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Abstract

As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA
lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype
relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP)
alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal
cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental
abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg2/2 mouse model which -in
a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of
subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short
lifespan of 4–5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver,
yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates
a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings
therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in
other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA
repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific
components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish
the Xpg2/2 mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and
strengthen the link between DNA damage and aging.
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Introduction

If DNA damage, either inflicted from exogenous or endogenous

sources, cannot be repaired, this has detrimental consequences for

an organism ranging from transcription blocks, permanent cell

cycle arrest and mutations, to cell death. In the end, this

unrepaired DNA damage contributes to the onset and progression

of the aging process, as well as to cancer [1–3]. Cells are equipped

with a set of elaborate DNA repair mechanisms integrated into

a complex DNA damage response machinery that jointly attempt

to fix the unrepaired DNA [4]. One such DNA repair mechanism

is the Nucleotide Excision Repair (NER) pathway that removes

a wide category of helix-distorting lesions, such as those induced

by UV and bulky chemical adducts, in a tightly coordinated

process involving over 30 proteins [5–7]. NER can be divided into

two subpathways based on the mode of damage recognition. The

Global Genome (GG-)NER subpathway specifically involves the

XPC and XPE protein complexes, and probes the entire genome

for lesions that disrupt base-pairing [5,7–9]. Transcription-

Coupled (TC-)NER, on the other hand, detects helix-distorting

lesions that stall transcription in the transcribed strand of

expressed genes, and hence enables resumption of transcription.

TC-NER is independent of XPC and XPE and specifically

involves proteins such as CSA, CSB and UVSSA [8,10,11]. After
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lesion recognition, the subsequent ‘cut-and-patch’ core repair

reaction encompasses local opening of the DNA helix and lesion

verification, performed by the TFIIH complex together with XPA.

Both correctly position the structure-specific endonucleases

ERCC1/XPF and XPG for strand-specific excision of the lesion

as part of a 22–30 bp oligonucleotide [5,7,12]. Finally, the gap is

filled by repair synthesis and closed by ligation [5,7,12].

Multiple NER proteins have been attributed additional roles,

both in DNA repair pathways other than NER, and in

transcription regulation. For instance, TFIIH is an essential

component of the general transcription machinery [13,14], but

also other NER factors, including XPG and CSB, have been

implicated in transcription regulation [15–18]. The 59 endonu-

clease ERCC1/XPF participates in the repair of interstrand

crosslinks [19,20] and subpathways of DNA double-strand break

repair [21]. XPC, CSB, and XPG have been individually

implicated in promoting base excision repair (BER) of oxidative

DNA damage [22–30]. TFIIH and XPG are, together with CSB,

thought to be involved in the early steps of Transcription-Coupled

Repair (TCR), and XPG interacts directly with both CSB and

RNA Polymerase II [31]. Although still controversial, there are

accumulating reports that TCR not only directs NER to blocked

transcription but may also recruit BER for preferential repair of

oxidative DNA damage in transcribed strands [32–34]. Such

a mechanism might be related to the roles of both CSB and XPG

in promoting BER more globally. If correct, it could explain the

much greater consequences for the organism of TCR defects

compared to defects in NER alone (see below) [35].

A number of rare, autosomal recessive disorders resulting from

mutations in NER genes underscore the importance of genome

maintenance for the prevention of cancer as well as aging [3].

NER-associated diseases are characterized by sun (UV) hypersen-

sitivity and include xeroderma pigmentosum (XP), UV-sensitivity

syndrome (UVSS), Cockayne syndrome (CS), cerebro-oculo-facio-

skeletal (COFS) syndrome, XPF-ERCC1 (XFE) progeroid syn-

drome, trichothiodystrophy (TTD) and disorders that combine the

symptoms of these syndromes, including XP/CS [35–39]. XP

originates from defects in GG-NER or total NER activity and is

characterized by an over 2000-fold increased risk of cancer in sun-

exposed skin and, to a much lesser extent, in internal organs [36].

