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Abstract

Motivation: Chromosome conformation capture technologies (Hi-C) revealed extensive DNA folding into discrete
3D domains, such as Topologically Associating Domains and chromatin loops. The correct binding of CTCF and
cohesin at domain boundaries is integral in maintaining the proper structure and function of these 3D domains. 3D
domains have been mapped at the resolutions of 1 kilobase and above. However, it has not been possible to define
their boundaries at the resolution of boundary-forming proteins.

Results: To predict domain boundaries at base-pair resolution, we developed preciseTAD, an optimized transfer
learning framework trained on high-resolution genome annotation data. In contrast to current TAD/loop callers,
preciseTAD-predicted boundaries are strongly supported by experimental evidence. Importantly, this approach can
accurately delineate boundaries in cells without Hi-C data. preciseTAD provides a powerful framework to improve
our understanding of how genomic regulators are shaping the 3D structure of the genome at base-pair resolution.

Availability and implementation: preciseTAD is an R/Bioconductor package available at https://bioconductor.org/
packages/preciseTAD/.

Contact: mdozmorov@vcu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The advent of chromosome conformation capture (3C) sequencing
technologies, and its successor Hi-C, have revealed a hierarchy of
the three-dimensional (3D) structure of the human genome such as
chromatin loops (Franke et al., 2016; Rao et al., 2014),
Topologically Associating Domains (TADs) (Dixon et al., 2012;
Nora et al., 2012; Sexton et al., 2012) and A/B compartments
(Lieberman-Aiden et al., 2009; Rao et al., 2014), reviewed in
Beagan and Phillips-Cremins (2020) and Chang et al. (2020). At the
kilobase scale, chromatin loops (corner-dot structures on Hi-C chro-
matin interaction maps) connect gene promoters with distal
enhancers and regulate gene expression. At the megabase scale,
TADs represent regions on the linear genome that are highly self-
interacting. Perhaps the most prominent feature of TADs is that
they are demarcated by boundaries constraining enhancer–promoter
interactions (Sun et al., 2019), although these constraints can be
flexible (Freire-Pritchett et al., 2017). Perturbation of boundaries
have been reported to promote human cancers (Hnisz et al., 2016;
Taberlay et al., 2016), neurological disorders (Sun et al., 2018) and
pathologies of limb development (Franke et al., 2016; Lupianez

et al., 2016). Identifying the precise location of boundaries remains
a top priority to fully understand the functionality of the human
genome.

Several methods have been proposed to identify TAD boundaries
[reviewed in Zufferey et al. (2018)], and chromatin loops (Ay et al.,
2014; Rao et al., 2014; Salameh et al., 2019). They are primarily
based on identifying characteristic patterns in Hi-C contact matri-
ces, such as dense inter-TAD contacts, sparse intra-TAD contacts,
among other features (Beagan and Phillips-Cremins, 2020; Dixon
et al., 2012). Consequently, they are limited by Hi-C data reso-
lution. Resolution refers to the size of genomic regions (bins) used to
segment the linear genome and create Hi-C contact matrices. Lower
resolution corresponding to larger bin sizes leads to increased uncer-
tainty in domain boundary location.

TAD and loop boundaries are not mutually exclusive. Rao et al.
demonstrated that boundaries of TADs, referred to as ‘contact
domains’, are enriched in chromatin loops (Rao et al., 2014).
Numerous observations demonstrated the presence of hierarchically
nested chromatin domains within TADs (Phillips-Cremins et al.,
2013; Rao et al., 2014). Domain boundaries are thought to form by
the ‘loop extrusion’ mechanism. During extrusion, the molecular
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motors (condensin and cohesin) track along the DNA sequence
‘extruding’ the intervening DNA in an ATP-dependent manner and
pausing at the convergent CTCF motifs (Alipour and Marko, 2012;
Davidson et al., 2019; Fudenberg et al., 2016; Goloborodko et al.,
2016; Hansen et al., 2018; Mirny et al., 2019; Sanborn et al., 2015).
Consequently, boundaries are expected to be enriched in CTCF and
RAD21/SMC3, members of the cohesin complex (Dixon et al.,
2012; Phillips-Cremins et al., 2013; Rao et al., 2014; Tang et al.,
2015; Zuin et al., 2014). More recently, ZNF143 has been identified
as a cofactor of CTCF–Cohesin complex (Bailey et al., 2015; Wen
et al., 2018). Furthermore, distinct patterns of histone modifications
have also been shown to be present at boundaries (Dixon et al.,
2012; Lieberman-Aiden et al., 2009).

In contrast to low-resolution Hi-C matrices, functional/regula-
tory genomic annotations [histone modifications, DNAse I hyper-
sensitive sites, DNA methylation and transcription factor binding
sites (TFBSs)] have been profiled at a relatively high resolution (10–
300 bp) (Dozmorov, 2017; ENCODE Project Consortium, 2012).
Genomic annotations have been used to predict functional chroma-
tin contacts [e.g. HiC-Reg (Zhang et al., 2019)], boundaries of chro-
matin domains [e.g. nTDP (Sefer and Kingsford, 2015), Lollipop
(Kai et al., 2018), 3DEpiLoop (Al Bkhetan and Plewczynski, 2018),
TAD-Lactuca (Gan et al., 2019)], with 48 methods recently
reviewed by Tao et al. (2021) [see also Belokopytova and Fishman
2020 for a broader overview (Belokopytova and Fishman, 2020)].
Yet, these methods operate at the resolution of Hi-C data. Because
increasing resolution of Hi-C data requires a quadratic increase in
sequencing depth (Schmitt et al., 2016) and the associated costs,
most currently available Hi-C matrices have relatively low reso-
lution, ranging from 1 to 100 kb. Furthermore, conventional Hi-C
relies on a 0.1–10 kb size fragmentation by a restriction enzyme, but
the existence of self-ligated products and undigested fragments with
sizes 1–10 kb prohibits analysis at higher resolution (Jin et al., 2013;
Rao et al., 2014). The association of domain boundaries with gen-
omic annotations suggests these annotations may inform the more
precise location of domain boundaries.

