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Simple Summary: Avian coccidiosis, an infectious disease caused by seven species of Eimeria
that can infect a bird’s digestive tract and significantly retard its growth, is a serious economic
disease for chickens. Many studies have demonstrated that host resistance to coccidiosis related
to genetic variations can be improved by selective breeding. The parameters for evaluation of
resistance to coccidiosis could be objective indicators, such as body weight gain and cecal lesion score,
or biochemical indices, such as immune factors or cytokines in the plasma or serum. The aim of the
study is to establish an optimal comprehensive evaluation model including a resistance index that
can be detected in live chickens (slaughter traits cannot be selected in breeding) based on principal
component analysis. The value of individual chickens calculated with the optimal evaluation model
is associated with the cecum lesion score; the larger the value, the stronger the resistance to coccidiosis.
This illustrated that the optimal model is effective in coccidiosis resistance selection.

Abstract: To establish a coccidiosis resistance evaluation model for chicken selection, the different
parameters were compared between infected and control Jinghai yellow chickens. Validation
parameters were selected for principal component analysis (PCA), and an optimal comprehensive
evaluation model was selected based on the significance of a correlation coefficient between coccidiosis
resistance parameters and principal component functions. The following six different parameters were
identified: body weight gain 3–5 days post infection and catalase (CAT), superoxide dismutase (SOD),
glutathione peroxidase (GSH-Px), malondialdehyde (MDA) and γ-interferon (IFN-γ) concentrations
on the eight day post inoculation. Six principal components and one accumulated contribution of up
to 80% of the evaluation models were established by PCA. The results showed that the first model
was significantly or highly significantly related to nine resistance parameters (p < 0.01 or p < 0.05),
especially to cecal lesions (p < 0.01). The remaining models were related to only 2–3 parameters
(p < 0.01 or p < 0.05) and not to cecal lesions (p > 0.05). The values calculated by the optimal model
(first model) were significantly negatively correlated with cecal lesion performance; the larger the
value, the more resistant to coccidiosis. The model fi1 = −0.636 zxi1 + 0.311 zxi2 + 0.801 zxi3 − 0.046
zxi4 − 0.076 zxi5 + 0.588 zxi6 might be the best comprehensive selection index model for chicken
coccidiosis resistance selection.
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1. Introduction

Avian coccidiosis is a type of infectious parasitosis. One of the most pathogenic species is
Eimeria tenella (E. tenella), which can invade chicken cecum epithelial cells [1]. The hazard of clinical
coccidiosis is highest in the early stage (weeks 1–3) [2]. The morbidity and mortality of chickens aged
~10–30 days and ~35–60 days could reach 80% [3]. A financial loss of approximately 3 billion dollars
in the poultry industry is caused by coccidiosis worldwide every year, more than 74% of which is
due to retarded growth and reduced feed conversion ratio in chickens and the rest is accounted for
by the increase in spending for treatments with drugs [4–6]. Anticoccidial drugs are mainly used to
control avian coccidiosis; however, chemotherapy can lead to the problem of coccidiosis resistance to
drugs, which can reduce the efficacy of the drugs. The extensive use of drugs will increase feeding
costs and lead to concerns about drug residues [7]. Although vaccination can be used to prevent
coccidiosis, some problems remain to be solved, such as effectiveness and safety [8]. Therefore, to solve
this problem, coccidiosis resistance in chickens should be studied to develop genetic selection methods
to cultivate coccidiosis-resistant breeds or strains for poultry production [9]. To date, the evaluation
method used in the selection of coccidiosis resistance in chickens has not been mentioned in the existing
literature. The parameters for evaluating resistance can be divided into two classes: objective indicators,
such as body weight gain and cecal lesion score, and biochemical indices, such as immune factors or
cytokines in the plasma or serum [10–13]. SOD, CAT, GSH-Px and MDA constitute an antioxidant
system in the body. CAT is an oxidoreductase capable of decomposing hydrogen peroxide, GSH-Px
can work with SOD to remove active oxidative free radicals, MDA can degrade lipid peroxidation
products [14,15]. Some studies have used antioxidant markers and gamma interferon as indicators of
resistance to coccidiosis [16,17]. Moreover, neither chicken selection by means of resistance parameters
nor a comprehensive selection index model has been reported. Many studies have demonstrated that
variations of resistance to coccidiosis exist in inbred and outbred chicken lines, and the results of these
studies have set a reliable foundation for coccidiosis-resistant chicken breeding [18–22]. In this study,
Jinghai yellow chickens were used as the experimental material to compare significant differences in the
indicators, and the indicators with significant differences were used for principal component analysis.
A comprehensive evaluation model was selected based on the significant correlation coefficients
between each of the coccidiosis resistance parameters, especially the objective indicators, and principal
component functions.