XP patients may also develop progressive neurological symptoms

and neuronal degeneration depending on the severity of the total

NER deficiency [36,39,40]. UVSS is characterized by skin UV

hypersensitivity without actually developing skin cancer. UVSS

results from the selective loss of TC-NER function as a conse-

quence of mutations in the proteins involved in detection of UV-

induced transcription-blocking DNA lesions, i.e. UVSSA, CSA,

and CSB [11,35,41–44]. Mutations in CSA and CSB, however,

generally cause CS, a heterogeneous multisystem disorder that, in

addition to UV-sensitivity, is characterized by severe growth

failure and cachexia, accelerated aging features, short lifespan, and

progressive sensori-neuronal abnormalities [38,45]. The severe

symptoms of CS cannot be explained by the loss of TC-NER

function as they do not occur in fully NER-deficient XP patients

and TC-NER deficient UVSS patients. Therefore, CS symptoms

have been linked to additional, yet incompletely, defined functions

of CSA and CSB in DNA repair, transcription regulation, other

processes, or a combination of deficiencies [3,46,47]. The same

applies for mutations in the down-stream NER factors XPB, XPD,

XPF, ERCC1 and XPG that cause combined XP/CS, or severe

developmental/degenerative multisystem disorders such as COFS

and XFE that share multiple features with severe CS forms

[35,48–51]. Thus CS symptoms can result from mutations in

multiple proteins that operate together in NER, but the symptoms

caused by these mutations cannot be explained by NER deficiency

alone, raising questions about the identities of these non-NER

activities underlying CS symptoms and the extent to which

different symptoms reflect deficits of different cellular processes

[35,46].

Mutations in the structure-specific NER 39-endonuclease XPG

are rare, with less than 20 patients and 25 mutant alleles described

so far [52–55], and cause a spectrum of disease phenotypes

varying from XP to XP/CS and COFS [53]. Point mutations that

selectively eliminate XPG nuclease activity cause XP, while C-

terminal truncations, destabilizing point mutations, and mutations

that abolish the interaction between XPG and the basal

transcription factor TFIIH cause XP/CS and COFS [52–58].

These data support the notion that a deficient function of XPG

outside NER is responsible for the severe CS symptoms

[15,52,53,55–57].

For most NER disorders, mouse mutants have been generated

that mimic the genetic defect found in patients, and to various

extents reproduce XP and CS-like features as well as the progeroid

hallmarks found in the corresponding human syndrome [59–62].

Accordingly, Xpg-null (Xpg2/2) mice were found to develop

a severe phenotype characterized by growth deficiency and very

short lifespan, resembling severe XP/CS [63]. In contrast, Xpg
mutant mice carrying amino acid substitutions that selectively

abolish the nuclease function of XPG (XpgE791A and XpgD811A)

show severe UV-sensitivity but normal lifespan, hence, reprodu-

cing the XP phenotype [64,65]. In addition, a mutant XPG

construct containing a C-terminal truncation lacking the last 360

amino acids that was made to mimic the genotype of some XP-G/

CS patients, developed a growth deficiency and short-living

phenotype resembling that of Xpg2/2 mice, albeit somewhat

milder [65]. Yet another C-terminal truncation mutant lacking the

last 180 amino acids showed a normal lifespan, but produced a CS-

like growth-deficient short-living phenotype after crossing with

Xpa2/2 mice that are already fully NER-deficient [65,66].

Significantly, the same conversion of a normal lifespan into

a short-living mouse model is observed after crossing CSA- or

CSB-deficient CS mice with total NER- (Xpa2/2) or GG-NER

(Xpc2/2) deficient mouse models [67–69], but not by crossing

NER-deficient XpgD811A with Xpa2/2 mice [66]. Together these

Author Summary

Accumulation of DNA damage has been implicated in
aging. Many premature aging syndromes are due to
defective DNA repair systems. The endonuclease XPG is
involved in repair of helix-distorting DNA lesions, and XPG
defects cause the cancer-prone condition xeroderma
pigmentosum (XP) alone or combined with the severe
neurodevelopmental progeroid disorder Cockayne syn-
drome (CS). Here, we present a novel (conditional) Xpg2/2

mouse model which -in a C57BL6/FVB F1 hybrid back-
ground- displays many progressive progeroid features,
including early cessation of growth, cachexia, kyphosis,
osteoporosis, neurodegeneration, liver aging, retinal de-
generation, and reduced lifespan. In a constitutive mutant
with a complex phenotype it is difficult to dissect cause
and consequence. We have therefore generated liver- and
forebrain-specific Xpg mutants and demonstrate that they
exhibit progressive anisokaryosis and neurodegeneration,
respectively, indicating that a cell-intrinsic repair defect in
neurons can account for neuronal degeneration. These
findings strengthen the link between DNA damage and
the complex process of aging.

