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Abstract

The intestinal microbiota plays a crucial role in health and changes in its composition are linked with major global human
diseases. Fully understanding what shapes the human intestinal microbiota composition and knowing ways of modulating
the composition are critical for promotion of life-course health, combating diseases, and reducing global health disparities.
We aim to provide a foundation for understanding what shapes the human intestinal microbiota on an individual and
global scale, and how interventions could utilize this information to promote life-course health and reduce global health
disparities. We briefly review experiences within the first 1,000 days of life and how long-term exposures to environmental
elements or geographic specific cultures have lasting impacts on the intestinal microbiota. We also discuss major public
health threats linked to the intestinal microbiota, including antimicrobial resistance and disappearing microbial diversity
due to globalization. In order to promote global health, we argue that the interplay of the larger ecosystem with intestinal
microbiota research should be utilized for future research and urge for global efforts to conserve microbial diversity.
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Introduction

The microbiota generally includes a community of bacteria,
archeae, fungi, protozoa, worms, and viruses that live inside
and on the human body as well as all the genes that they jointly
encode [1]. Playing a crucial role in our health over the life
course [2], the microbiota is generally believed to be inherited at
birth from the mother, maturing during the first months of life
[3]. At around two or three years of age, the intestinal microbiota
reaches an adult-like composition and complexity [3] and
remains relatively unchanged until senescence, making the first
years of life critical for optimal microbial colonization [4].

In predicting life-course trajectories of health, deviations of
bacterial communities from a healthy state (i.e. dysbiosis) of the
infant intestinal microbiota have been associated with a variety
of morbidities [5] and several infectious and chronic diseases,
including necrotizing enterocolitis, inflammatory bowel dis-
eases, malnutrition, metabolic conditions (e.g. obesity), and
atopic diseases including allergies and asthma [6]. Alpha diver-
sity (i.e. number of distinct members) and beta diversity (i.e.
variability of microbial communities) of gut microbial taxa may
also play essential roles in child neurodevelopment and optimal
growth [7].
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As a healthy seed microbiota is inherited from the mother,
through skin-to-skin contact, breast milk, and/or the vaginal
tract, a mother’s microbial dysbiosis can be passed on to the
child [3]. In general, the bacterial species in the intestinal micro-
biota is highly variable between individuals, but is generally
dominated by Actinobacteria and Firmicutes [8, 9]. However, the
intestinal microbiota typically encompasses similar bacterial
strains grouped by encoding function, suggesting that the hu-
man microbiota is based on functional properties rather than a
specific taxonomic assembly [10, 11].

Understanding the complex assembly of an individual’s gut
microbial community is of great interest for immunology, mi-
crobiology, and—more recently—public health interventions
[12]. In fact, personalized medicine—a novel and potentially
groundbreaking field—may target the intestinal microbiota as a
therapeutic solution for various diseases, including some of the
main public health concerns of modern times such as ischemic
heart disease [13], stroke [14], chronic obstructive pulmonary
disease [15], or cancer [16, 17].

Our review provides an overview of individual, environmen-
tal, and geographic factors that shape the human intestinal
microbiota utilizing a global perspective. We also discuss the
importance of the intestinal microbiota for life-course trajecto-
ries and global health. Lastly, we review promising interven-
tions that promote a healthy intestinal microbiota and global
health.

Microbiome development on an individual
scale
Effect of mode of delivery on future health

In the immediate period following birth, the infant’s immune
system is undeveloped due to the near-sterile environment of
the mother’s womb [3, 18–20]. The first stages of immune-sys-
tem maturation and gut colonization are heavily shaped by the
birthing process (i.e. mode of delivery). Exposure to vaginal and
fecal microbial communities during natural childbirth is a criti-
cal factor in “seeding” an infant’s microbiota composition [4,
21]. Vaginal taxa from the mother have also been found to tran-
siently colonize the child’s fecal and airway microbiota [22].
Vaginal microbiota communities are typically dominated by
Lactobacillus species [23, 24], specifically L. iners, L. crispatus, L.
gasseri, or L. jensenii; yet, significant differences are seen be-
tween North American women from different ethnic groups
(White, Black, Hispanic, and Asian) [25]. When a misbalance in
vaginal microbiota occurs, such as a lower abundance of
Lactobacillus, bacterial vaginosis is likely to occur—resulting in
unwanted perinatal outcomes, including preterm birth (e.g. in-
fant born at <37 weeks’ gestation) [26]. Yet, women with a vagi-
nal microbiome dominated by L. crispatus seem to have a lower
risk of preterm birth [26, 27]. Maternal fecal microbiota can also
have profound effects on birth outcomes, including gestational
age at birth, birthweight, and neonatal growth [28].

Infants born preterm are exposed to an undeveloped vaginal
microbiota, as the vaginal microbiota only increases in its diver-
sity after 36 weeks of gestation [29]. In fact, the maternal vaginal
and fecal microbiota changes during pregnancy; therefore, if a
child is born at an earlier stage of pregnancy, the child will not
be exposed to a mature fecal or vaginal microbiota. In early
pregnancy, an initial increase in butyrate-producing strains in
the feces was found among 91 pregnant women [30]. Later in
pregnancy, there was a significant decrease in alpha diversity
and an increase in beta diversity in the fecal microbiota—which

was accompanied by an increase in Enterobacteriaceae and
Actinobacteria, and a decrease in Faecalibacterium [30, 31]. In late
pregnancy, the vaginal microbiota shifts towards a microbiome
dominated by Lactobacillus and concomitantly a decrease in
both alpha and beta diversity [32].

Even among infants born at term (i.e. end of pregnacy), a
dysbiotic microbiota from the mother can be passed to her child
[33]. In two small studies in Spain [34] (16 cases and 26 controls)
and in the USA (77 subjects overall) [35], infants from obese
mothers were found to inherit a dysbiotic microbiota. In moth-
ers suffering from intestinal bowel disease, aberrant intestinal
microbiota composition was found throughout pregnancy and
their children presented with a changed seed microbiota, affect-
ing immune markers when transferred to germ-free mice [36].
Recent evidence also links the maternal third-trimester micro-
biota to child behavior in their offspring, emphasizing the im-
portance of the inherited seed microbiota on the healthy
development of children [37].