We present preciseTAD, an optimally tuned transfer learning
framework for precise domain boundary detection using genomic
annotation data. preciseTAD learns the associations between
genomic annotations and boundaries detected from low-resolution
Hi-C matrices and transfers the learned associations at base-level
resolution (predicts the probability of each base being a boundary).
This approach circumvents resolution restrictions of Hi-C matrices
and allows for the precise detection of domain boundaries. We dem-
onstrate that preciseTAD-predicted boundaries are strongly enriched
in known molecular drivers of 3D chromatin including CTCF,
RAD21, SMC3 and ZNF143. Further, we show that the associa-
tions learned in one cell line can be used to predict boundaries in
other cell lines using cell-specific genomic annotations only. As
such, preciseTAD allows for predicting domain boundaries in cells
without Hi-C data. We provide domain boundary predictions for 60
cell lines, demonstrating that imputing missing cell-specific genomic
annotations with Avocado (Schreiber et al., 2020) is a viable ap-
proach to recover domain boundaries. The preciseTAD R package
and the pre-trained models (preciseTADhub ExperimentHub pack-
age) are freely available on Bioconductor.

2 Materials and methods

2.1 Data sources
TAD and loop boundaries called by Arrowhead (Durand et al.,

2016) and Peakachu (Salameh et al., 2019) tools were used as train-
ing and testing data. The autosomal genomic coordinates in the
GRCh37/hg19 human genome assembly were considered.
Arrowhead-defined TAD boundaries were called from Hi-C data for
the GM12878 and K562 cell lines (MAPQ>0, 5, 10, 25, 50 and
100 kb resolutions) using the Arrowhead tool from Juicer (Durand
et al., 2016) with default parameters. Peakachu chromatin loop
boundaries for GM12878 and K562 cell lines were downloaded
from the Yue lab website. Experimentally obtained (ChIA-PET)

cohesin-mediated chromatin loops, which we refer to as Grubert
data, were obtained from the Supplementary Table S4 of Grubert
et al. (2020) (Supplementary Table S1). Unique boundaries were
considered as the midpoints within the coordinates of each chroma-
tin loop anchor. Chromosome 9 was excluded due to the inability to
call Arrowhead domains at 5 and 10 kb resolutions for the K562 cell
line (high sparsity), unless specified otherwise. Cell-line-specific gen-
omic annotations [BroadHMM chromatin states (BroadHMM), his-
tone modifications (HM) and transcription factor binding sites
(TFBS)] were obtained from the UCSC Genome Browser Database
(Supplementary Table S2).

2.2 Shifted-binning for binary classification
In Hi-C, each chromosome is binned into non-overlapping regions

of length r, typically, 5 kb and above. The r parameter defines the
resolution of Hi-C data. Here, we designed a strategy called shifted
binning that partitions the genome into regions of the same length r,
but with middle points corresponding to boundaries defined by the
original binning. To create shifted binning, the first shifted bin was
set to start at half of the resolution r and continued in intervals of
length r until the end of the chromosome (mod rþ r/2). The shifted
bins, referred hereafter as bins for simplicity, were then defined as
boundary-containing regions (Y¼1) if they contained a TAD (or
loop) boundary, and non-boundary regions (Y¼0) otherwise, thus
establishing the binary response vector (Y) used for classification
(Supplementary Fig. S1A).

2.3 Feature engineering
Cell line-specific genomic annotations were used to build the pre-
dictor space. Bins were annotated by one of either the average signal
strength of the corresponding annotation (Peak Signal Strength), the
number of overlaps with an annotation [Overlap Count (OC)], the
percent of overlap between the bin and the total width of genomic
annotation regions overlapping it [Overlap Percent (OP)], or the
distance in bases from the center of the bin to the center of the near-
est genomic annotation region (Distance) (Supplementary Fig. S1B).
A (log2þ1)-transformation of distance was used to account for the
skewness of the distance distributions (Supplementary Fig. S2).
Models built using a Peak Signal Strength predictor space were only
composed of histone modifications and transcription factor binding
sites as BroadHMM chromatin states lack signal values.

2.4 Addressing class imbalance
To assess the impact of class imbalance (CI), defined as the propor-
tion of boundary regions to non-boundary regions, we evaluated
three resampling techniques: Random Over-Sampling (ROS),
Random Under-Sampling (RUS) and Synthetic Minority Over-
Sampling Technique (SMOTE). For ROS, the minority class was
sampled with replacement to obtain the same number of data points
in the majority class. For RUS, the majority class was sampled with-
out replacement to obtain the same number of data points in the mi-
nority class. For SMOTE, under-sampling was performed without
replacement from the majority class, while over-sampling was per-
formed by creating new synthetic observations using the k¼5 mi-
nority class nearest neighbors (Chawla et al., 2002) (implemented in
the DMwR v.0.4.1 R package). We restricted the SMOTE algorithm
to 100% over-sampling and 200% under-sampling to create perfect-
ly balanced classes.

2.5 Establishing optimal data-level characteristics for

boundary region prediction
Random forest (RF) classification models [the caret v.6.0 R package
(Kuhn, 2012)] were compared between combinations of data resolu-
tions, feature engineering procedures and resampling techniques.
Following recommendations to evaluate the model on unseen data
(Schreiber et al., 2019), a holdout chromosome technique was used
for estimating model performance. The ith holdout chromosome
was identified and a data matrix, AN�(pþ1), was constructed by com-
bining the binned genome from the remaining chromosomes (1,2,
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� � �, i � 1, iþ1,� � �,21,22), where N=[n1 n2� � �n21 n22]’ and nk is the
length of chromosome k after being binned into non-overlapping
regions of resolution r, such that k 6¼ i. The number of annotations,
p, and the response vector, Y, defined the column-wise dimension of
the matrix A. Re-sampling was then performed on A, and a RF clas-
sifier was trained using 3-fold cross-validation to tune for the num-
ber of annotations to consider at each node (mtry). The number of
trees (ntree) that were aggregated for each RF model was set to 500.
The minimum number of observations per root node (nodesize) was
set to 0.1% of the rows in the data. The binned data for the holdout
chromosome i was reserved for testing. The response vector associ-
ated with the testing data (Ytest) was built using Grubert-defined
chromatin loops as a ground truth when validating the models.
Models were then evaluated using Balanced Accuracy (BA), defined
as the average of sensitivity and specificity:

BA ¼ 1

2
ðsensitivityþ specificityÞ ¼ 1

2

TP

TPþ FN
þ TN

TNþ FP

� �

where values of the confusion matrix, true negatives (TP), false posi-
tives (FP), true negatives (TN) and false negatives (FN) were related
to genomic bins that contained a Grubert-defined boundary in the
test data. That is, TP refers to the number of bins correctly identified
as containing a boundary (true positives), FP refers to the number of
bins incorrectly identified as containing a boundary (false positives),
TN refers to the number of bins correctly identified as not contain-
ing a boundary (true negatives) and FN refers to the number of bins
incorrectly identified as not containing a boundary (false negatives).
Each of these quantities is obtained from the confusion matrix cre-
ated by validating the model on the test data. The process was
repeated for each ith holdout chromosome, and performances were
aggregated using the mean and standard deviation.