Xpg2/2 as a Mouse Model for Progeria
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data indicate a deleterious synergistic interaction between NER

deficiency and loss of non-NER activities that underlie CS.

Furthermore, they show that the C-terminus of XPG could play

a role in the CS symptoms, and that the XPG-deficient

Xpg2/2 mice may reproduce the phenotype of Xpa2/2Csb2/2,

Xpc2/2Csb2/2 or Xpa2/2Csa2/2 double mutant mice [62,66–69].

In previous analyses we clearly observed progeroid character-

istics in many NER mutant mouse models including Xpa/Csb, Xpb,

Xpd, and Ercc1 mutants [51,68,70–72], yet the occurrence of

progeroid features in Xpg2/2 mice has hitherto been poorly

established, mostly due to their very short lifespan. Since we are

particularly interested in the effect of Xpg deletion on organ-

specific aging, we generated a conditional Xpg mutant. As genetic

background can have a significant effect on phenotype de-

velopment, we first re-examined the pathological characteristics

of Xpg2/2 mice in a C57BL6/FVB F1 hybrid background, as was

previously described for Ercc1 mutant mice [51,72]. In this hybrid

background Xpg2/2 mice lived longer and presented progeroid

features including cachexia and osteoporosis with pronounced

degenerative phenotypes in both liver and brain. We next studied

the effect of liver- and forebrain-specific inactivation of Xpg,

showing that the observed phenotypes are indeed due to lack of

XPG protein. Together our data show that, consistent with

previous data in ERCC1- and CSB/XPA-deficient mice, Xpg2/2

mice develop a multisystem progeroid degenerative phenotype.

Results

Generation of NER-deficient Xpg2/2 mice
To generate a Cre-inducible Xpg knockout allele we flanked the

third exon of Xpg with LoxP sites (Figure 1A). Deletion of this

exon causes a frame shift and a premature translational stop

immediately after exon 2 at amino acid residue 89 (instead of the

full-length 1170). After transfection to 129 ES cells and selection of

properly targeted clones (Figure 1B and Materials and Methods),

two independent transfected clones were used to generate germ-

line transmitting chimeras (Figure 1C). Heterozygous males,

carrying the conditional Xpg allele, were crossed to females

ubiquitously expressing Flp for excision of the Neomycin cassette

and to yield mice that are heterozygous for the floxed Xpg (Xpgf)

allele. Xpgf/+ mice were backcrossed and maintained in FVB/N

background. To generate Xpg mice carrying a knockout allele

(Xpg2, Figure 1A), Xpgf/+ mice were crossed to Cag-Cre mice,

which ubiquitously express Cre recombinase from germline [73],

yielding heterozygous Xpg+/2 animals (Figure 1C). Xpg+/2 animals

were.10 times backcrossed into C57BL6 or FVB/N genetic

backgrounds. Unless otherwise stated, experiments were per-

formed with Xpg2/2 mice in the C57BL6/FVB F1 hybrid

background obtained from intercrossing C57BL6 Xpg+/26FVB/

N Xpg+/2 animals to minimalize background specific effects (see

below).