Infants born by Cesarean section (C-section) have a disrup-
tion to the mother–newborn transmission of microbiota, as
they are not exposed to the vaginal and fecal microbiota at birth
and only acquire a seed microbiota from the mother’s skin and
the environment [3, 38]. Mothers who undergo a C-section are
often provided wih intrapartum antibiotics in order to prevent
surgical infection [39], which has a deleterious effect on micro-
biota [40]. As a result, infants born vaginally show higher levels
of Bifidobacterium and lower levels of Enterococcus and Klebsiella
than infants born by C-section; however, these differences ap-
pear regardless of intrapartum antibiotic use [41]. A lack of ex-
posure to these microbial communities may disrupt the normal
infant intestinal microbiota development, resulting in an im-
mune system that does not function properly and increases the
risk of disease [42]. For example, higher levels of Bifidobacterium
are consistently found in vaginal-born infants than infants born
by C-section [43] and is important for host defense against
pathogens [44].

Responding to the major lifelong implications for infant in-
testinal microbiota development and life-course health among
infants born by C-section, medical interventions are utilizing
maternal vaginal microbes to artificially inoculate infants by
swabbing an infant’s face, nose, and ears with vaginal fluid [45].
However, a pilot study providing oral administration of vaginal
microbes to children born by C-section in New Zealand calls
into question the importance of vaginal microbes for seeding
[46]. There is also an ongoing debate on which maternal micro-
biota, specifically vaginal or fecal, is more important for initial
seeding of the child microbiota and whether transferring mater-
nal vaginal or fecal microbiota to infants born by C-section can
restore the disturbed seed microbiota [47]. Two recent studies
demonstrated that strains from different maternal microbiota
are transmitted to the child; however, most of the maternal
strains found in the infant’s intestinal microbiota come from
the maternal intestinal microbiota—which leads to a more sta-
ble colonization than strains from other sources, such as the
vaginal microbiota [33, 48]. A recent pilot study corroborated
this finding, showing that fecal microbiota transfer from the
mother corrects disturbances in early-life microbiota among
infants born by C-section [49]. Further, fecal microbiota of the
infant is more similar to maternal fecal than vaginal microbiota
[50]. All of the aforementioned studies were limited by partici-
pation size; therefore, further research is needed to reproduce
these scientific results and assess the potential use of micro-
biota restoration interventions. Due to the global increase and
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trend of planned C-sections, identification of a microbiota resto-
ration strategy is of the utmost importance for global health.

Therefore, in terms of global health, a healthy maternal
microbiota passed on to the child through a natural birth pro-
cess sets the stage for a healthy seed microbiota in newborn
infants and a positive effect of lifelong health.

Influence of breastmilk bioactives and microbiota on the
intestinal microbiota of the child and future health

Historically, breast milk was considered sterile; however, accu-
mulating evidence using culture-dependent and sequencing
technologies shows the presence of a specific breastmilk micro-
biota, dominated by Staphylococci, Streptococci, lactic acid bacte-
ria, and Bifidobacteria [51–53]. The human microbiota is
especially rich in human milk oligosaccharides (HMOs), which
are a potent prebiotic for the developing infant’s gut microbiota.
Breast milk also contains a plethora of bioactive compounds in-
cluding immune cells, immunoglobulins, antimicrobial pepti-
des, fatty acids, polyamines, and oligosaccharides [54, 55].
Currently, breastmilk microbiota is recognized as the second
step in seeding the infant gut, with �25% of breastmilk micro-
biota being transferred to the infant’s intestinal microbiota [56],
including gut-associated anaerobes [51, 57].

The specific microbiota and bioactive components in breast
milk also influence the life-course trajectory of the infant’s in-
testinal microbiota community. Both breastmilk microbes and
its bioactive substances play a direct role on the developing in-
testinal microbiota, contributing to a decreased risk of asthma
and allergy in later life [58]. Immune-modulating compounds
found in breast milk also help reduce the likelihood of infec-
tions [59]. Further, infant ingestion of breastmilk taxa as well as
the prebiotic effects of breastmilk components may promote
immune programming [54, 58, 60]. Thus, breast milk provides
two critical components for infants: (i) a source of new bacterial
species that shapes the intestinal microbial community assem-
bly and (ii) specific HMOs and other bioactives that help create a
sustained colonization of the right strains in the developing fe-
cal microbiota of the infant.

Breastfeeding duration also heavily influences the intestinal
microbiota. A meta-analysis of seven studies that included ex-
clusive breastfeeding information and infant intestinal micro-
biota found immediate and consistent differences in the
intestinal microbiota between exclusively breastfed and non-
exclusively breastfed infants—persisting long after 6 months of
age [61]. The importance of exclusive breastfeeding crosses geo-
graphic boundaries, as the seven studies were conducted across
different populations [61]. A large Canadian cohort reported
that infant intestinal dysbiosis resulting from intrapartum anti-
biotics was improved by exclusive breastfeeding and a longer
breastfeeding duration [40]. A higher microbial diversity was
also reported in exclusively breastfed infants than in non-
exclusive breastfed infants at 6 and 14 weeks postpartum; how-
ever, a longer follow-up period is needed to ensure permanent
and long-term benefits [62].

While still under investigation, breastfeeding—either
through breastmilk microbiota or the immunomodulatory and
prebiotic substances—plays a crucial role in the initiation and
maintenance of a healthy intestinal microbiota. Breast milk
may provide a viable strategy for promoting lifelong health by
optimizing or correcting gut microbial dysbiosis. One prime ex-
ample is the difference between breastfeeding and formula
feeding in preterm infants.

Preliminary evidence from an observational cohort study
(n¼ 69) suggests that human-donor breastmilk-fed preterm
infants have gut microbial profiles that closely resemble moth-
ers’ own milk-fed preterm infants, whereas formula-fed infants
had significantly less microbial abundance [63]. Hence, it is pos-
sible that providing donor human milk to infants not receiving
breast milk could support gut microbial development and mod-
ulate gut dysbiosis [62].

Overall, breast milk seems to be a major contributor to
proper microbiota development and lifelong health.