2.6 Feature selection and predictive importance
Many genomic annotations, notably architectural proteins, tend to
exhibit an extensive pattern of colocalization (correlation). To suit-
ably reduce the predictor space and improve computational effi-
ciency, while maintaining optimal performance, we utilized
recursive feature elimination (RFE). We estimated the near-optimal
number of necessary features, ranging from two to the maximum
number of features incremented by the power of two. We then
aggregated the predictive importance of the union of the optimal set
of features across holdout chromosomes using the mean decrease in
node impurity among permuted features in out-of-bag samples to
determine the most common and top-ranked annotations for pre-
dicting boundary regions.

2.7 Evaluating performance across cell lines
We used the same holdout chromosome strategy to evaluate a model
trained in one cell line on unseen data from another cell line
(Schreiber et al., 2019). Given two cell lines, GM12878 and K562,
we first evaluated the performance of cell line-specific models. That
is, models trained on cell line-specific data from n - 1 chromosomes
were evaluated on the ith holdout chromosome data from the same
cell line. Second, we evaluated models trained on cell line-specific
data from n - 1 chromosomes using the ith holdout chromosome
data from a different cell line. That is, models trained using K562
cell line-specific data were evaluated on unseen chromosome data
from the GM12878 cell line. This process was repeated for each
holdout chromosome. To evaluate performance, we constructed re-
ceiver operating characteristic (ROC) curves composed of the aver-
age sensitivities and specificities at different cutoffs, across each
holdout chromosome and reported the corresponding average area
under the curve (AUC). As before, the response vector for the test
data was derived from cell line-specific Grubert boundaries.

2.8 Boundary prediction at the base-level resolution

using preciseTAD
To investigate whether we could alleviate the limitations of conven-
tional domain calling tools operating at the Hi-C data resolution,

we developed preciseTAD. This algorithm leverages an optimized
random forest model predicting the probability of each base being a
boundary followed by clustering of bases with high boundary proba-
bilities (Supplementary Fig. S3). A random forest model was trained
using boundaries at the Hi-C data. resolution on the optimal com-
bination of predictor type (distance to transcription factor binding
sites), resampling technique (random undersampling) and top-
ranked annotations (p 2 fCTCF, RAD21, SMC3, ZNF143g). To
precisely identify boundary locations, we first constructed a base-
level resolution predictor space for the chromosome i, An�p, where
n is the length of chromosome i in bases and p is the optimal number
of annotations. We then applied the pre-trained model on the base-
level predictor space to extract the probability vector, pn, denoting
each base’s probability of being a boundary. Bases with the prob-
ability pn � t (the default boundary probability threshold t¼1) were
clustered with the DBSCAN algorithm (v.1.1-5) (Hahsler et al.,
2019) into preciseTAD boundary regions (PTBR). To precisely iden-
tify the location of domain boundary, preciseTAD implements parti-
tioning around medoids (PAM) on the distance matrix, Dk among
bases with pn � t within each PTBR. The corresponding medoids
were defined as preciseTAD boundary points (PTBPs). Intuitively, a
PTBP corresponds to the base with the highest density of CTCF,
RAD21, SMC3 and ZNF143.

The DBSCAN algorithm has two parameters, MinPts and eps
(�). The MinPts parameter, corresponding to the minimum size of a
PTBR, was set to 100, an approximate size of ChIP-seq peaks. The
maximum size of a PTBR was unconstrained and can be larger than
resolution of the original Hi-C data due to the high density of CTCF
and other proteins in certain genomic locations. To decide on the
optimal value of t and �, we considered the normalized enrichment
(NE) of flanked boundaries. NE was calculated as the average num-
ber of overlaps between genomic annotations (CTCF, RAD21,
SMC3 and ZNF143) and flanked boundaries, divided by the total
number of boundaries. The rationale here is to find a combination
of parameters producing the largest number of overlaps between
predicted boundaries and genomic annotations. We evaluated NE
for combinations of t¼f0.975,0.99,1.0g and �¼f1000, 5000,
10 000, 15 000, 20 000, 25 000g. The heuristic of � is that density-
reachable bases with genomic distances less than � should occupy
the same designated cluster. The default combination was set to
t¼1.0 and �¼10 000 based on our tests (Supplementary Fig. S4).

2.9 Evaluating called and predicted boundary precision
We assessed the biological significance of our predicted boundaries
by their association with the signal of CTCF, RAD21, SMC3 and
ZNF143 using deepTools (version 2.0) (Ramirez et al., 2016)
(computeMatrix, plotProfile tools). In addition, we compared the
median log2 genomic distances between TAD boundaries and the
same top predictive ChIP-seq annotations using Wilcoxon Rank-
Sum tests. Furthermore, we compared the overlap between predicted
and called boundaries in GM12878 and K562 cell lines. Boundaries
were first flanked by resolution, r, and overlaps were visualized
using Venn diagrams from the Vennerable R package (version
3.1.0). Overlaps were further quantified using the Jaccard index
defined as

JðA;BÞ ¼
A\B

A[B

where A and B represent genomic regions created by flanked boun-
daries. All statistical analyses were performed in R (version 4.0.1).
The significance level was set to 0.05 for all statistical tests.

2.10 Predicting boundaries across cell lines
We implemented a strategy to predict domain boundaries across cell
lines. To do so, we trained preciseTAD models on boundaries and
genomic annotation data from one cell line and used it to predict
boundaries using genomic annotation data from another cell line.
Results were compared by assessing the overlap between flanked
same-cell-line and cross-cell-line predicted boundaries using Venn
diagrams, Jaccard indices and signal distribution plots.
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To predict boundaries in 60 cell lines, we first compiled a set of
cell line-specific genomic annotations (CTCF, RAD21, SMC3). For
cells lacking some or all genomic annotations, we used Avocado
v.0.3.6 (Schreiber et al., 2020) to impute missing annotations.
Avocado imputes signal profiles as bigWig files which we converted
to bedGraph and called peaks using UCSC’s bigwigtobedgraph and
MACS2 v.2.2.7.1 with default settings. We note that Avocado can
impute data for only three transcription factors, CTCF, RAD21,
SMC3. Therefore, we retrained preciseTAD models using these
three transcription factors in GM12878 cell line and Arrowhead/
Peakachu boundaries. For Avocado predictions, the following cell
line names were manually matched: H1¼H1-hESC, H7¼H7-
hESC. Predictions were made using the hg38 genome assembly;
therefore, all data were either downloaded as hg38 or lifted over to
hg38 genome assembly.