2. Materials and Methods

2.1. Animals

Sixty-six one-day-old Jinghai yellow chicks obtained from Jiangsu Jinghai Poultry Industry Group
Co., Ltd. (Nantong, China), were randomly divided into the following 2 groups: 44 chicks were in the
infection group, and the remaining chicks were in the control group.

2.2. Coccidiosis Challenge

The chicks were raised in specific pathogen-free housing until they were 30 days old,
then transferred into individual wire cages, given food and water ad libitum, and raised with
the same standard raising protocol. The chicks were kept in cages sterilized with a gasoline torch
flame without specific pathogens, the feed contains no coccidia or anticoccidials, and the diet meets
the chicks’ nutritional needs [23]. The infected group was orally inoculated with 2.5 × 104 sporulated
E. tenella oocysts (obtained from the Department of Parasitology at the College of Veterinary Medicine
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of Yangzhou University) at 30 days of age, and the control group was orally inoculated with the same
volume of saline. All protocols for animal sample collection were approved by the Animal Welfare
Committee of Yangzhou University (permit number: SYXK (Su) IACUC 2012-0029), and all efforts
were made to minimize the suffering of the chickens.

2.3. Detection of Resistance-Associated Parameters

Body weight gain: All chickens were weighed on days 0, 3, 5, and 8 post inoculation (PI). The body
weight gains during four periods, BWG0–3, BWG3–5, BWG5–8, and BWG0–8, were calculated from
days 0 to 3, 3 to 5, 5 to 8, and 0–8 PI, respectively. Cecal lesion score: The cecal lesion score was
assessed at day 8 PI by using the method previously described by Johnson and Reid [24]. To eliminate
bias, the lesion scores (ranging from 0 to 4, with 5 levels) for each individual were observed by only
one person [25]. Biochemical indices: Blood samples were collected from each bird in heparinized
tubes on day 8 PI and centrifuged at 1000× g for 15 min to recover the plasma. The plasma samples
were stored at −20 ◦C until further analysis. The biochemical indices detected in plasma were
nitric oxide (NO), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px),
malondialdehyde aldehyde (MDA), interleukin-2 (IL-2), interleukin-16 (IL-16), interleukin-17 (IL-17),
γ-interferon (IFN-γ), and β-carotene (β-C) concentrations. Biotinylated double-antibody sandwich
enzyme-linked immunosorbent assay (ELISA) was used to measure those biochemical indices (resistant
parameters) according to the ELISA kit instructions. ELISA kits were purchased from Shanghai Yueyan
Biotechnology Co., Ltd., China.

2.4. Statistical Analysis

2.4.1. Principal Component Analysis

Data were analyzed with the PASW Statistics 18.0 software (SPSS Inc., Armonk, NY, USA. 2009).
For resistance parameter selection, an independent two-sample t test was conducted to compare the
significance of the resistance parameters between the infection and control groups; only the significantly
different indicators between the two groups were selected as valid resistance parameters to perform
principal component analysis (PCA). For PCA, the valid selected original data were standardized by
using the formula: zxij= (x ij − xj)/sj and calculated by using the descriptive program of the PASW
software, where xj, Sj and zxij are the mean, standard deviation and standardized value, respectively,
of the jth valid resistance parameters; i is the ith individual (i = 1, 2, 3, . . . . . . , n); and j is the jth valid
resistance parameter (j = 1, 2, 3, . . . , p). The standardized values were subjected to PCA through
the Factor program in the PASW software to obtain the eigenvalues (λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0) of
the zxij correlation matrix, the contribution rate (λi/

