2011, 2014) and reflect widespread disruption, despite

focal and heterogenous damage caused by stroke. In con-

trast, there has been much less investigation of SCNs in

stroke, despite their potential to clarify patterns of dis-

tributed atrophy, or reflect recovery-related plasticity

(Spreng and Turner, 2013; Abela et al., 2015). We used

a novel, data-driven method, taking advantage of our

unique longitudinal data to examine covariance in the

rate of change in SCNs from sub-acute to chronic stroke.

Crucially, we sought to determine if these SCNs and their

longitudinal change had cognitive consequences by exam-

ining the relationship to cognitive performance and

cognitive decline across domains. We show that cognitive

decline after ischaemic stroke is associated with degener-

ation of canonical SCNs.

Structural covariance of the default mode, dorsal atten-

tion, executive control, salience, memory and language-

related networks was associated with cognitive perform-

ance in the attention, executive function, language, mem-

ory and visuospatial domains, showing an association

between topographical network organization in sub-acute

stroke and cognitive performance. Structural covariance

networks seeded from known network nodes replicated

the topographical pattern of known functionally specific

Figure 3 Lower baseline integrity of SCNs was associated with greater impairment in cognitive performance in sub-acute

stroke. (A) A positive correlation between behavioural and brain scores suggested more damaged SCNs were associated with worse attention,

executive function, language, memory and visuospatial function performance at 3-month post-stroke. (B) The bootstrap ratio (akin to a Z-score)

demonstrated the contributions of each SCN to the covariance between SCNs and neuropsychological tests. (C) Seventeen neuropsychological

tests showed extensive negative correlations with SCNs, particularly in the Digit Span Task, TMT-A and simple reaction time task within the

attention domain, the TMT-B within the executive function domain, the BNTand COWAT-animals within the language domain, and the RCF-copy

within the visuospatial domain. The error bars indicate 95% CI. Abbreviations: BNT ¼ Boston Naming Test; CDT ¼ clock-drawing test; COWAT

¼ Controlled Oral Word Association Test; DAN ¼ dorsal attention network; DMN ¼ default mode network; ECN ¼ executive control

network; HVLT ¼ Hopkins Verbal Learning Test; l_DLPFC ¼ left dorsolateral prefrontal cortex; l_FI ¼ left frontal insula; l_HIPP ¼ left

hippocampus; l_IFG ¼ left inferior frontal gyrus; l_IPS ¼ left intra-parietal sulcus; l_mPFC ¼ left medial prefrontal cortex; l_PCC ¼ left posterior

cingulate cortex; l_TPole ¼ left temporal pole; LN ¼ language-related network; MN ¼ memory network; r_DLPFC ¼ right dorsolateral

prefrontal cortex; r_HIPP ¼ right hippocampus; r_FI ¼ right frontal insula; r_IPS ¼ right intra-parietal sulcus; RCF ¼ Rey Complex Figure; SCN

¼ structural covariance network; SN ¼ salience network; TMT-A ¼ trail-making test (A); TMT-B ¼ trail-making test (B).
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networks. Using a global ‘brain score’ and ‘behavioural

score’ estimated from the PLS model, we found a signifi-

cant correlation showing cognitive impairment associated

with more damaged SCNs that we replicated in the inde-

pendent validation data set. Structural covariance of

major canonical networks is associated with cognitive

performance in sub-acute stroke. Specifically, more dam-

aged SCNs were related to deficits in attention, executive

function, language, memory and visuospatial function.

Attention was most implicated in this analysis with three

tests of attention co-varying with the SCN LV, compared

to a single test in other domains. This may reflect the fre-

quency of attentional impairment seen in sub-acute

stroke, or the overlap of attentional functions across

other cognitive domains.

As a further test of whether SCN integrity was associ-

ated with cognitive impairment after stroke, we examined

covariance in the rate of longitudinal change in major

brain networks and related this to changes in cognitive

performance between sub-acute and chronic stroke.

Covariance networks mirrored the SCNs derived at the

sub-acute timepoint, suggesting that GM volume changes

Figure 4 Faster degradation of SCNs was associated with greater longitudinal decline in performance of attention, language

and memory from 3-month to 1-year post-stroke. (A) A positive correlation between changes in behavioural scores and changes in brain

scores suggested that faster SCN degeneration was associated with greater longitudinal decline in neuropsychological tests from 3-month to 1-

year post-stroke. (B) The bootstrap ratio demonstrated the contributions of each SCN to the covariance between SCNs and neuropsychological

tests. (C) The significant correlation between each neuropsychological test and SCNs was shown in the choice reaction time task within the

attention domain, the COWAT-FAS within the language domain and the RCF-delay within the memory domain. The error bars indicate 95%

confidence interval. Abbreviations: BNT ¼ Boston Naming Test; CDT ¼ clock-drawing test; COWAT ¼ Controlled Oral Word Association

Test; DAN ¼ dorsal attention network; DMN ¼ default mode network; ECN ¼ executive control network; HVLT ¼ Hopkins Verbal Learning

Test; l_DLPFC ¼ left dorsolateral prefrontal cortex; l_FI ¼ left frontal insula; l_HIPP ¼ left hippocampus; l_IFG ¼ left inferior frontal gyrus; l_IPS

¼ left intra-parietal sulcus; l_mPFC ¼ left medial prefrontal cortex; l_PCC ¼ left posterior cingulate cortex; l_TPole ¼ left temporal pole; LN ¼
language-related network; MN ¼ memory network; r_DLPFC ¼ right dorsolateral prefrontal cortex; r_HIPP ¼ right hippocampus; r_FI ¼ right

frontal insula; r_IPS ¼ right intra-parietal sulcus; RCF ¼ Rey Complex Figure; SCN ¼ structural covariance network; SN ¼ salience network;

TMT-A ¼ trail-making test (A); TMT-B ¼ trail-making test (B).
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from the sub-acute to chronic phase were occurring with-

in established, domain-specific networks. The greatest

changes, in terms of extent of distributed spatial co-vary-

ing patterns, were in the default mode network and dor-

sal attention network.