2.11 Data availability
All datasets used in this work are summarized in Supplementary
Tables S1, S2 and S6. The predicted domain boundary regions and
points for 60 cell lines can be downloaded from https://dozmorov
lab.github.io/preciseTAD.

2.12 Code availability
preciseTAD is available on Bioconductor https://bioconductor.org/
packages/preciseTAD/ and GitHub https://github.com/dozmorov
lab/preciseTAD/ under the MIT license.

3 Results

3.1 Precisetad overview
preciseTAD implements the idea of transfer learning across genomic
data resolutions. It models the association between chromatin do-
main boundaries and genomic annotations using low-resolution (5–
100 kb) Hi-C genomic regions and applies this model at base-level
resolution to predict the probability of each base being a boundary
(Fig. 1). Our method utilizes the random forest (RF) algorithm
trained on chromatin state (BroadHMM), histone modification
(HM) and transcription factor binding site (TFBS) annotation data.
Our training/testing framework was used to determine the optimal
set of data-level characteristics including resolution (bin size), fea-
ture engineering and resampling (Supplementary Fig. S5). We found

that spatial associations (linear distance) between boundaries and
genomic annotations perform best, transcription factor binding sites
outperform other annotations, and a simple random undersampling
technique addresses the negative effect of class imbalance.
preciseTAD uses density-based clustering (DBSCAN) and partition-
ing around medoids (PAM) to detect annotation-guided boundary
regions and summit points with the highest boundary probability.
These improved domain boundary locations can provide insight into
the association between genomic regulators and the 3D genome
organization.

3.2 Developing a ML framework for optimal boundary

prediction
We developed a machine learning (ML) framework for determining
the optimal set of data level characteristics to predict boundary
regions of Topologically Associating Domains (TADs) and chroma-
tin loops, collectively referred to as domain boundaries. Similar to
other boundary prediction methods (Al Bkhetan and Plewczynski,
2018; Kai et al., 2018; Salameh et al., 2019; Wang et al., 2021;
Zhang et al., 2019), we chose the random forest (RF) algorithm as
our binary classification tool. The reason for it is twofold: (i) to de-
vise a tunable prediction rule in a supervised learning framework
that is both robust to overfitting and able to handle multiple corre-
lated predictors, and (ii) to allow for an interpretable ranking of pre-
dictors (Boulesteix et al., 2012). Furthermore, previous reports
demonstrated robustness of RF to overfitting and superior perform-
ance over other machine learning classifiers (Al Bkhetan and
Plewczynski, 2018; Gan et al., 2019; Wang et al., 2021).

As an example of TAD boundaries, we derived cell line-specific
boundaries at 5–100kb resolutions using Arrowhead (Rao et al., 2014).
For chromatin loops, we used loops derived by Peakachu (Salameh
et al., 2019) (Supplementary Table S1). We chose GM12878 (lympho-
blastoid) and K562 (chronic myelogenous leukemia) as cell lines with
the most rich and comparable sets of genomic annotations. The choice
of Peakachu loops was motivated by their good overlap with HiCCUP
(Rao et al., 2014) and Fit-Hi-C (Ay et al., 2014) loops and better enrich-
ment in known boundary factors. To ensure the cell line-specific predic-
tions corresponded to experimental domain boundaries, we used
cohesin-bound chromatin loop data from ENCODE phase 3 (Grubert
et al., 2020), referred hereafter as Grubert boundaries (Supplementary
Table S1). We found that boundaries Arrowhead/Peakachu boundaries
showed markedly little enrichment in binding of CTCF and other archi-
tectural proteins as compared with Grubert boundaries (Supplementary
Fig. S6A and C), further motivating the need for more precise boundary
detection.

The total number of called TADs, their unique boundaries, and
the number of genomic bins expectedly decreased with the decreased
resolution of Hi-C data (Table 1, Supplementary Table S2). The
number of non-boundary regions highly outnumbered boundary
regions. Such a disproportional presence of examples in one class is
known as a ‘class imbalance’ problem that negatively affects predict-
ive modeling (Wei and Dunbrack Jr, 2013). To address class imbal-
ance, we evaluated the effect of three resampling techniques.
Random over-sampling (ROS) was defined as sampling with re-
placement from the minority class (boundary regions). Random
under-sampling (RUS) was defined as sampling with replacement
from the majority class (non-boundary regions). Finally, we tested
Synthetic minority over-sampling technique (SMOTE), which is a
combination of both random over- and under-sampling to create
balanced classes (Chawla et al., 2002) (see Section 2).

Our models were trained on cell line-specific functional genomic
annotation data from ENCODE (ENCODE Project Consortium,
2012). A total of 77 cell line-specific genomic annotations were used
to build the predictor space. These included histone modification
(HM) data previously shown to be useful for boundary predictions
(Al Bkhetan and Plewczynski, 2018; Gan et al., 2019; Sefer and
Kingsford, 2015), Broad ChromHMM chromatin segmentation
data that captures regions with similar epigenetic activity patterns
(BroadHMM), and transcription factor binding sites (TFBS,
Supplementary Table S3). Boundary regions were defined as

Fig. 1. Overview of preciseTAD. (A) The framework of preciseTAD includes

Random Forest models learning the optimal rules of associations between low-reso-

lution boundaries and genomic annotations, and predicting the probability of each

base being a boundary. First, feature engineering steps are applied to capture vari-

ous rules of boundary-annotation associations. Second, the models are trained on

different data resolution, addressing class imbalance. Third, the most predictive fea-

tures shared across chromosomes and cell lines are selected for the final model.

Fourth, a base-level predictor matrix is built, in which each base is annotated with

the most optimal features and association rules. Fifth, the probability of each base

being a boundary is predicted with the optimal model trained on low-resolution Hi-

C data. (B) The final step includes clustering bases with high boundary probability

into preciseTAD boundary regions (PTBRs) using DBSCAN and identifying the

most likely boundary points (PTBPs) using PAM. The output of preciseTAD

includes genomic coordinates of PTBRs, PTBPs and their summary statistics
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genomic bins containing a called boundary (Y¼1), while nonboun-
dary regions were defined as bins that did not contain a called
boundary (Y¼0, Supplementary Fig. S1, see Section 2).