The presence of a premature stop codon in the Xpg2 allele was

confirmed by sequencing Xpg cDNA from liver of Xpg2/2 mice

(Figure S1A). Accordingly, Western immunoblot analysis with an

antibody raised against the central spacer region (R-domain) of

XPG shows the absence of XPG protein product in mouse dermal

fibroblasts (MDFs) isolated from Xpg2/2 mice (Figure 1D). Next,

we tested DNA repair deficiency of Xpg2/2 MDFs. In accordance

with complete NER deficiency, Xpg2/2 MDFs showed an almost

10-fold hypersensitivity to UV, similar to fully NER-defective

MDFs derived from Xpa2/2 mice (Figure 1E) [74]. In addition,

Xpg2/2 MDFs were hypersensitive to treatment with Illudin S

(Figure 1E), consistent with the loss of TC-NER function [75], and

were deficient in UV-induced unscheduled DNA synthesis in line

with loss of GG-NER activity (Figure 1F). Also, recovery of RNA

synthesis after UV exposure was almost completely abolished in

Xpg2/2 MDFs, further demonstrating loss of TC-NER activity

(Figure 1G). Xpg2/2 MDFs showed no increased sensitivity to

potassium bromate (KBrO3) which causes oxidative DNA lesions,

and a minimal increased sensitivity to the cross-linking agent

cisplatin (Figure S1B).

Genetic background affects perinatal viability and
lifespan of Xpg2/2 mice

In view of a significant effect of genetic background on

embryonic lethality and lifespan in ERCC1-deficient mice

[51,72], we examined whether a similar genetic background effect

occurred in Xpg2/2 mice, by comparing birth frequencies and

lifespan of Xpg2/2 mice in a C57BL6, FVB/N or a C57BL6/FVB

F1 hybrid background. In C57BL6 background birth frequencies

were below Mendelian expectations (,8%, Table 1), whereas in

the FVB/N and C57BL6/FVB F1 hybrid background birth

frequencies were Mendelian and near-Mendelian, respectively

(Table 1). Also the lifespan of Xpg2/2 animals was strongly

dependent on genetic background, with C57BL6 Xpg2/2 mice

showing a lifespan of 3 weeks, and Xpg2/2 animals in FVB/N and

C57BL6/FVB F1 hybrid background living for 15–18 weeks

(Figure 2A).

Cachexia, short lifespan and osteoporosis in Xpg2/2 mice
Further analysis of C57BL6/FVB F1 Xpg2/2 mice showed that

they had the same size and weight as wild type and heterozygote

littermates at late embryonic stage (E17.5; Figure 2B and C).

However, after birth, Xpg2/2 mice showed reduced growth and

weight gain compared to controls, and stopped growing at 6–8

weeks when their body weight was about 65–70% of that of wild

type littermates (Figure 2C). From 10–11 weeks, body weights

declined and the Xpg2/2 mice became progressively cachectic

(Figure 2C and D). At 14 weeks all Xpg2/2 mice were severely

runted (Figure 2D), and the mice died a few weeks thereafter

between 15–18 weeks of age (Figure 2A and E). The growth

deficiency was paralleled by the development of kyphosis

(Figure 2D and F). In addition, Xpg2/2 mice progressively

developed neurological symptoms, including clasping of the

hind-limbs when lifted by their tails (Figure S2A), and at a later

time point fine tremors (Figure 2E). Accelerating rotarod and grip

strength tests in 14-week old Xpg2/2 mice revealed severe motor

deficits and muscle weakness at this age (Figure S2B and C).

Computed tomography (CT) confirmed severe kyphosis in

Xpg2/2 mice at 16 weeks of age (Figure 2F). To further examine

skeletal abnormalities and the occurrence of osteoporosis as

observed in other NER-deficient mouse models [68,76–79], we

measured several bone parameters using femoral bones. Analysis

of bone strength revealed decreased strength of the Xpg2/2

femoral bone at 14–16 weeks (Figure 2G). Micro-CT analysis

showed that the thickness of the trabeculae and cortex of the

femoral bones was significantly smaller in Xpg2/2 compared to

wild type mice at 14–17 weeks, but not yet at 7 weeks (Figure 2H).

Overall, these data indicate a progressive increase of age-related

features such as osteoporosis.

Mild progeroid features and a ‘survival-like’ stress
response in livers of Xpg2/2 mice

Weight loss and reduced size of Xpg2/2 mice was associated

with reduced weight of internal organs (Figure S3A) and with

a strong reduction in the amount of subcutaneous fat (Figure S3B).

The Xpg2/2 mice previously reported by Harada et al. [63]

Xpg2/2 as a Mouse Model for Progeria
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showed developmental abnormalities of the gastro-intestinal

tract. These gastro-intestinal abnormalities were proposed to be

a major contributor of the post-natal growth failure and short

lifespan (,3 weeks) of their animals [63]. However, in contrast to

their data, the gastro-intestinal tract of our Xpg2/2 mice had

a normal size and macroscopic appearance, and showed a normal

histological appearance in HE-stained sections (Figure 3A).