Effect of early-life antibiotics on future health

In the last 70 years, most communities have seen a consistent
increase in the use of antibiotics, often at a very early age.
Antibiotics significantly disrupt the intestinal microbiota and
have long-term implications for life-course health. Antibiotic
use has been shown to reduce the diversity of gut microbial
communities and increases the likelihood of antibiotic-
resistant organisms [64]. Disruption to the intestinal microbiota
in early life by antibiotics may cause irreversible damage, as mi-
crobial communities often fail to completely return to the pre-
antibiotic state [65]. Destruction to the intestinal microbiota
caused by early-life antibiotic use is likely the causal link be-
tween antibiotic use and poor health outcomes [66].
Experimental research from mice receiving fecal microbiota
transplant from antibiotic-exposed children showed reduced
growth compared with mice receiving a transplant from chil-
dren not exposed to antibiotics [67].

Research also consistently demonstrates an effect between
early-life antibiotics and child growth in humans. Higher body
mass indexes (BMIs) were found among boys and girls <6 years
of age if they were exposed to antibiotics during the neonatal
period [67]. A dose–response relationship was also found be-
tween antibiotic use and childhood BMI z-score, showing a
higher BMI with a higher number of exposures [68]. Further,
boys had significantly smaller height and weight gains if ex-
posed to antibiotics during the neonatal period; however, this
association was not found among girls [67]. Interestingly, ma-
ternal antibiotic use in pregnancy has also been associated with
an increased risk of obesity and asthma in childhood [69–71].

Thus, antibiotics in early life pose a clear risk to a proper
microbiota development and can affect lifelong health. They
should thus be used very carefully, especially in the first
1,000 days of life.

Microbiome development on
a global/community scale

We briefly reviewed how different exposures [43] in the first
6 months postpartum, including mode of delivery [40, 72–79],
gestational age at birth [78], early-life breastfeeding or formula
feeding [80], and the use of antibiotics [40], influence intestinal
microbiota development. However, additional host and envi-
ronmental factors later in life also shape the intestinal micro-
biota. These include diet [81–83], systemic inflammation [84],
disease, household and nutritional parameters [85], age, micro-
nutrient deficiencies [86], general health status [87], medical
prescriptions [88], genetics [89], and the immune system [87].
Environmental factors are hypothesized to have the biggest ef-
fect on the intestinal microbiota [90]. Yet, many studies on the
human microbiome are limited by low sample sizes. Technical
differences in data generation also make an unbiased meta-
analysis implausible. Further, it is difficult to disentangle
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vertical transmission of the microbiota due to passing of the
microbiota and host genetics from mother to child.

Diet is a main environmental factor that differs within and
between geographic regions, creating individual and commu-
nity-level differences in the human microbiota [81, 82]. Short-
term consumption of a diet composed entirely of animal-based
or plant-based products showed that diet was able to shape the
microbial profile more profoundly than inter-individual differ-
ences with an increased presence of bile-tolerant microorgan-
isms in the context of an animal-based diet and an increase in
the level of polysaccharide-metabolizers in the plant-based diet
[91]. Specific diets in Canadian Inuit tribes [92] and Hadza
hunter-gatherers [93] from Tanzania clearly showed the influ-
ence of diet on the overall microbiota composition of their feces.
For the Hadza hunter-gatherers, seasonality [94] and the intro-
duction of specific food items such as meat or honey are further
hypothesized to directly change microbiota composition [95]. A
meta-analysis of 27 dietary studies in human and rodents found
consistent alterations of the intestinal microbiota in response
to a high-fat diet and could identify a set of 228 operational tax-
onomic units that are able to correctly classify subjects in the
dietary groups (high vs low fat diet) [96]. Adaptation of the
microbiota to specific host diets is persevered across several
mammalian lineages, highlighting the important role diet has
on community structure [97]. Diet also had a more pronounced
effect on microbiota composition compared with genetic differ-
ences in a study analysing dietary interventions in mice of dif-
ferent genetic background [98].

Preparation of food also plays a role on available nutrients
within food, impacting microbiota composition. A cooked or
raw plant-based diet led to specific microbiota changes in mice.
However, this effect may specifically impact plant-based diets.
The difference in microbiota changes between cooked and raw
food was more pronounced for plant-based diets than for meat-
based diets. A potential causal pathway explaining these differ-
ences is the digestibility and degradation of the starch as well
as other plant-derived compounds [99]. Other diets composed
of low carbohydrates but high-fat foods (i.e. ketogenic diet) af-
fect microbiota changes and the immune landscape by decreas-
ing the level of pro-inflammatory intestinal TH17 cells [100],
showing a direct link between diet, the microbiome, and im-
mune status. Lastly, recent research focusing on daily, longitu-
dinal fecal sampling of 34 healthy individuals combined with
detailed dietary records highlights that food choices have
profound effects on the human microbiota; yet, it is individual-
specific, as it strongly depends on the initial microbiota
composition [101].

Urbanization has a major effect on microbial diversity and is
interconnected with diet. In multiple countries around the world,
an industrialized lifestyle was associated with a loss in microbial
diversity compared with a more traditional lifestyle [94, 102–105],
which has important implications for global health, as it is hy-
pothesized to be a major contributing factor for the increase in
non-communicable disease in the industrialized world [106].
Specifically, members of the genera Desulfovibrio, Bacteroides,
Prevotella, Lactobacillus, Treponema, Oxalobacter, and lineages in the
families of the Succinivibrionaceae, Paraprevotellaceae, and
Spirochaetae have been shown to be diminished or to disappear in
more industrialized contexts whereas Akkermansia muciniphila is
more abundant [94, 103–105].

Research also postulates that diet and geography as well as
lifestyle choices dictate the presence of given strains within a
given species, as recently exemplified by Prevotella copri [107,
108], A. muciniphila [109], as well as Eubacterium rectale [110].

Studies in the USA have shown a rapid shift to an industrialized
microbiota among recent immigrants and their descendants.
Especially pronounced among this population is a rapid loss of
taxa and encoded enzymes associated with plant-fiber degrada-
tion that increases with time spent in the industrialized world
[111].

Similar patterns in microbiota changes and associated non-
communicable disease have also been shown in domesticated
animals, where there is a mismatch between the current living
situation and the long-evolved microbial communities of their
microbiota [90]. These changes in taxa, especially in the abun-
dance of Bifidobacterium longum and A. muciniphila, have recently
been shown to have a causal effect in regulating cytokine re-
sponse likely through histidine and arginine metabolism [112].