Four feature engineering procedures were developed to quantify the
association between genomic annotations and bins. These included sig-
nal strength association (Signal), direct (OC), proportional (OP) and
spatial (log2þ1 Distance) relationships (Supplementary Fig. S5, see
Section 2). In total, we considered combinations of data from two cell
lines L ¼ fGM12878, K562g, five resolutions R ¼ f5kb, 10 kb, 25kb,
50 kb, 100kbg, four types of predictor spaces P ¼ fSignal, OC, OP,
Distanceg and three re-sampling techniques S ¼ fNone, RUS, ROS,
SMOTEg. Once the model inputs were established, a random forest
classifier was trained on n-1 autosomal chromosomes, while reserving
the ith chromosome for testing. Threefold cross-validation was used to
tune the mtry hyperparameter, while ntree and nodesize were fixed at
500 and at 0.1% of the rows in the training data, respectively. Models
were validated on the testing data using cell line-specific Grubert-
defined boundaries as Ytest. Model performance was evaluated by
aggregating the mean balanced accuracy (BA) across each holdout
chromosome, with additional performance metrics (accuracy, AUROC,
AUPRC) shown in Supplementary Table S4. These strategies allowed us
to select the best-performing model characteristics (Supplementary Fig.
S5, see Section 2).

3.3 Random under-sampling, distance-based predictors

and high-resolution Hi-C data provide optimal perform-

ance for boundary prediction
When using Arrowhead data with class imbalance, the models
exhibited low balanced accuracies, with minimal variability among
different resolutions (Fig. 2). Similarly, poor performances were
found when using ROS. However, RUS and SMOTE resampling led
to a drastic improvement in performance, especially at higher resolu-
tions. We found that RUS marginally outperformed SMOTE under
most conditions and used it for the subsequent analyses unless noted
otherwise. In addition, we found that distance-type predictor space
yielded substantially higher balanced accuracy than the peak signal
strength, overlap count and overlap percent predictor types.

As with class balancing techniques, this improvement was less evi-
dent at lower resolutions, with results consistent for K562
(Supplementary Fig. S7A). Furthermore, 5 kb resolution genomic bins
led to the optimal prediction for TAD boundary regions on both cell
lines. These observations were replicated when Peakachu-defined loop
boundary regions were used (Supplementary Fig. S7B and C). Our
results indicate that random under-sampling, distance-type predictors
and high-resolution Hi-C data provide the optimal set of data character-
istics for both TAD and loop boundary prediction.

3.4 Transcription factor binding sites outperform

histone- and chromatin state-specific models
We hypothesized that the class of genomic annotation may also affect
predictive performance. Using the established optimal settings (RUS,
Distance, 5 kb/10 kb resolution), we used histone modifications
(HM), chromatin states (BroadHMM) and transcription factor

binding sites (TFBS) to build the predictor space. Despite previous suc-
cess in using histone modifications for TAD boundary predictions (Al
Bkhetan and Plewczynski, 2018; Gan et al., 2019; Zhang et al.,
2019), their performance in our settings was least optimal.
BroadHMM segmentations also performed less optimally, in agree-
ment with previous observations (Sefer and Kingsford, 2015). We
found that TFBSs outperformed other annotation-specific models,
with results consistent for loop boundaries, on both cell lines
(Fig. 3A; Supplementary Fig. S8A), and the use of all genomic annota-
tions did not significantly improved model performance. These results
suggest that transcription factors are the primary drivers of
Arrowhead/Peakachu-defined boundaries in both GM12878 and
K562 cell lines.

3.5 Feature importance confirmed the biological role of

CTCF, RAD21, SMC3 and ZNF143 for boundary

formation
We sought to further optimize our boundary region prediction mod-
els. We implemented recursive feature elimination to avoid overfit-
ting and selected only the most influential features across all
chromosomes. We were able to obtain near-optimal performance
using approximately eight TFBS (Fig. 3B; Supplementary Fig. S8B).
However, given that we trained our models on chromosome-specific
data, the most significant annotations varied for each chromosome.
To determine transcription factors most important for genome-wide
boundary prediction, we clustered the predictive importance (mean
decrease in accuracy) of the top eight significant TFs across

Table 1. Domain boundary data and class imbalance summaries across resolutions for Arrowhead, Peakachu and Grubert data in GM12878

cell line

Tool Resolution/bin size Total number of

called TADs/loops

Total number of

unique domain

boundaries

Total number of gen-

omic bins

Class imbalance

Arrowhead 5 kb 8052 15 468 535 363 0.03

Arrowhead 10 kb 7676 14 253 267 682 0.05

Arrowhead 25 kb 4670 8363 107 073 0.08

Arrowhead 50 kb 2349 4224 53 537 0.08

Arrowhead 100 kb 1031 1883 26 768 0.07

Peakachu 10 kb 16 185 21 421 267 682 0.14

Grubert 5 kb 16 232 18 455 535 363 0.07

Fig. 2. Determining optimal data-level characteristics for building TAD boundary

region prediction models on GM12878. Averaged balanced accuracies are com-

pared across resolution, within each predictor-type: overlap count (OC), overlap

percent (OP), average Signal and Distance and across resampling techniques: no

resampling (None; red), random over-sampling (ROS; green), random under-sam-

pling (RUS; blue) and synthetic minority over-sampling (SMOTE; purple). Error

bars indicate 1 standard deviation from the mean performance across each holdout

chromosome used for testing
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chromosomes. We found four transcription factors, CTCF, RAD21,
SMC3 and ZNF143, being consistently predictive of TAD and loop
boundaries (Fig. 3C; Supplementary Fig. S8C). Although CTCF and
cohesin binding are known to colocalize, cohesin peaks are slightly
shifted to the 30 ends of convergently oriented motifs (Fudenberg
et al., 2016; Tang et al., 2015) and appear to complement the mod-
el’s performance. We selected these top four TFBS when building
the random forest model, thereby decreasing computational burden
while maintaining high predictive power. Comparison of distance-
to-nearest-CTCF distribution between original Arrowhead/
Peakachu boundaries and preciseTAD-predicted boundaries showed
that the latter were located closer to CTCF binding sites (Fig. 3D,
Supplementary Fig. S8D), and these results were observed for other
transcription factors (Supplementary Fig. S9). In summary, our
model was able to yield the known molecular drivers of the loop ex-
trusion model (Alipour and Marko, 2012; Davidson et al., 2019;
Fudenberg et al., 2016; Hansen et al., 2018; Mirny et al., 2019;
Sanborn et al., 2015), suggesting that TAD and loop boundary for-
mation may be carried out by similar mechanisms (Beagan and
Phillips-Cremins, 2020).