∑p
i=1 λi) and the cumulative contribution rate

(
∑k

i=1 λi/
∑p

i=1 λi) of the eigenvalues. Generally, as the cumulative contribution rate is greater than
80–90% (as the case may be), the former k principal component (PCo) would be involved in the
comprehensive evaluation model for coccidiosis resistance. Supposing that fij (PCoj) represents the
expression function of the ith individual jth principal component, the linear combination for principal
components can be denoted as follows:

fi1= a11zxi1+a12zxi2 + · · ·+a1pzxip

fi2= a21zxi1+a22zxi2 + · · ·+a2pzxip

· · ·

fip= ap1zxi1+ap2zxi2 + · · ·+appzxip
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where (aij) is the eigenvector matrix. The comprehensive evaluation model (comprehensive PCo) can
be calculated by the following equation:

fi = (λ 1fi1+λ2fi2 + · · ·+λkfik/
k∑

j=1

λj

where fi represents the comprehensive evaluation value of the ith individual.

2.4.2. Correlation Analysis

The correlation between PCo (including comprehensive PCo) and the standardized resistance
parameters was calculated by Pearson’s correlation, and the correlation between PCo and the
standardized cecal lesion score was presented by Spearman analysis.

3. Results

3.1. The Selection of Valid Resistant Parameters

According to the comparison of the resistance traits (see Tables 1 and 2), six of 14 candidate
indictors (except for the cecal lesion score, which is a slaughter trait that cannot be selected in breeding)
were significantly different between the two groups: body weight gain in 3–5 days and concentrations
of CAT, SOD, GSH-Px, MDA, and IFN-γ in the plasma at 8 days PI after treatment with E. tenella.

Table 1. Initial body weight and body weight gain.

Traits (g) Control Group
(n = 22)

Infected Group
(n = 44) t-Value Probability

IBW * (0 dPI) 215.79 ± 6.02 215.42 ± 4.69
IBW (3 dPI) 242.91 ± 6.65 241.98 ± 5.45
IBW (5 dPI) 252.15 ± 6.89 240.96 ± 5.43
IBW (8 dPI) 266.88 ± 8.12 255.69 ± 5.65
BWG ** 0–3 27.13 ± 1.21 26.55 ± 0.75 0.155 0.877

BWG3–5 9.25 ± 0.44 −1.03 ± 0.10 3.062 0.004 **
BWG5–8 14.75 ± 2.33 14.72 ± 2.81 0.032 0.995
BWG0–8 51.00 ± 2.41 40.30 ± 3.07 1.970 0.054

Note: * IBW indicates initial body weight, ** BWG indicates body weight gain.

Table 2. Coccidiosis resistance trait differences between the infected and control groups on day 8 PI
(post inoculation).

Resistance Traits Control Group
(n = 22)

Infected Group
(n = 44) t-Value Probability

Nitric oxide (NO) (µmol/L) 55.49 ± 1.23 54.10 ± 0.80 0.853 0.398
catalase (CAT) (U/L) 54.26 ± 2.32 63.28 ± 1.66 2.744 0.008 **

superoxide dismutase (SOD) (U/L) 106.87 ± 3.29 120.60 ± 2.85 2.558 0.014 *
glutathione peroxidase (GSH-Px) (U/L) 396.31 ± 11.88 455.72 ± 11.01 2.902 0.005 **

malondialdehyde aldehyde (MDA) (mmol/L) 4.75 ± 0.20 5.86 ± 0.15 3.789 0.001 **
γ-interferon (IFN-γ) (ng/L) 38.88 ± 1.08 35.89 ± 0.69 2.100 0.041 *
β-carotene (β-C) (µmol/L) 60.56 ± 5.53 65.49 ± 4.04 0.620 0.538
interleukin-2 (IL-2) (ng/L) 35.31 ± 1.14 33.05 ± 0.87 1.335 0.188

interleukin-16 (IL-16) (ng/L) 47.88 ± 2.39 52.84 ± 1.19 1.842 0.071
interleukin-17 (IL-17) (ng/L) 40.78 ± 0.96 38.70 ± 1.22 0.960 0.341

Cecal lesion score 0.00 ± 0.00 1.98 ± 0.11 10.975 0.000 **

Note: * indicates a significant difference (p < 0.05), and ** indicates a highly significant < difference (p < 0.01). Values
are denoted as the mean ± standard errors.
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3.2. Contribution Rate and the Cumulative Contribution Rate of the Eigenvalues

The comprehensive evaluation model for coccidiosis resistance could be constructed based on
the six standardized indicators chosen from Tables 1 and 2. According to Table 3 (PCA results),
the cumulative rate contribution of the top four principal components is almost 80%. Therefore,
these four principal components can explain all the variation involved in the original variables and
could be used to establish the comprehensive coccidiosis resistance evaluation model.