Additional factors shaping the microbiota across geography
include the level of sanitation in a given location, which is di-
rectly associated with exposure to pathogens. Increased expo-
sure to pathogens affects microbiota composition through
direct interaction and/or through inflammation [113]; inter-
kingdom effects through non-bacterial species such as worms,
protists, or fungi [114]; and exposure to drugs and antibiotics
[88]. Global health disparities in infectious diseases [115], micro-
nutrient deficiencies [116], caloric restriction [117], and under-
nutrition [118, 119] have all been shown to have a profound
effect on the microbiome and thus on geographic differences in
the microbiota profile observed.

What is a “healthy” microbiota?

A healthy microbiota is neither stable in time nor the same be-
tween two individuals (reviewed in [120]). Coupled with the va-
riety of factors that influence the microbiota, the definition of a
healthy microbiota thus remains a challenge. Many of the
influencing factors are tightly linked within the environment
and each individual, making it challenging to disentangle spe-
cific factors influencing the growth of given members of the mi-
crobial community. In addition, the microbiota is a living entity,
acquiring new microbial members as well as genetic elements
through exchange of strains and genetic elements within the
broader context of the environment, animals, and other
humans. This concept, known as One Health microbiota,
depicts the sum of genes and strains shared between humans,
animals, and the environment). The combination of the human
body, their larger environment, and the microbiome form cre-
ates a holobiont [121] (Figure 1).

Several “microbiota compositions” can be considered
“healthy,” depending on the larger ecosystem they are part of.
Likewise, the composition in given microbial strains might be
stochastic whereas the overall microbial functions and the met-
abolic web they form seem to be more tightly linked to a general
health state and more stable between individuals [10, 11].

In addition to the complex interconnectedness between the
microbiota and numerous factors, the widely used amplicon se-
quencing approach is prone to false interpretation of healthy vs
unhealthy community composition because of the strain-level
differences in the microbiota. Lastly, the large geographic differ-
ences in microbiota results in various healthy microbiota com-
munities that have been evolutionarily adapted for those
populations; therefore, a universal intervention may promote a
healthy microbiota in some communities while negatively
impacting another community microbiota. It is critical that the
microbiota is considered part of a larger holobiont that we form
as a human and as a small puzzle piece of ourselves, our dietary
and lifestyle choices, and the larger environment we live in.
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This calls for both in-depth studies and conservation of micro-
biota for healthy and diseased individuals, and from geographi-
cally, nutritionally, and culturally different settings.

The role of the microbiota in the “the world’s
biggest killers” of global human disease

The role of intestinal microbiota in life-course health becomes
especially apparent when investigating “the world’s biggest kill-
ers,” which includes the top 10 global diseases that cause the
highest number of deaths. According to the World Health
Organization, “the world’s biggest killers” ordered from the
most deaths to the least deaths include (i) ischemic heart dis-
ease, (ii) stroke, (iii) chronic obstructive pulmonary disease,
(iv) lower respiratory infections, (v) neonatal conditions, (vi) tra-
chea, bronchus, lung cancers, (vii) Alzheimer’s disease and
other dementias, (viii) diarrheal diseases, (ix) diabetes mellitus,
and (x) kidney disease [122]. The majority of these diseases
have been linked to dysbiosis of the intestinal microbiota. We
will provide examples of how the top three global killers are di-
rectly linked with the intestinal microbiota.

Coronary heart disease (i.e. ischemic heart disease), defined
as a block to the heart blood supply, is responsible for the ma-
jority of global deaths, accounting for 16% of deaths worldwide.

In the past two decades, coronary heart disease has been the
most rapidly progressing type of death, rising by >2 million. In
2019 alone, it accounted for 8.9 million deaths. In patients with
coronary heart disease, the intestinal microbiota has a higher
alpha diversity and different microbial composition than in
healthy individuals [13]. Several studies have noted that
microbes used for the production of butyrate have lower abun-
dances in the intestinal microbiota of patients with coronary
heart disease [123]. It was also found that in patients with coro-
nary heart disease, Lactobacillales was significantly increased
whereas the phylum Bacteroidetes was decreased [124]. However,
the causal role of the intestinal microbiota in coronary heart
disease has yet to be confirmed [125].

Stroke is the second common cause of death globally, ac-
counting for 11% of all deaths worldwide [126]. Stroke occurs
when there is a reduction in blood flow to the brain, which pre-
vents oxygen transfer and results in the death of brain cells.
Perturbations in the intestinal microbiota are also found in indi-
viduals who have experienced a stroke compared with healthy
controls [14]. Immediately after a stroke, researchers have
found a significant decrease in the groups Roseburia, Bacteroides,
and Faecalibacterium prausnitzii in the intestinal microbiota com-
pared with healthy individuals [14]. The prognosis for stroke
survivors was also strongly related to 18 genera that were found
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in the intestinal microbiota and this was corroborated in mouse
models [127].

Accounting for 6% of total deaths worldwide, chronic ob-
structive pulmonary disease (COPD) has been shown to have
distinct intestinal microbiota from healthy individuals.
Compared with healthy individuals, the gut microbiome was
dominated by the Prevotella enterotype and also had lower levels
of short-chain fatty acids among patients with COPD [15].
Another study reported 146 different bacterial species from
patients with COPD compared with healthy subjects [128].
Pathogenesis of the disease has also been linked to differences
in metabolites, specifically choline, trimethylamine N-oxide
(TMAO) and betaine, which play a role in arterial plaque forma-
tion [129]. With technological advances and a reduction in
laboratory-associated costs allowing larger and especially longi-
tudinal studies, the causal relationship between the intestinal
microbiota and global diseases will become more clear [130].

Geographic influence on gut microbial disease
markers and outcomes

In the previous sections, we have shown that the intestinal
microbiota is heavily shaped by geography, industrialization,
and diet, and specific diseases are associated with changes in
bacterial communities. However, most studies to date focusing
on disease-related microbiomes are performed in industrialized
countries (i.e. Europe or North America), thus leaving the ques-
tion of whether the observed changes are also relevant in a
global context. We briefly explore this question in the subse-
quent sections with two examples: (i) colorectal cancer (CRC)
and (ii) childhood undernutrition.

A recent meta-analysis investigated a global signature asso-
ciated with CRC across eight geographically different regions in
industrialized countries [131]. The authors found that 29 species
are significantly and consistently higher among CRC patients
than among healthy subjects. They also found enriched protein
and mucin catabolism genes, depleted carbohydrate degrada-
tion genes, and increased secondary bile-acid production in
CRC patients. Similar results were obtained in an independent
meta-analysis in populations of China, countries in Europe, and
the USA [132], suggesting functionally and taxonomically con-
served signatures for CRC, at least in industrialized countries
with different dietary habits.