3.6 Precisetad identifies precise and biologically

relevant domain boundaries
Using our optimally built random forest model trained on
Arrowhead/Peakachu boundaries, we attempted to predict the more
precise location of boundaries at base-level resolution. Intuitively,
instead of bin-level annotations, the predictor-response space was
built on a base-level. That is, each base was annotated with the dis-
tance to the nearest/overlapping CTCF, RAD21, SMC3 and
ZNF143 site. The model trained on a bin-level space was then
applied on a base-level space to predict each base’s probability of
being a boundary. Our method, referred to as preciseTAD, uses
density-based spatial clustering (DBSCAN) and partitioning around
medoids (PAM) to cluster bases with high probability of being a
boundary into boundary regions (PTBRs) and summit points

(PTBPs, see Section 2; Supplementary Fig. S3). We found that
Arrowhead PTBRs and Peakachu PTBRs were highly overlapping
(Jaccard 0.606/0.757, GM12878/K562 cell line, respectively) as
compared with the less overlapping original Arrowhead/Peakachu
boundaries (Jaccard 0.227/0.199, Supplementary Fig. S10A).
Similarly, Arrowhead PTBRs and Peakachu PTBRs showed better
agreement with experimental Grubert data (e.g. original
Arrowhead-Grubert Jaccard 0.260 versus Arrowhead PTBRs-
Grubert Jaccard 0.292, GM12878 cell line), and their results were
consistent in K562 cell line (Supplementary Fig. S10B). These results
suggest that preciseTAD identifies similar boundaries when trained
on either Arrowhead or Peakachu data, and these boundaries better
agree with experimentally observed data.

When trained using Arrowhead and Peakachu boundaries at 5
and 10 kb, respectively, the preciseTAD model predicted a total of
10 990 domain and 14 440 chromatin loop boundaries in
GM12878, as well as 9277 domain and 10 896 chromatin loop
boundaries in K562 cell line (Supplementary Table S5). To evaluate
the biological significance of preciseTAD PTBRs, we investigated
signal distribution of four known molecular drivers of 3D chromatin
(CTCF, RAD21, SMC3 and ZNF143) around boundaries detected
by different methods. preciseTAD-predicted boundary points (the
base-level boundary locations, PTBPs) showed much stronger signal
distribution than Arrowhead and Peakachu boundaries, and fre-
quently outperformed experimentally obtained Grubert data
(Fig. 4A and B, Supplementary Fig. S11A and B). Notably, bounda-
ries called by other callers similarly lacked signal distribution speci-
ficity (Supplementary Fig. S6A and C). Surprised by the poor
performance of domain boundaries detected from Hi-C data, we
investigated the overlap of boundaries detected by different callers
with CTCF, RAD21, SMC3 and ZNF143 binding sites (TFBSs). We
observed less than 30% of Arrowhead boundaries and approximate-
ly 70% of Peakachu boundaries overlapped CTCF and other TFBSs.
In contrast, 90–99% of PTBRs detected by Arrowhead- and
Peakachu-trained models overlapped CTCF and other TFBSs
(Supplementary Table S7). Furthermore, the locations of CTCF and
other TFBSs within Arrowhead and Peakachu boundary regions
were found to be relatively uniform, leading to even signal

Fig. 3. SMC3, RAD21, CTCF and ZNF143 transcription factors accurately predict

TAD and loop boundaries in GM12878. (A) Barplots comparing performances of

TAD (Arrowhead) and loop (Peakachu) boundary prediction models using histone

modifications (HM), chromatin states (BroadHMM), transcription factor binding

sites (TFBS), in addition to a model containing all three classes (ALL). (B) Recursive

feature elimination (RFE) analysis used to select the optimal number of predictors.

Error bars represent 1 standard deviation from the mean cross-validated accuracy

across each holdout chromosome. (C) Clustered heatmap of the predictive import-

ance for the union of the top 8 most predictive chromosome-specific TFBSs. The col-

umns represent the holdout chromosome excluded from the training data. Rows are

sorted in decreasing order according to the columnwise average importance. (D)

Violin plots illustrating the log2 genomic distance distribution from original

Arrowhead/Peakachu boundaries versus preciseTAD-predicted boundaries to the

nearest CTCF sites. The P-values are from the Wilcoxon Rank Sum test

Fig. 4. preciseTAD boundaries are more enriched for known molecular drivers of

3D chromatin. Signal enrichment strength of CTCF, RAD21, SMC3 and ZNF143

sites around midpoints of preciseTAD-predicted boundaries (green) compared with

midpoints of (A) Arrowhead-called boundaries (blue), (B) Peakachu loop bounda-

ries (red). Data for midpoints of Grubert cohesin loop boundaries is shown as a

proxy for experimental ‘ground truth’ (purple). Panel insets show signal enrichment

around preciseTAD boundary points versus Grubert ground truth. (C) Domain size

distribution and (D) CTCF orientation analysis. Data for GM12878 cell line are

shown
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distribution observed in Supplementary Figure 4A and B. In con-
trast, preciseTAD detects boundary points centered on the strongest
CTCF signal. We further compared signal distribution around
preciseTAD PTBPs with boundaries reported by Lollipop, a method
for domain boundary prediction from genome annotation data and
various domain characteristics (Kai et al., 2018). Notably,
preciseTAD- and Lollipop-predicted boundaries showed comparable
signal distribution, cementing the importance of genomic annota-
tions for domain boundary prediction (Supplementary Fig. S6B and
D). Our results indicate that preciseTAD-predicted boundaries
(PTBRs) and boundary points (PTBPs) better reflect the known biol-
ogy of boundary formation when compared with boundaries called
solely from Hi-C contact matrices.

We further investigated domain size distribution (Fig. 4C,
Supplementary Fig. S11C). We used loop size distribution in experi-
mentally observed Grubert data as ‘ground truth’. We found that
the original Arrowhead and Peakachu algorithms detected higher
proportion of large domains (e.g. 25.1%/33.2% of 250–500 kb
domains versus 17.1% in Grubert, Figure 4C, GM12878 data). In
contrast, size distribution of domains marked by preciseTAD-
detected PTBRs was similar to that of Grubert. When trained on ei-
ther Arrowhead/Peakachu data, preciseTAD identified 71.8%/
83.5% 20–250 kb small-sized domains versus 73.4% Grubert,
12.4%/9.8% 250–500 kb mid-sized domains versus 17.1%
Grubert, and 5.6%/2.9% large-sized domains versus 5.1% Grubert,
with those results consistent in the K562 cell line (Fig. 4C,
Supplementary Fig. S11C). Importantly, the larger proportions of
20–250 kb small-sized domains identified by preciseTAD are in bet-
ter agreement with 80–120 kb domain size estimated by microscopy
and via modeling of Hi-C data (Goloborodko et al., 2016;
Naumova et al., 2013). We should note that, in contrast to
Arrowhead/Peakachu, preciseTAD identifies individual boundaries;
consequently, we measured domain size as the distance between
consecutive boundaries. Thus, we expect some excessively large do-
main sizes (e.g. if two PTBRs span centromere region) and very
small domain sizes (e.g. PTBRs separated by gaps in poorly organ-
ized regions). Despite this limitation, our results suggest that
preciseTAD identifies boundaries better reflecting experimentally
observed domain size distribution.