Table 3. Principal component analysis (PCA) results based on the six coccidiosis resistance traits
(n = 44).

No. of PCo Eigenvalue (λi) Contribution Rate (%) Cumulative Rate (%)

PCo 1 1.497 24.956 24.956
PCo 2 1.194 19.905 44.861
PCo 3 1.123 18.714 63.575
PCo 4 0.963 16.058 79.633
PCo 5 0.740 12.335 91.968
PCo 6 0.482 8.032 100.000

Note: PCo indicates principal components.

3.3. Establishing the Coccidiosis Resistance Evaluation Model

The products of the eigenvectors (Table 4) and the corresponding standardized valid resistance
parameter values are summed to calculate the expression function of the principal component (Table 5).
The absolute value of the coefficients of the function could reflect the effect of each indicator on the
principal component, and the positive or negative sign could reflect the positive or negative correlations
of the indicators with the PCo.

Table 4. Eigenvectors of the 6 principal resistance trait components.

Standardized Traits
Eigenvectors of Principal Components

a1j a2j a3j a4j a5j a6j

BWG3–5 (zx1) −0.636 0.296 0.177 0.417 0.498 0.234
CAT (zx2) 0.311 −0.478 0.069 0.792 −0.004 −0.207
SOD (zx3) 0.801 0.277 −0.183 0.187 −0.005 0.461

GSH-Px (zx4) −0.046 −0.349 0.857 −0.082 −0.246 0.272
MDA (zx5) −0.076 0.779 0.250 0.290 −0.461 −0.166
IFN-γ (zx6) 0.588 0.269 0.505 −0.192 0.469 −0.266

Table 5. Expression functions of the principal component model.

No. of PCo Expression Functions of Each Principal Component Model

PCo 1 fi1= −0.636zxi1+0.311zxi2+0.801zxi3−0.046zxi4−0.076zxi5+0.588zxi6
PCo 2 fi2= 0.296zxi1−0.478zxi2+0.277zxi3−0.349zxi4+0.779zxi5+0.269zxi6
PCo 3 fi3= 0.177zxi1+0.069zxi2−0.183zxi3+0.857zxi4+0.250zxi5+0.505zxi6
PCo 4 fi4= 0.417zxi1+0.792zxi2+0.187zxi3−0.082zxi4+0.290zxi5−0.192zxi6
PCo 5 fi5 = 0.498zxi1+0.004zxi2−0.005zxi3−0.246zxi4−0.461zxi5+0.469zxi6
PCo 6 fi6 = 0.234zxi1 −0.207207zxi2+0.461zxi3+0.272zxi4−0.166zxi5−0.266zxi6

Comprehensive PCo fi = 0.001zxi1 +0.166zxi2+0.378zxi3+0.082zxi4+0.292zxi5+0.329zxi6

Because the cumulative contribution rate of 1–4 PCo is up to 80%,
the comprehensive PCo equation is as follows: fi= (λ 1fi1+λ2fi2 + · · ·+λ4fi4/

∑4
j=1 λj i.e.,

fi = (24.956fi1+19.905fi2+18.714fi3+16.058fi4)/79.633, then fi1~fi4 is plugged into the equation,
and the comprehensive principal component model is obtained (as shown in Table 5).
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3.4. The Selection of the Optimal PCo

According to Table 6, PCo1 had a highly significant correlation with the cecal lesion score,
the concentrations of NO, SOD, IFN-γ, and body weight gain in the 0–3, ~3–5, and ~5–8 day intervals
(p < 0.01) and a significant correlation with the concentration of CAT and body weight gain during the
~0–8 day interval (p < 0.05). PCo2 had a highly significant correlation with the concentrations of CAT
and MDA (p < 0.01) and a significant correlation with GSH-Px (p < 0.05). PCo3 had a highly significant
correlation with the concentrations of GSH-Px and IFN-γ (p < 0.01). PCo4 had a highly significant
correlation with the concentration of CAT and the body weight gain during the 3–5 day intervals
(p < 0.01). PCo5 had a highly significant correlation with the concentrations of MDA and IFN-γ and the
body weight gain in the 3–5 day interval (p < 0.01). PCo6 had a highly significant correlation with the
concentration of SOD (p < 0.01) and a significant correlation with the concentration of IFN-γ (p < 0.05).
However, the comprehensive PCo merely had a highly significant correlation with the concentration of
SOD (p < 0.01) and a significant correlation with the concentration of GSH-Px (p < 0.05). Figure 1 is the
scatter plot of the non-standardized cecal lesion score with PCo1. The standardized cecal lesion scores
are five discrete levels. Briefly, the two variables are negatively correlated.