In the last decade, extensive research has been conducted
on childhood undernutrition, including chronic undernutrition
(i.e. stunting) as well as acute undernutrition (i.e. wasting). In
children with acute undernutrition, a decrease in overall bacte-
rial richness and an increase in members of the Proteobacteria
were found compared with healthy children. Further, there was
a consistent decrease in butyrate producers such as Roseburia,
Faecalibacterium, Butyrivibrio, Lactobacillus, and Bifidobacterium
(reviewed in [133]). Lastly, in severely undernourished infants,
there seems to be a consistent delay in the bacterial succession
observed in early life [134]. In stunted children, similar taxa are
affected: there is a decrease in butyrate producers and strict
anaerobes [121, 135] and an increase in pathogens/pathobionts
such as Shigella spp. and/or Campylobacter. However, inconsis-
tencies were found for alpha diversity [121, 136]. For stunting,
striking similarities in the composition of small-intestinal bac-
teria were found in Bangladesh, the Central African Republic,
and Madagascar, suggesting that the microbial composition has
a direct and causal role in the disease [121, 137]. Even though
studies on wasting and stunting span several countries and

continents, all of the included populations consumed starch-
rich food. Therefore, additional data are needed to assess signa-
tures in nutritionally distant populations, such as pastoralists
or hunter-gatherer communities.

While increasing evidence shows that specific microbial sig-
natures are associated with global or region-specific disease,
there remains a critical need for additional data to make defini-
tive conclusions, especially in light of the technical bias found
in current meta-analyses. We need larger studies assessing dys-
biosis in a given disease that spans through several countries/
continents and dietary habits/industrialization levels. Further,
we need validation studies in experimental set-ups (i.e. animal
models) in order to infer a causal relationship between the ob-
served microbiota changes and disease outcome.

Microbiota from a One Health perspective in
global health beyond the human dimension
Sharing of bacterial strains and pathogens between
humans, animals, and the broader environment

Humans are part of a larger network comprising their direct en-
vironment as well as the animals they interact with. One Health
is a concept that stresses the added value of jointly studying
and addressing health problems in this interconnected space
[138, 139]. The One Health concept focuses on the emergence of
novel pathogens, especially among zoonotic diseases that are
transmitted from animals to humans (and vice versa) as well as
environmental contaminants leading to human and animal dis-
ease. With the recent increase in low-cost sequencing technol-
ogy and capacity, integrative analyses that concurrently study
the sharing of pathogens and commensal strains have emerged.
Exchanging and acquiring microbial strains within and between
animals and humans depend on exposure to a given microbial
community or strain, retention of/colonization by given strains
shaped through host or environmental factors, and establish-
ment of the strain within the larger community through compe-
tition and cooperation with the larger ecosystem (reviewed in
[121]).

Previous research showed that bacterial species are shared
between the environment, animals, and humans. As an exam-
ple, pig farms have a greater microbial diversity than suburban
homes [140]. However, microbiota sharing also depends on host
factors, exemplified by the higher similarities of strains shared
between pig-farmers and pigs than cow-farmers and cows [141];
this sharing is mediated through indoor air [142], yet only tran-
sient [143]. Also, it has been shown that family members share
the microbiota with their pet dogs, suggesting a direct spreading
from non-pathogenic strains between humans and animals
that are in close contact [144].

While strains sharing between humans, animals, and the
larger environment can be commensal, recent evidence sug-
gests it may cause disease. Environmental enteropathy, a
chronic inflammatory disease that is linked to childhood under-
nutrition, is directly linked to mouthing of soil that is contami-
nated by chicken droppings [145, 146], proximity to animals
[147], and contaminated water [147]; thus, it is favoring the
spread of enteric pathogens and either symptomatic or subclini-
cal infections [148–152]. However, evidence also shows that chil-
dren living in a farm environment experience less asthma and
allergy risk compared with children growing up in an urbanized
environment (“hygiene hypothesis”)—a phenomenon that is
likely mediated through early-life microbiota and changes in-
duced to immune-system maturation [153–155]. There is clear
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evidence for the sharing of non-pathogenic microbial strains in
a One Health context. However, research on the microbiome
within a One Health context remains scarce. More studies are
urgently needed utilizing a longitudinal design on integrated
microbiota studies exploring the source, strains, direction, and
magnitude of bacterial sharing.

Microbiota as reservoirs for antimicrobial resistance

A primordial example of One Health’s relationship with the
microbiota is antimicrobial resistance (AMR) [156]. AMR is con-
ferred by specific resistance genes that are carried by bacteria.
AMR is currently one of the most pressing global health prob-
lems; it is expected that multidrug resistant strains will indefi-
nitely increase globally. Misuse and overuse of antibiotics in
humans and animals are believed to be the main drivers of the
emergence of resistance [156]. AMR genes are found for as long
as bacteria co-exist with each other. They have spread rapidly
after the broad introduction of antibiotics in medicine and
agronomy. New AMR strains can be generated through gene
mutations and AMR genes can be transferred from environmen-
tal strains to pathogenic/human-related strains through several
mechanisms, including genetic recombination by horizontal
gene transfer, conjugation, phage transduction, or transforma-
tion [157]. The human intestinal microbiota is a hotspot for
AMR gene exchange due to the densely populated bacteria that
are in close proximity to each other. Inter-species and intra-
species competition leads to higher mutation rates, favoring the
spontaneous generation of new resistance mechanisms.
Further, the high cell density provides ideal conditions for ex-
change between transient and resident bacteria of the gastroin-
testinal tract.

Several other factors have also been shown to boost horizon-
tal gene transfer between commensals and/or enteropathogens.
For example, intestinal inflammation allows Enterobacteriaceae
to lead to veritable “blooms” hence favoring gene transfer be-
tween members of this family [158]. Artificial sweeteners have
also been shown to increase conjugative plasmid transfer be-
tween phylogenetically related and/or unrelated strains
through activation of the SOS response and increased cell mem-
brane permeability in the bacteria exposed to non-nutritious ar-
tificial sweeteners [159]. In line with these findings, horizontal
gene transfer for intestinal bacteria was increased among peo-
ple living in industrialized and urban communities compared
with those living in less industrialized settings [160]. It remains
to be proven if these factors thus also favor the occurence and
spread of AMR genes.