Furthermore, staining for the proliferative cell marker Ki-67

indicated that the number of proliferative cells in the intestinal

epithelium was similar between Xpg2/2 and wild type mice

(Figure 3A). In accord with normal function of the gastro-intestinal

tract we found that food intake per gram body weight was similar

between wild type and Xpg2/2 animals (Figure S3C).

The liver is a central organ in many aspects of metabolic

control, including regulation of circulating glucose levels and

detoxification, and it plays a key role in regulation of IGF1-

somatotrophic axis signaling. Previous studies have shown that

ERCC1/XPF-deficient mice develop multiple liver abnorma-

lities, in particular anisokaryosis resulting from polyploidy, and

intranuclear inclusions [72,80–83]. Analysis of HE-stained liver

sections of our Xpg2/2 mice revealed mild anisokaryosis, and

increased mean nuclear size at 14 weeks, but not at 4 weeks of age

(Figure 3B). In addition, sporadically, hepatocytes had intra-

nuclear inclusions. These liver nuclear changes are a well charac-

terized phenomenon in the aging liver, and indicate that

Xpg2/2 mice show features of accelerated aging in the liver

similar to Ercc1D/2 mice [72,82].

Liver cells of ERCC1-deficient and other progeroid NER-

deficient mouse mutants display changes in gene expression that

encompass a downregulation of catabolic and oxidative metabo-

lism and an upregulation of antioxidant and stress defense

pathways, suggestive of a compensatory survival response to cope

with increased DNA damage [51,68,84,85]. To determine

whether Xpg2/2 liver cells also display a ‘survival-like’ stress

response, we determined expression levels of selected antioxidant

and somatotrophic genes by real-time PCR. Indeed, mRNA levels

from a subset of antioxidant effector genes, including Nqo1, Srxn1,

Gstt2 and Gsta1, were significantly increased in liver homogenates

of young (7-week old) Xpg2/2 animals compared to controls. At 14

weeks of age, we observed a similar significant increased

expression of Nqo1 and Gsta1 while mRNA from the other

antioxidant effector genes tested showed unaltered expression

(Figure 3C). Expression levels of Nrf2, which is a potent inducer of

the antioxidant response element (ARE), were unaltered, in line

with the fact that NRF2-activation is largely achieved by post-

translational mechanisms [86]. As increased expression of

antioxidant genes could be an indication of increased genotoxic

stress, we also checked the expression of the p53-responsive kinase

inhibitor p21, a master regulator of cell survival and death [87],

which is generally increased after DNA damage and was

previously shown to be elevated in livers of Ercc1 mutant mice

[88]. Expression levels of p21 doubled at the age of 7 weeks and

were massively increased at the age of 14 weeks, indicative of

genotoxic stress caused by the absence of XPG. To determine

changes in somatotrophic gene expression we examined mRNA

levels of Ghr, Igf1r, Igf1 and Igfbp3. We found a two-fold

suppression of Ghr and Igf1r mRNA expression at 7 weeks, and

a significant downregulation of Ghr mRNA levels at 14 weeks of

age (Figure 3D). Together the data indicate that the Xpg2/2 liver

in part reproduces gene expression changes observed in other

short-living NER-deficient mice, which we refer to as a survival-

like stress response. Finally, consistent with other NER-deficient

progeroid mice [51,85], we found significantly reduced steady-

state blood glucose levels in Xpg2/2 mice (Figure 3E).

Age-related accumulation of neurodegenerative changes
in Xpg2/2 central nervous system