Directionality of CTCF binding, e.g. convergent orientation of
CTCF motifs, is a known defining feature of domain formation (Rao
et al., 2014; Tang et al., 2015). We used CTCF orientation distribution
in experimentally observed Grubert boundaries as ‘ground truth’.
Indeed, Grubert loops contained the largest proportion of convergent
CTCF motifs (37.9%) as compared with Arrowhead domains (3.0%).
Arrowhead data contained a large proportion of domains lacking
CTCF motifs (61.0%) or domains having single CTCF motifs (33.4%,
Fig. 4D). In contrast, Peakachu and preciseTAD-called domains
showed high resemblance to CTCF motif orientation observed in
Grubert data. Domains defined by the original Peakachu algorithm,
Arrowhead PTBRs and Peakachu PTBRs (preciseTAD-defined regions
trained on Arrowhead/Peakachu data) contained a high proportion of
convergent CTCF motifs (24.7%, 17.8%, 16.3%), tandem motifs
(5.7%, 22.0%, 18.4% versus 6.7% Grubert) and single CTCF motifs
(47.2%, 41.3%, 43.8% versus 41.7% Grubert, Fig. 4D). Domains
defined by preciseTAD PTBRs contained the largest proportion of di-
vergent CTCF sites (8.9% for Arrowhead PTBRs and 7.5 for Peakachu
PTBRs, Fig. 4D). While this may be attributed to the aforementioned
noncontiguous nature of domains defined by PTBRs, these findings
may reflect recent observations that domain boundaries contain diver-
gent CTCF motifs while convergent motifs mark the interior of domains
at 5–100 kb range (Nanni et al., 2020). Together with strong signal en-
richment and domain size distribution results, our observations indicate
that preciseTAD may identify domain boundaries and boundary points
better reflecting known biology of boundary formation.

3.7 Training in one cell line accurately predicts

boundary regions in other cell lines
Previous studies suggest that TAD boundaries are relatively similar
across cell lines (Dixon et al., 2012; Nora et al., 2012; Sexton et al.,

2012). To assess the level of cross-cell-line similarity, we evaluated
the overlap between cell line-specific boundaries detected by
Arrowhead and Peakachu methods as well as preciseTAD-predicted
boundaries trained on Arrowhead and Peakachu data. Only 24%
and 30% of boundaries were overlapping between cell lines for
Arrowhead and Peakachu boundaries (J¼0.246 and J¼0.295), re-
spectively (Fig. 5A). In contrast, preciseTAD-predicted boundaries
were more similar between GM12878 and K562 cell lines regardless
of which data were used for training (Arrowhead PTBRs overlap
J¼0.383; Peakachu PTBRs J¼0.467, Fig. 5B). This better agree-
ment between cell type-specific preciseTAD-predicted boundaries
further supports the notion of their higher biological relevance.

Our observation that preciseTAD predicts similar domain boun-
daries when trained on either Arrowhead or Peakachu data raises
the possibility that boundary-annotation associations learned in one
cell line can predict boundaries in another cell line using its genomic
annotation data. That is, given that genomic annotations (distance
to CTCF, RAD21, SMC3 and ZNF143) are predictive of boundaries
in one cell line, their locations in another cell line may be predictive
of boundaries in that cell line. Indeed, training and testing using
Arrowhead boundaries and genomic annotation data from the
GM12878 cell line resulted in an average AUC¼0.840 (Fig. 5C).
When training on the K562 boundaries/annotations and testing on
GM12878, the average AUC was 0.899. Likewise, training and test-
ing using Peakachu boundaries and genomic annotation data from
the GM12878 cell line was comparable to models trained on K562
boundaries/annotations and testing on GM12878 cell line (Avg.
AUC¼0.923 and 0.876, respectively, Fig. 5A). These results were
consistent when comparing training/testing strategies on K562
boundaries/annotations with training on GM12878 and testing on
K562 data (Supplementary Fig. S12).

In both instances, the average ROC curves were found to be
within 1 standard deviation of each other, suggesting that a model
trained on data from one cell line performs well when using the data
from another cell line. This ability of boundary-annotation associa-
tions learned from one cell type to successfully predict boundaries in
another indicates that the same underlying forces may drive bound-
ary formation across various cell lines.

We further evaluated biological characteristics of cell type-
specific boundaries predicted by models trained on a different cell
line. We evaluated two scenarios: (1) training on GM12878 and pre-
dicting boundaries on GM12878 (GM on GM) versus training on
K562 and predicting on GM12878 (K on GM), and (ii) training on
K562 and predicting boundaries on K562 (K on K) versus training
on GM12878 and predicting boundaries on K562 (GM on K). Using
Arrowhead-trained models, 76% (J¼0.701) and 81% (J¼0.751) of
predicted boundaries overlapped in both cross-cell-line prediction
scenarios (Supplementary Fig. S13). When using Peakachu-trained
models, we observed 85% (J¼0.705) and 88% (J¼0.759) overlap
(Supplementary Fig. S14). Furthermore, boundaries predicted on

Fig. 5. preciseTAD models trained in one cell line can accurately predict boundaries

in another cell line. (A) Venn diagrams of overlap original Arrowhead/Peakachu do-

main boundaries and (B) Peakachu-predicted PTBRs for GM12878 (red) and K562

(blue) cell lines. All boundaries were flanked by 5 kb. (C) Receiver operating charac-

teristic (ROC) curves and the corresponding average area under the curves (AUCs)

when training and testing on GM12878 data (blue, Arrowhead; red, Peakachu) ver-

sus training on K562 and testing on GM12878 data (black, dashed). The curves rep-

resent the average sensitivities and specificities across each holdout chromosome.

The shaded areas around each curve represent 1 standard deviation from the

average
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unseen annotation data exhibited a similar level of enrichment for
CTCF, RAD21, SMC3 and ZNF143 as did those trained and pre-
dicted on the same cell line (Supplementary Figs S13 and S14).
These results indicate that preciseTAD pre-trained models can be
successfully used to accurately predict domain boundaries for cell
lines lacking Hi-C data but for which genome annotation data are
available.