AMR is found not only in humans, but in any environment
where different bacteria co-exist and compete for nutrients and
other resources (including animals and the broader environ-
ment). Antimicrobial carrying strains can be shared within this
triangle, as can genetic material. As resistance is often con-
ferred by mobile elements, resistance can pass between differ-
ent compartments and different pathogenic and non-
pathogenic strains. The widespread use of antibiotics in farm
animals to increase growth results in alternative reservoirs that
can harbor resistances that are then passed on to humans, po-
tentially impacting pathogenic bacterial strains [161]. As
surveillance tools for bacterial diseases, drug use, and AMR-car-
rying strains in livestock is still poor and undeveloped, animals
present a real danger to the emergence and spread of AMR.

It is plausible that the global resistome found in human fecal
samples is significantly impacted by antibiotics approved for
animal use and by antibiotics used in human medicine [162].

However, there is an ongoing debate on how much resistance is
shared within a given habitat (i.e. from human to human) and
how much is shared between habitats (i.e. human–animal, ani-
mal–environment, or environment–human). A study in Peru
showed that resistomes across different habitats are generally
structured according to bacterial phylogeny and ecological gra-
dients, yet there are given AMR genes that can cross these bar-
riers [163]. This observation is in line with a previous study
assessing >2,000 full bacterial genomes, which found that hori-
zontal AMR and non-AMR gene transfer is mostly shaped by
ecology [164]. A recent study assessing AMR transfer between
farmers and their animals showed that microbial strains and
AMR genes are shared more easily between farmers and pigs
than farmers and other domestic animals [165]. Since the gas-
trointestinal tract of pigs closely resembles the gut ecosystem of
humans, it is plausible that the horizontal gene transfer and
AMR exchange are most likely between strains sharing the
same ecology. More detailed research is needed to assess AMR
exchange in the lens of One Health in order to design the best
interventions to combat this global threat.

Nowadays, there is growing interconnectedness of the hu-
man, animal, and environmental habitat, exaggerated through
globalization, travel, and the increasing number of persons suf-
fering from intestinal dysbiosis. AMR and especially AMR
strains in the intestinal microbiome are thus of tremendous
concern for public health and could well be the next emerging
pandemic we are facing.

Microbiota-targeted interventions are
promising tools to improve global health

As evidence of the importance of microbiota on health and dis-
ease accumulates, there is increased interest in intervening in
the microbiota and rehabilitating dysbiotic states. These so-
called “microbiota-targeted interventions/therapeutics” com-
prise probiotics (i.e. potential health-promoting bacteria, often
isolated from fermented food), prebiotics (i.e. fibers favoring the
growth of health-promoting bacteria), synbiotics (i.e. combina-
tions of probiotics and prebiotics), and antibacterial drugs and
substances (reviewed in [166–168]). Fecal microbiota transfers
(FMT) have also been used especially for refractory Clostridium
difficile infections [169, 170]. More recent interventions aim at ei-
ther replacing microbial-produced metabolites (postbiotics [171,
172]) or introducing specific foods to modulate the microbiota
[137, 173, 174]. Effectiveness of microbiota-targeted interven-
tions is highly dependent on the starting microbiota of the re-
cipient. Interventions using prebiotics require an initial
presence of the bacterial group in order for it to grow (permis-
sive microbiota). Further, microbial responses to dietary fiber
are highly individualized [174]. It is unclear why interventions
are highly dependent on the baseline microbiota, yet strains ca-
pable of enzymatically digesting given carbohydrates seem to
play a major role [175].

For FMT, the presence or absence of given bacterial species
in the donor and pre-FMT recipient microbiota can hinder or
promote the succession of specific microbial groups leading
from a disturbed microbial ecosystem back to a state of homeo-
stasis. The first wave of bacteria including members of
Desulfovibrio, Odoribacter, Oscillibacter, and Clostridioides genera
seems to prepare the ecosystem through secretion of metabo-
lites that helps reshape the overall ecosystem, while the second
succession (including especially bacteria with bile-acid metabo-
lizing activities) seems to lead to a restoration of “lost
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functions” [176]. This succession is thus favored when first-
wave bacteria are present or hindered if they are absent.

Microbiota-targeted interventions are rapidly gaining in pop-
ularity. Current interventions aim to either (i) induce general
community changes or punctual changes in health-promoting
bacteria or (ii) lead to functional rather than taxonomic changes
(Figure 2).

In the following section, we will discuss different interven-
tions and their potential to curb important public health
threats.

Interventions leading to community changes

Community changes can be completed by (i) replenishing miss-
ing taxa by reintroducing complex microbial communities using
fecal microbiota transplant or small synthetic microbial com-
munities of next-generation probiotics, (ii) introducing specific
dietary components favoring the growth of given groups/gilds

of bacteria, such as microbiota-accessible carbohydrates (MACs)
[177], or (iii) use of specific diets that are empirically tested for
promoting the growth of given bacterial groups/gilds [178].
Community changes can also be mediated through broad-
spectrum antibiotics and drugs suppressing a large group of
bacteria (reviewed in [168]).

A first trial using an empirically pre-tested microbiota-di-
rected food intervention has shown promising results in
changing microbiota composition and ameliorating growth of
moderately malnourished children in Bangladesh [137].
Clinical trials using MACs to ameliorate ill health are ongoing;
however, preliminary data from mouse models indicate that
MACs could have an important role in shaping the microbiota,
preventing infection [179], and improving the gut–brain axis in
obese mice [180]. As food is easily accessible and transportable,
microbiota-directed food interventions show a high potential
for improving microbiota-related detrimental health effects on
a global scale.

Figure 2. Microbiota-targeted interventions
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Interventions leading to punctual changes

Several other microbiota-targeted therapies provide punctual
microbiota changes, such as pre-synbiotics and pro-synbiotics,
phages, bacteriocins, and narrow-range antibiotics and drugs.
Probiotics are among the longest-used microbiota-targeted inter-
ventions. More than 100 years ago, the French-Russian scientist
Elie Metchnikoff hypothesized that lactic acid bacteria were able
to promote longevity and have beneficial health effects by replac-
ing “bad” bacteria such as the toxin-producing Clostridium. During
the First World War, the German scientist Alfred Nissle further
isolated an Escherichia coli strain from a soldier who did not de-
velop enterocolitis in response to shigellosis (E. coli strain Nissle
1917) and bacteria were used to treat gastrointestinal disease. The
term “probiotic” was then coined in the 1960s by Lilly and
Stillwell, who defined them as microbial-derived factors that stim-
ulate the growth of other organisms. In the late 1980s, Roy Fuller
emphasized that probiotics need to be viable and confer a positive
effect on the host (reviewed in [181]).