The occurrence of neurological abnormalities and impaired

motor behavior in Xpg2/2 mice (Figure 2E and S2), as well as the

abundant neurodegenerative features in ERCC1-deficient and

combined XP/CS mouse models [89–91], prompted us to

investigate the central nervous systems of Xpg2/2 animals for

Figure 1. Generation of Xpg2/2 mice. (A) Genomic organization and disruption strategy for Xpg depicting the wild type allele (+), the targeting
construct, the targeted allele (fn), the conditional allele after Flp-mediated recombination of Frt sites (f) and the targeted Xpg allele following
subsequent Cre-mediated recombination of LoxP sites (2). Exons 2–5 are indicated by black boxes. PCR primers are shown as arrows. (B) Southern
blot and PCR analysis of an ES clone showing the correct insertion of the targeting construct. ES cell genomic DNA was digested with EcoRI for
Southern blot analysis and hybridized with a 0.9 kb DpnI probe. The wild type (wt) allele yields a 7.4-kb fragment whereas the targeted (tg) allele
yields a 4.1-kb fragment. The NheI-digested PCR product shows the 2.3-kb and 2.2-kb bands corresponding with the wt and tg allele, respectively (see
also panel A). (C) PCR detection of mouse genotypes using the primers F1, NeoF and R1 as indicated as in A. (D) Immunoblot analysis of extracts from
Xpg2/2 and wt MDFs using a rabbit polyclonal antibody raised against a peptide conserved between human and mouse XPG. Tubulin is used as
loading control. (E) Primary Xpg2/2 and wt MDFs, cultured at low (3%) O2 levels were irradiated with the indicated doses of UV-C (left) or treated with
the indicated doses of Illudin S for 1 h (right). After 48 h recovery, survival was assessed by cell count. (F) UV-induced UDS in primary Xpg2/2 and wt
MDFs reveals a severe GG-NER defect in Xpg2/2 cells. MDFs were irradiated with 16 J/m2 of UV-C. UDS levels are expressed relative to the non-
irradiated wt cells. (G) UV-induced RRS in primary Xpg2/2 and wt MDFs reveals a severe TC-NER defect in Xpg2/2 cells. MDFs were irradiated with 16 J/
m2 of UV-C. 16 h after UV irradiation the wt cells show recovery of RNA synthesis, while Xpg2/2 MDFs only show residual activity in nucleoli (rRNA
transcription). Arrowheads indicate nuclei. Error bars indicate standard error of the mean. **p,0.01.
doi:10.1371/journal.pgen.1004686.g001

Table 1. Xpg2/2 mice are born below Mendelian ratio in a C57BL6 background.

Total +/+ +/2 2/2 Genetic background

60 22 (36.7%) 33 (55.0%) 5 (8.3%)** C57Bl6

39 11 (28.2%) 16 (41.0%) 12 (30.8%) FVB/N

545 156 (28.6%) 276 (50.6%) 112 (20.6%)* F1 (C57Bl6/FVB)

Ratio of knockout mice born in different genetic backgrounds.
*p,0.05;
**p,0.01 deviation from Mendelian ratio (ChiSquaredTest).
doi:10.1371/journal.pgen.1004686.t001

Xpg2/2 as a Mouse Model for Progeria
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Figure 2. Progeroid characteristics of Xpg2/2 mice. (A) Survival of Xpg2/2 mice in a C57Bl6 (red), FVB/N (green) or C57Bl6/FVB F1 hybrid (blue)
background; n = 5 (C57Bl6), n = 10 (FVB/N), n = 14 (C57Bl6/FVB F1 hybrid). (B) Average body weight of embryonic 17.5-day old F1 hybrid Xpg2/2 and
wild type (wt) littermates; n$12 animals/group. (C) Average body weight of F1 hybrid wt males (black triangles), wt females (black circles), Xpg2/2

males (grey triangles), and Xpg2/2 females (grey circles); n$4 animals/group. (D) Left: Photograph of a 7-day old F1 hybrid Xpg2/2 and wt littermate,
showing no apparent differences except a slightly smaller size. Top right: Photograph of a 14-week old Xpg2/2 mouse. Bottom right: Side by side
comparison of the same 14-week old Xpg2/2 and wt littermate showing a pronounced growth deficiency of the Xpg2/2 mouse. (E) Onset of hind limb
clasping (orange), tremor (red) and kyphosis (green) with age and survival of F1 hybrid Xpg2/2 mice; n = 33 (clasping, tremor and kyphosis), n = 14
(survival). (F) CT-scan of a 16-week old F1 hybrid wt (left) and Xpg2/2 (right) mouse showing prominent curvature of the spine (kyphosis) in the Xpg2/