Degeneration of the major SCNs was associated with cog-

nitive decline, specifically in the attention, memory and lan-

guage domain. These results suggested that faster

degradation of SCNs of bilateral dorsal attention, default

mode, language-related networks as well as left dorsolateral

prefrontal cortex, hippocampus and frontal insula was

related to greater decline in attention, language and memory

performance. These two findings are important, but should

not be surprising, given that attentional deficits are a con-

sistent feature of post-stroke cognitive impairment. Indeed,

the most frequently impaired domains after ischaemic stroke

are attention, memory and language (Gottesman and Hillis,

2010). Up to 70% of patients have impaired speed of proc-

essing and attention after stroke. (Hochstenbach et al.,

1998; Hyndman et al., 2008; Barker-Collo et al., 2009).

Similarly, memory problems are a frequent complaint after

stroke, with estimates around 23–55% of patients are

affected at 3-month post-stroke and 11–31% affected at

1 year (Snaphaan and de Leeuw, 2007; das Nair et al.,

2016). Our study suggests at least some of this attention,

memory and language impairment may be driven by wide-

spread degeneration of SCNs from the sub-acute to chronic

phase. Developmental SCN changes (Zielinski et al., 2010),

as well as in normal aging and neurological diseases (Evans,

2013; Spreng and Turner, 2013), have been well character-

ized. They have rarely associated with cognitive measures,

and not been well investigated after ischaemic stroke.

What might be the mechanism resulting in widespread

SCN changes, across all networks, after ischaemic stroke,

even after accounting for age-related degeneration? Stroke

may initiate or aggravate neurodegenerative processes

above that seen in healthy aging (Cumming and

Brodtmann, 2011). One plausible mechanism for wide-

spread structural changes as the result of focal ischaemic

stroke is secondary Wallerian degeneration due to discon-

nection between brain regions as a result of the stroke

(Duering et al., 2012). If a brain region, or multiple brain

regions in the case of complex networks, is disconnected

after stroke, there may be degeneration as a result of

under-utilization of the disconnected region that results in

volume loss (Duering et al., 2012). Alternatively, stroke

may initiate an ischaemic cascade that results in neurodege-

nerative processes, leading to widespread brain atrophy

(Cumming and Brodtmann, 2011; Xing et al., 2012; Shi

et al., 2019). Given the timescale of the atrophic changes

(3-month and 1-year post-stroke) and how widespread they

are in nature, a more plausible alternative is that stroke

occurred on a background of accelerated atrophy as the re-

sult of cerebrovascular burden (Knopman and Hooshmand,

2017; Werden et al., 2017). Future study should examine

the clinical characteristics that predict widespread SCN de-

generation associated with cognitive impairment.

The study should be interpreted in light of its limita-

tions. As it is often the case, the heterogeneity observed

within stroke cohorts precludes detailed examination of

different profiles of cognitive impairments as the sample

size of each sub-group was too small for adequate statis-

tical power. We controlled for infarct volume in the ana-

lysis, but did not take into account location, again the

heterogeneity of the stroke types and infarct locations,

make sub-group analyses under-powered. We conducted

an independent validation analysis and confirmed our

main findings, namely one significant LV accounting for

most of the variance in the seed PLS models. Fairly equal

contributions from all SCNs as well as significant correla-

tions between brain and behavioural scores were

observed in the sub-acute model, which is similar to the

findings in the discovery analysis. However, there were

some differences related to the SCN profiles and neuro-

psychological tests that correlated with the LV in the lon-

gitudinal model. This may be the result of the sample

size used in the validation sample (one-third of the dis-

covery sample). Alternatively, this might reflect a degree

of dynamic change in cognition at this timepoint.

Cognition is likely to stabilize as the time from the stroke

increases. Future study will examine the longitudinal

effects at even longer, likely even more stable timepoints

collected in this protocol (up to 5 years). As a group, the

median stroke severity (as measured by mRS and NIHSS)

was relatively mild. Although this may limit generalizabil-

ity of the finding to cohorts with more severe stroke, it

also raises the possibility that SCNs and cognition maybe

even more disrupted when stroke is not as mild as in this

cohort. Finally, we carefully chose the seeds to derive our

SCNs based on the existing literature. Emerging large

functional network atlases (Dosenbach et al., 2010;

Power et al., 2011; Yeo et al., 2011) could be employed

to facilitate seed definitions to produce SCNs (DuPre and

Spreng, 2017). Future study should aim to replicate our

findings to ensure it is robust to seed location.

Summary
Cognitive decline after ischaemic stroke has been difficult to

predict due to widespread effects of stroke on the brain. Using

data-driven multivariate methods to examine cognition and ca-

nonical brain networks across cognitive domains, we show that

structural covariance integrity of cognitive networks is associ-

ated with cognition at 3-month post-stroke and with longitu-

dinal cognitive decline in attention, memory and language from

sub-acute to chronic stroke. Structural covariance analyses of

brain networks reveal widespread network disruptions associ-

ated with cognitive decline.

Supplementary material
Supplementary material is available at Brain

Communications online.
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