Today, most commonly used probiotic bacteria belong to the
group of Lactobacillus and Bifidobacterium. Others include the
yeast Saccharomyces cerevisiae, some E. coli and Bacillus species,
and less commonly used strains from other genera. Most of
these initial probiotics were isolated from fermented food, espe-
cially milk products. However, in the last year, there has been
growing interest in next-generation probiotics—a bacterial
strain isolated from healthy humans. Due to the promising ben-
efits for reducing the risk of metabolic disease, next-generation
probiotics include less commonly used species (i.e. A. mucini-
phila) of live or dead bacteria. Indeed, some of these next-
generation probiotics specific proteins such as isolated extract
of the outer-membrane protein Amuc_1100 [182] or a secreted
glucagon-like peptide [183] could ameliorate metabolic disease
[184]. Butyrate-producing bacteria are a new area of interest
since they are less prevalent in industrialized countries and es-
pecially in many patients with the most important public health
threats including undernutrition [185], ulcerative colitis [186],
and type 2 diabetes [187]. Several other bacterial strains are cur-
rently being explored as potential next-generation probiotics
(reviewed in [188]). However, use of next-generation probiotics
for general medical application is still a legal gray area.

Several other means of regulating the microbiota have been
used or are currently being developed. The term “bacteriophages,”
introduced by Felix D’Herelle in 1917, designated a hypothetical vi-
rus responsible for rapid bacterial death. Phages rapidly adopted
as a means of treatment in the pre-antibiotic era have been exten-
sively used in the Soviet medicine and have regained popularity
due to the rise of AMR (reviewed in [189]). While phages are tradi-
tionally used to treat infectious diseases, their use as microbiota-
modulating agents is increasingly discussed.

Last, bacteriocins may also help grow specific members of
the microbiota. Bacteriocins are antimicrobial peptides that
hamper growth of competing strains and are produced by spe-
cific strains of bacteria. In comparison to antibiotics, their mode
of action rarely induces resistance. Further, different bacterio-
cins exist with either narrow or broad-spectrum killing capaci-
ties, making them attractive for biotechnological use (reviewed
in [190]). More research on their mode of action as well as the
spectrum of activity is needed in order to use them efficiently
as microbiota-modulating drugs.

Although punctual change interventions show great poten-
tial for combating dysbiosis-related diseases in the future, their
use is currently slowed down by safety issues, legal and regula-
tory challenges in classifying, and medical approval [185].

Interventions leading to functional changes

Functional changes can be induced in the bacterial community
either through dietary changes, specific metabolites that are ec-
topically administered (i.e. postbiotics), or engineered probiotics
expressing given metabolites (i.e. microbiome engineering).

In previous years, microbiome engineering has been ham-
pered due to limited availability of genetic tools to work with
the gut microbiota. However, recent advances in the field of
synthetic biology may help accelerate the development of
strains and “smart” bacteria to help express given metabolites,
thus helping to combat pathogens, diagnose early stages of can-
cer, regulate mood, and reduce the prevalence of metabolism or
gastrointestinal disorders [191]. With the CRISPR-Cas9 technol-
ogy, formerly non-engineerable bacteria such as classical or
next-generation probiotic strains [192, 193] or whole microbial
communities can now be genetically modified [194]. Combining
the CRISPR-Cas9 methodology with phages allows single bacte-
rial species to be genetically modified in a whole microbiome
[185]. While several studies have highlighted the potential of
engineered microbes, to our knowledge, no human trials have
been conducted [195].

In recent years, modulating dysbiosis-associated pathophys-
iological changes through microbial-produced or microbial-
modified diet-derived metabolites, so-called “postbiotics,” has
gained popularity. Many pathophysiological changes are in-
duced not by the bacteria per se, but by the overproduction or
lack of given metabolites. Examples include the short-chain
acids acetate, butyrate, propionate, and lactate that are pro-
duced by the human microbiota and have important signaling
functions in the human host. Another example is tryptophan-
derived metabolites (i.e. 3-indolepropionic acid), which are
thought to limit intestinal inflammation by direct binding to the
host receptor aryl hydrocarbon receptor (reviewed in [196]).
Ectopic supplementation might provide the needed regulatory
functions; however, as there are no changes to the microbiota,
these metabolites have to be constantly supplied from external
sources to maintain a proper signaling function. Postbiotics are
now used in clinical trials to treat a variety of dysbiotic
diseases.

Overall, microbiota-targeted interventions are promising
tools to ameliorate and reverse dysbiosis-associated pathophys-
iological changes. More research is needed to understand the
underlying mechanisms and evaluate the safety of these treat-
ments for large-scale human trials.

Conserving the microbiota for future
generations
The concepts of “missing microbes,” VANISH and
BloSSUM taxa

The concept of so-called “missing microbes” [197, 198] proposes
the disappearance of bacterial species, which have co-evolved
with us as a human host over millions of years (so-called
“indigenous microbes”). The authors speculate that this is due
to our industrialized lifestyle and that their disappearance is
closely linked with the rise in post-modern diseases such as
asthma and obesity. The underlying reasoning is that optimal
host–microbial interactions maximize the allocation and use of
limited resources to benefit the host and its symbiotic microbial
community. Thus, changes in the microbial ecology are having
direct effects on human health, including height, weight, meta-
bolic health, and immune development. This concept of
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“missing microbes” is in contrast with the earlier “hygiene the-
ory,” which postulated a missing exposure to microbes through
exaggerated hygiene [199] rather than the disappearance of
given microbial taxa. As there is a vertical transmission of the
microbiota from a mother to her child, the authors postulate
that there is a step-wise decrease in particular bacterial species
upon exposure to a more industrialized context, favoring the
gradual increase in non-communicable diseases. Due to exag-
gerated hygiene, there is also less horizontal transfer of micro-
bial species, accentuating the microbial decrease and leading to
a complete loss of given bacterial taxa.