Table 6. The correlation between principal components and standardizing the coccidiosis resistance
traits (n = 44).

Standardized Traits PCo 1 PCo 2 PCo 3 PCo 4 PCo 5 PCo 6 Comprehensive PCo

Cecal lesion score N −0.539 ** 0.075 0.036 0.036 −0.138 −0.029 −0.368
BWG0–3 0.510 ** −0.200 −0.024 −0.151 −0.291 −0.032 0.142
BWG3–5 −0.635 ** 0.237 0.191 0.415 ** 0.468 ** 0.205 −0.021
BWG5–8 0.426 ** −0.037 −0.176 −0.193 −0.115 −0.034 0.022
BWG0–8 0.340 * 0.096 −0.014 −0.048 0.156 0.072 0.097

NO 0.512 ** −0.011 0.302 −0.240 0.006 0.016 0.261
CAT 0.326 * −0.464 ** 0.012 0.756 ** −0.001 −0.185 −0.225
SOD 0.776 ** 0.171 −0.192 0.247 0.061 0.459 ** 0.552 **

GSH-Px −0.047 −0.371 * 0.784 ** −0.153 −0.281 0.267 0.332 *
MDA −0.076 0.779 ** 0.250 0.290 −0.461 ** −0.166 0.109
IFN-γ 0.521 ** 0.222 0.513 ** −0.196 0.445 ** −0.353 * −0.065
β-C −0.001 −0.089 0.013 0.163 0.263 −0.209 −0.223
IL-2 −0.065 0.049 −0.069 0.004 −0.069 −0.274 −0.302

IL-16 −0.107 −0.189 0.007 0.160 −0.153 0.074 −0.086
IL-17 0.218 −0.127 −0.039 −0.292 −0.154 −0.150 −0.011

Note: N indicates the Spearman correlation coefficients. * indicates a significant difference (p < 0.05), and ** indicates
a highly significant < difference (p < 0.01).

Figure 1. The scatter plot of non-standardized cecal lesion scores with PCo1.
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In conclusion, PCo1 could be the optimized evaluation model for coccidiosis resistance because it
had a highly significant correlation with most indicators, especially with the cecal lesion score and
body weight gain, which could directly reflect the level of infection among chickens.

4. Discussion

4.1. The Selection of Resistance Parameters

Various resistance parameters were used to estimate coccidiosis resistance in chickens, and the
ordinary resistance indicators were the anticoccidial index (ACI), reduction of lesion scores (RLS),
relative oocyst production (ROP), percentage of optimum anticoccidial activity (POAA) and fecal
scoring [11,12,26,27]. Body weight gain, fecal oocyst shedding, and the concentrations of NO, β-C and
IFN-γ were used by Zhu et al. [10], and the feed conversion rate was additionally used by Williams
and Catchpole [28]. The concentrations of SOD, MDA, CAT and GSH-Px were used by Li et al. [29] and
Georgieva et al. [14]. Zhang et al. [30] suggested that plasma NO, IFN-γ, SOD, MDA, and IL-17 can be
used as markers of resistance to E. tenella. Some of the indicators, such as body weight gain and the
plasma indicators, could be measured without slaughter, while others, such as the lesion scores, could
be obtained only by dissecting the chicks, as the slaughtered chicken has no breeding value. Some of
the indicators were objective evaluation indices, such as body weight; however, others, such as the
number of spores in the feces, had greater sampling error and could not be used in some small-scale
tests. In brief, the objective evaluation indices and some indicators with small sampling errors such as
body weight gain (BWG), concentrations of CAT, SOD, GSH-Px, MDA, and IFN-γ are more suitable to
be employed in breeding for resistance to disease, and the six indicators selected in this study have
these attributes.