2 mouse. (G) Bone strength of F1 hybrid Xpg2/2 and wt mice analyzed by a 3-point-bending assay of the femur at an average age of 15 weeks; n$6
animals/group. (H) Cortical (left) and trabecular (right) thickness of the femora of F1 hybrid Xpg2/2 and wt mice at different ages; n = 4 animals/group.
Error bars indicate standard error of the mean. *p,0.05, **p,0.01.
doi:10.1371/journal.pgen.1004686.g002
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neurodegenerative changes. Macroscopically, the brains and

spinal cords of Xpg2/2 mice showed a normal appearance, albeit

somewhat smaller. In addition, the gross histological organization

analyzed in thionin-stained sections appeared normal in all brain

regions. As a first step to examine the occurrence of neurodegen-

erative changes, we examined the brains of 4- and 14-week old

Xpg2/2 mice immunohistologically for glial acidic filament protein

(GFAP) expression, which outlines reactive astrocytosis in response

to neuronal injury. A mild increase in GFAP immunostaining

occurred in patches in multiple nervous system areas at 4 weeks

(Figure 4A and S4A). Instead, at 14 weeks, Xpg2/2 mice showed

a prominent ubiquitous increase in GFAP staining throughout the

entire central nervous system including spinal cord, indicative of

widespread astrocytosis (Figure 4A and S4A). Double-labelling of

GFAP and the microglia cell marker Iba-1 showed that the

increased GFAP staining was paralleled by microglia activation,

characterized by increased Iba-1 immunoreactivity and the

transformation of resting microglia cells into activated cells with

thicker processes and larger cell bodies (Figure S4B and C).

Next, to determine whether Xpg2/2 central nervous system cells

experience genotoxic stress, we studied the expression of the

transcription factor p53, which is activated by multiple types of

DNA damage and is expressed in neurons and macroglia of many

NER-deficient mouse models including mice defective in Ercc1,

Csa or Csb [89–91]. Immunohistochemistry revealed p53-positive

cells in all central nervous system regions. Analysis of the p53

density in neocortex and cerebellum indicated an increase in

number of p53-positive cells in brains of 14-week old compared to

4-week old Xpg2/2 mice (Figure 4B). Similar to our findings in

other NER mutant mice [89–91], double labelling of p53 with

neuronal (NeuN) and astrocytic (GFAP, S100b) markers, indicated

that these p53-positive cells include neurons, astrocytes (GFAP+
or S100b+; Figure S4D), and oligodendrocytes. Although not

systematically investigated, we also noted that, as in other

Figure 3. Intestine and liver phenotype of Xpg2/2 mice. (A) Representative images of HE and Ki67 stained small intestine (SI) of 14-week old
Xpg2/2 and wild type (wt) mice showing no gross morphological differences. (B) Average nucleus size of hepatocytes in the liver of 4- and 14-week
old Xpg2/2 and wt mice; n$3 animals/group. Bottom right: magnification of a nuclear inclusion found sporadically in liver sections of 14-week old
Xpg2/2 mice. (C) Relative mRNA expression levels of several antioxidant genes and the DNA damage response gene p21 in liver tissue of 7- and 14-
week old Xpg2/2 and wt mice. All values are corrected for TubG2, Hprt, and Rps9 (Table S1) expression as internal standard and normalized to the 7-
week old wt expression levels; n = 4 animals/group. (D) Relative expression levels of the somatotrophic genes Ghr, Igf1r, Igf1, and Igfbp3 in liver tissue
of 7- and 14-week old Xpg2/2 and wt mice. All values are corrected for TubG2, Hprt, and Rps9 expression and normalized to the 7-week old wt
expression levels; n = 4 animals/group. (E) Average basal blood glucose levels in groups of 4–7 and 12–18 week old Xpg2/2 and wt mice; n$15
animals/group. Scale bars: 50 mm (A), 10 mm (B). Error bars indicate standard error of the mean. *p,0.05, **p,0.01.
doi:10.1371/journal.pgen.1004686.g003
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NER-deficient mice, in neocortex and cerebellar cortex the

majority of p53-positive cells were neurons, while in spinal cord

a large proportion of p53-positive cells were astrocytes (Figure

S4E).