The concept of “missing microbes” has later been extended
to the concept of “industrialization” or “Westernization” of the
microbiome. Research has shown a step-wise decrease in alpha
diversity (i.e. number of co-existing taxa) in the fecal microbiota
from traditional hunter-gatherer communities compared with
traditional but sedentary populations and industrialized coun-
tries such as the USA or countries in Europe [106]. There seems
to be a consistent loss of certain taxa, termed “volatile or associ-
ated negatively with industrialized societies of humans”
(VANISH) taxa. Concomitantly, we observed an increase in other
taxa, termed “bloom or selected in societies of urbanization/
modernization” (BloSSUM) taxa [200]. There is increasing evi-
dence that this shift in bacterial taxa is directly associated with
the rise in non-communicable diseases.

Decrease in the VANISH taxa, including species from the
families Prevotellaceae, Spirochaetaceae, and Succinivibrionaceae, is
primarily associated with a decrease in the consumption of
MACs in Westernized communities [177, 201]. VANISH taxa are
capable of degrading complex plant-derived carbohydrates as
they encode different carbohydrate-active enzymes (CAZyme),
such as glycoside hydrolase. Research shows that this micro-
biota transition is recapitulated by immigration of people from
a country with a traditional lifestyle, such as Thailand, to a very
industrialized country, such as the USA; however, this is aggra-
vated over generations of living in the new host country [111].
Similarly, a recent experiment found that the microbiota of wild
mice and domesticated mice started to resemble each other af-
ter their diets were switched (e.g. wild mice eating a domestic
mice diet); it reiterates the important role of diet in global
microbiome differences [90].

On the other hand, more of the BloSSUM taxa, including mem-
bers of the Bacteroidaceae, Enterobacteriaceae, and Verrucomicrobiaceae
families, were found in industrialized countries; these members are
known to lead to low-grade inflammation and are favored by the
highly refined, high-fat, low-fiber diet consumed in many industri-
alized countries [200].

Thus, a recent shift in the overall microbiota and especially
a loss in health-promoting taxa seems to be associated with the
rise in non-communicable diseases.

Initiatives to conserve the world’s human microbiota

There is a rapid decline in microbial species in Westernized so-
cieties compared with traditional communities [200]. Further,
non-communicable diseases are on a constant rise in
Westernized societies and are likely linked to the human micro-
biota. This suggests that we are losing “health-promoting” bac-
teria and that we should conserve these taxa before they
become extinct [202].

Two global initiatives have started collecting and preserving
the human microbiota around the world. The Global Microbiota
Conservancy focuses on isolating and conserving bacterial
strains from the human fecal microbiota. The Microbiota Vault

aims to conserve and characterize whole microbial communi-
ties in an international storage facility similar to the Global
Seed Vault [203, 204]. While the two approaches differ in the
samples they store (i.e. isolated strains vs whole microbial com-
munities), the general idea, and the legal and ethical issues they
face are similar. Further, both initiatives give the property rights
of the collected strains to the local communities that provided
the samples.

Besides storing microbiota for future generations, we also

need to preserve our own microbiota by reducing exposure to
factors that impair our microbiota. The global overuse of antibi-
otics, consumption of processed food and food additives, a gen-
eral loss of nutritional diversity, increases in infants born by C-
section, low levels of breastfeeding, and exaggerated hygiene all
have their toll on the diversity of our microbiota [201]. However,
this could be easily avoided. To not only maintain our microbial
diversity but also sustain public health on a global scale, we
should increase awareness on the important role our micro-
biota has in maintaining proper health and well-being.

In conclusion, the intestinal microbiota is at the cornerstone
of human health and predicts the life-course trajectory for
humans. Influenced by individual, environmental, and geo-
graphic factors, research on the intestinal microbiota should ap-
proach scientific hypotheses utilizing knowledge of its interplay
with the larger ecosystem. Applying this approach will further
our understanding on how perturbations of the intestinal
microbiota impacts human health. In order to successfully
change the intestinal microbiota long-term, we must have a
better understanding of factors governing microbial composi-
tion and conserve the microbial diversity for future generations.
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Emerging applications of bacteriocins as antimicrobials, an-
ticancer drugs, and modulators of the gastrointestinal
microbiota. Pol J Microbiol 2021;70:143–59.

191. Sonnenburg JL. Microbiome engineering. Nature 2015;518:
S10.

192. Guo C-J, Allen BM, Hiam KJ et al. Depletion of microbiome-
derived molecules in the host using Clostridium genetics.
Science 2019;366:eaav1282.

193. Mimee M, Tucker AC, Voigt CA et al. Programming a human
commensal bacterium, Bacteroides thetaiotaomicron, to
sense and respond to stimuli in the murine gut microbiota.
Cell Syst 2015;1:62–71.

194. Ronda C, Chen SP, Cabral V et al. Metagenomic engineering
of the mammalian gut microbiome in situ. Nat Methods 2019;
16:167–70.

Microbiota and global health | 15



195. Dosoky NS, May-Zhang LS, Davies SS. Engineering the gut
microbiota to treat chronic diseases. Appl Microbiol Biotechnol
2020;104:1–15.

196. Descamps HC, Herrmann B, Wiredu D et al. The path toward using
microbial metabolites as therapies. EBioMedicine 2019;44:747–54.

197. Blaser MJ, Falkow S. What are the consequences of the disap-
pearing human microbiota? Nat Rev Microbiol 2009;7:887–94.

198. Blaser MJ. Who are we? Indigenous microbes and the ecol-
ogy of human diseases. EMBO Rep 2006;7:956–60.

199. Strachan DP. Hay fever, hygiene, and household size. BMJ
1989;299:1259–60.

200. Sonnenburg JL, Sonnenburg ED. Vulnerability of the indus-
trialized microbiota. Science 2019;366:

201. Sonnenburg ED, Smits SA, Tikhonov M et al. Diet-induced
extinctions in the gut microbiota compound over genera-
tions. Nature 2016;529:212–5.

202. Blaser MJ. The past and future biology of the human micro-
biome in an age of extinctions. Cell 2018;172:1173–7.

203. Rabesandratana T, Microbiome Conservancy Stores Global Fecal
Samples. Science 2018;362:510–11. doi: 10.1126/science.362.6414.510 .

204. Bello MGD, Knight R, Gilbert JA et al. Preserving microbial di-
versity. Science 2018;362:33–4.

16 | J.T. Wallenborn and P. Vonaesch