4.2. The Advantage of PCA for the Selective Breeding of Coccidiosis Resistance

Zhu et al. [10] proposed an infection index (II) formula by calculating indicators related to
coccidian resistance. The II formula can be expressed as follows: II = Σ(C × (individual value of a
parameter − mean of the parameter in the group)/SD). An individual II is equal to the sum of the
difference between an individual parameter value and the mean of the group divided by the SD and
multiplied by a factor. The factor C is +1 and −1 for the parameters negatively and positively correlated
to BWG, respectively. The results showed that the infection index (II) may be a better parameter
for evaluating individual genetic resistance against coccidial infection. In this study, PCA was first
proposed by Pearson [31] to reduce data dimensionality. First, PCA is an effective data analysis tool to
identify and express patterns in data and then highlight the data similarities and differences. Second,
PCA can compress data by reducing the dimensionality of a dataset that consists of a large number
of interrelated variables without much loss of information [32]. The data compression is performed
by transforming the original data into a new set of variables, the new principal components, which
are uncorrelated with each other. Through the use of PCA, the dimensionality of data is reduced,
and multicollinearity is eliminated [33]. As a result, PCA is an effective method for minimizing the
limitations of previous studies, i.e., multicollinearity, subjectivity and high computation requirement.
To date, no papers have been published on the application of PCA to solve the coccidiosis resistance
selection problem. Therefore, PCA was employed in this study. Fourteen candidate indicators were
filtered according to a number of previous studies, and six of them were chosen as crucial indicators
applied in the PCA, which could improve the accuracy of the final model.

4.3. The Selection and Evaluation of the Optimized Model

The lesion score and the body weight gain could directly mirror the levels of infection among
chickens; however, the remaining six principal components had a significant correlation with several
indicators that were less correlated with cecal lesion score and body weight gain. Therefore, they could
not represent the coccidiosis resistance of chickens. Ye [34] suggested that the correlation between
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the principal component and the original variables should be considered to determine the number of
principal components. Fu [35] argued that the choice of optimizing principal components was neither
necessarily ranked by the proportion percent nor reached 85% of the accumulation. Therefore, it is
accurate and reasonable to choose PCo1 as the optimized model.

According to the expression functions of PCo1, BWG3–5 and the concentrations of CAT, SOD
and IFN-γ had higher coefficient in the equation, which suggested that the four indicators could also
indirectly reveal the level of coccidiosis resistance. According to Table 6, PCo1 had a highly significant
negative correlation with the cecal lesion score and a significant positive correlation with body weight
gain in <~0–8 days (p < 0.05), which illustrated that the larger the PCo1 value was, the better the
coccidiosis resistance exhibited by the chicken. It seemed paradoxical that PCo1 had a highly significant
negative correlation with body weight gain in ~3–5 days, this is because the swelling of the intestine
causes the chickens that are severely infected during this period to be heavier than the healthy ones,
as the E. tenella was generally the most severe period for the Jinghai yellow chicken ~3–5 days after
the infection.

The infected group individual index which was calculated according to PCo1 optimized model
illustrated that the individual with an index greater than 2.01 had almost no significant difference
from the control group individuals. As the selection index decreased, the cecum lesion increased.
However, if the index was less than −1.55, there would be a blood core in the cecum. The lower the
index, the larger the blood core is, and the more susceptible individuals are to coccidiosis.

In this study, the selected optimal evaluation model was established on the chickens raised on
wire and challenged with a specific infection dose, which are different from litter or floor, whether
the model is still applicable needs to be verified, additionally, as the optimal evaluation model was
established on 44 individuals, it needs to be tested in a larger population to determine if the model is
to be considered useful in future trials.

5. Conclusions

There were six valid resistant parameters that had significant differences between the infected
and control groups among the selected 14 potential parameters: body weight gain on the 3rd–5th day
PI and the CAT, GSH-Px, MDA, SOD and IFN-γ concentrations on day 8 PI.

The accumulated contribution of six principal components reached 80%, and comprehensive
resistance evaluation models were established by PCA. The optimized model of fi1 = −0.636 zxi1 +

0.311 zxi2 + 0.801 zxi3 − 0.046 zxi4 − 0.076 zxi5 + 0.588 zxi6 might be the best coccidiosis resistance
comprehensive selection index model and could be used for chicken breeding for resistance selection.

The largest and smallest four values calculated from the optimized model were in accordance
with the cecal lesion performance.
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