3.8 Boundary predictions across cell lines
Given the success of preciseTAD in predicting domain boundaries
across cell lines, we investigated the possibility of predicting boun-
daries for cell lines with CTCF/RAD21/SMC3/ZNF143 genome an-
notation data. The ENCODE project provides information about
132 human cell lines; however, only 4 of them have all four annota-
tions and 48 have none (Supplementary Fig. S15A, Supplementary
Table S6). Therefore, we considered Avocado, a deep learning
method providing pre-trained models to impute missing genomic
annotations for 400 cell- and tissue types (Schreiber et al., 2020).
Avocado was able to predict the location of three transcription fac-
tors (CTCF/RAD21/SMC3) in 60 cell lines available in ENCODE.
We found that the signal distributions for all three factors around
the midpoints of experimental ENCODE and Avocado-predicted
TFBSs are comparable, and the Avocado-predicted CTCF sites are a
subset of ENCODE CTCF sites (Fig. 6A). These results suggest that
Avocado-predicted genomic annotations can be used when cell type-
specific ENCODE data is missing.

We retrained preciseTAD models to use CTCF/RAD21/SMC3
annotations. Using three instead of four transcription factors
resulted in a non-significant drop in performance (Supplementary
Fig. S15B), suggesting ZNF143 is less critical for boundary predic-
tion. We applied those models to predict domain boundaries in 60
cell lines, using Avocado-predicted genomic annotations when
ENCODE data was unavailable. To examine the predictive power
of Avocado genomic annotations, we compared PTBRs and PTBPs
predicted from ENCODE and Avocado annotations (Fig. 6B). We
found that the signal distribution around PTBPs predicted using
Avocado data was less than that of ENCODE but remained compar-
able with that observed from Grubert data (Fig. 6B). Similarly,
Avocado PTBPs showed less overlap with Grubert data (Fig. 6B).
The inferior performance of Avocado-predicted genomic annota-
tions is expected as Avocado has been reported to perform less opti-
mally in imputing transcription factors (Schreiber et al., 2020). In
summary, we demonstrate that preciseTAD predicts boundaries
comparable with those observed experimentally and provides base-
level domain boundary predictions for 60 cell lines.

4 Discussion

We present preciseTAD, a transfer learning approach for the precise
prediction of TAD and chromatin loop boundaries from functional

genomic annotations. preciseTAD leverages a random forest (RF)
classification model built on boundaries obtained from low-
resolution chromatin conformation capture data, and high-
resolution genomic annotations as the predictor space. preciseTAD
predicts the probability of each base being a boundary, and identi-
fies the precise location of boundary regions and the most likely
boundary points. We performed extensive optimization of our RF
model by systematically comparing different Hi-C data resolutions,
feature engineering procedures and resampling techniques. Our
results demonstrate that distance between boundary regions and
genomic annotations coupled with random under-sampling results
in the best model performance. We show that binding of four tran-
scription factors (SMC3, RAD21, CTCF, ZNF143) is sufficient for
accurate boundary predictions. Compared with ChIA-PET-detected
cohesin-mediated loops (Grubert et al., 2020), we showed that
preciseTAD-predicted boundaries better agree with biological prop-
erties of experimental data. Models trained in one cell type can ac-
curately predict boundaries in another cell type without Hi-C data,
requiring only cell type-specific genomic annotations. preciseTAD is
implemented as an R package, while pre-trained models for predict-
ing domain boundaries using genomic annotation data are provided
via an ExperimentHub R package preciseTADhub. We provide a re-
source of predicted boundaries for 60 cell lines using Avocado-
imputed genomic annotation data for cells lacking experimental
data.

preciseTAD allows for predicting any type of 3D features
observed in chromatin conformation capture data. Emerging evi-
dence suggests the existence of different types of 3D domains and
domain boundaries (Beagan and Phillips-Cremins, 2020; Chang
et al., 2020). Consequently, subpopulations of 3D domains can be
defined by optimizing different sets of computational and biological
characteristics (e.g. enrichment of CTCF binding motifs, high occu-
pancy of CTCF/RAD21/H3K36me3 at boundaries, reproducibility,
high intra- versus inter-TAD difference in contact frequencies)
(Sauerwald and Kingsford, 2021), using different training data (e.g.
CTCF- and RNAPII ChIA-PET) (Al Bkhetan and Plewczynski,
2018), or distinguishing long-range cohesin-dependent and short-
range cohesin-independent domains (Phillips-Cremins et al., 2013;
Thiecke et al., 2020). Boundaries have also been defined by the pat-
terns of CTCF orientation (Nanni et al., 2020), actively transcribed
regions (Harrold et al., 2020) and the level of hierarchy (Cresswell
et al., 2020; Fraser et al., 2015; Weinreb and Raphael, 2016).
Recent research distinguishes CTCF-associated boundaries, CTCF-
negative YY1-enriched boundaries, CTCF- and YY1- depleted pro-
moter boundaries, and the fourth class of weak boundaries largely
depleted of all three features (Krietenstein et al., 2020). preciseTAD
can be trained on boundaries defined by other algorithms and char-
acteristics. Furthermore, the continuous nature of preciseTAD pre-
dictions may be utilized to quantify boundary strength, as has been
done with insulation score and other metrics (Crane et al., 2015;
Gong et al., 2018). Our future work will include incorporating the
directionality of CTCF binding in predictive modeling, including
additional predictor types, developing an algorithm to quantify
boundary strength, and defining separate models trained on differ-
ent boundary types defined by different technologies.

In summary, we demonstrate that domain boundary prediction
is a multi-faceted problem requiring consideration of multiple statis-
tical and biological properties of genomic data. Simply considering
properties of Hi-C contact matrices ignores the fundamental roles of
known molecular drivers of 3D chromatin structures. Instead, we
propose preciseTAD, a supervised machine learning framework that
leverages both Hi-C contact matrix information and genomic anno-
tations. Our method introduces three concepts—shifted binning, dis-
tance-type predictors and random undersampling—which we use to
build random forest classification models for predicting boundary
regions. Our method can bridge the resolution gap between 1D gen-
omic annotations and 3D Hi-C data for more precise and biological-
ly meaningful boundary identification. We introduce preciseTAD,
an open-source R package for leveraging random forests to predict
domain boundaries at base-level resolution, as well as the genomic
coordinates of predicted boundaries for 60 cell types. We hope that

Fig. 6. Avocado-imputed genomic annotations can be used for preciseTAD predic-

tions. (A) Signal distribution around the midpoint of ENCODE and Avocado TFBSs

and the Venn diagram of overlap between ENCODE and Avocado CTCF binding

sites. (B) Signal distribution around PTBPs predicted from ENCODE and Avocado

data and the midpoints of Grubert anchors, and the Venn diagram of overlaps be-

tween ENCODE/Avocado-predicted PTBPs and the Grubert data. Data for

GM12878 cell line are shown. For the Venn diagrams, regions were flanked by 5 kb
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preciseTAD will serve as an efficient and easy-to-use tool to further
explore the genome’s 3D organization.
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