To obtain evidence for the occurrence of neuronal death, we

analyzed calbindin staining in cerebellar cortex where it outlines

Purkinje cells and enables easy detection of the degeneration of

these cells [90–92]. Calbindin staining revealed degeneration and

Figure 4. Increased cell death, degeneration and stress responses in post-mitotic tissues of Xpg2/2 mice. (A) Representative images of
GFAP immunostained sagittal neocortex sections of 4- and 14-week old Xpg2/2 and wild type (wt) mice showing progressive astrocytosis in Xpg2/2

mice. cc: corpus callosum. (B) Quantification of p53-positive cells per mm2 in neocortex (NCx) and cerebellum (Cb) sections of 4- and 14-week old
Xpg2/2 and wt mice; n = 3 (14 weeks) and the average of five sections of a 4-week old Xpg2/2 and wt animal. (C) Representative images of calbindin
immunostained sagittal cerebellum sections of 4- and 14-week old Xpg2/2 and wt mice. Right panel: Magnification of the areas marked with dotted
black boxes. Arrows indicate cerebellar torpedoes. ml: molecular layer, gl: granular layer. (D) Quantification of TUNEL-positive cells per cm2 in
neocortex and cerebellum sections of 4- and 14-week old Xpg2/2 and wt mice; n$3 animals/group. Arrows indicate positive cells. (E) Relative mRNA
expression levels of the antioxidant genes Nqo1, Nrf2, and HO-1 and the DNA damage response gene p21 in 14-week old Xpg2/2 and wt cerebellum
tissue. All values are corrected for TubG2 expression and normalized to wt expression levels; n = 4 animals/group. (F) Quantification of TUNEL-positive
cells per mm2 in retinal sections of 4- and 14-week old Xpg2/2 and wt mice; n = 6 animals/group. Arrows indicate positive cells. Scale bars: 250 mm (A),
50 mm (B), 100 mm (C), 25 mm (D, F). Error bars indicate standard error of the mean. *p,0.05, **p,0.01.
doi:10.1371/journal.pgen.1004686.g004
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Figure 5. Aging features observed in the liver of liver-specific Xpg knockout mice. (A) Average body weight of C57Bl6/FVB F1 hybrid wild
type (wt) males (black triangles), wt females (black circles), liver specific XPG-deficient (Alb-Xpg) males (gray triangles) and Alb-Xpg females (grey
circles); n = 4 males/group, n = 2 females/group. (B) Average nucleus size of hepatocytes in the liver of 26- and 52-week old Alb-Xpg and wt mice; n = 4
animals/group. Bottom right: magnification of a nuclear inclusion found regularly in liver sections of 26- and 52-week old Alb-Xpg mice. (C)
Quantification of p53-positive cells per cm2 in the liver of 26- and 52-week old Alb-Xpg and wt mice; n = 3 animals/group. (D) Quantification of TUNEL-
positive cells per cm2 in the liver of 26- and 52-week old Alb-Xpg and wt mice; n = 3 animals/group. (E) Quantification of Ki67-positive cells per mm2 in
the liver of 26- and 52-week old Alb-Xpg and wt mice; n = 3 animals/group. (F) Relative mRNA expression levels of several antioxidant genes and the
DNA damage response gene p21 in liver tissue of 26-week old Alb-Xpg and wt mice. All values are corrected for TubG2, Hprt, and Rps9 expression and
normalized to wt expression levels; n = 3 animals/group. (G) Relative expression levels of the somatotrophic genes Ghr, Igf1r and Igf1 in liver tissue of
26-week old Alb-Xpg and wt mice. All values are corrected for TubG2, Hprt, and Rps9 expression as internal standard and normalized to wt expression
levels; n = 3 animals/group. Scale bars: 25 mm (B, C, D). Error bars indicate standard error of the mean. *p,0.05, **p,0.01.
doi:10.1371/journal.pgen.1004686.g005
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loss of Purkinje cells in 14-week old Xpg2/2 mice (Figure 4C).

Also, calbindin staining revealed sporadic Purkinje cells with

abnormal dendritic morphologies and, more frequently, Purkinje

cells with swellings in their proximal axon (Figure 4C). Axonal

swellings (also designated torpedoes or axonal spheroids) are

a common feature in neurodegenerative disorders and aging [93],

that is also well documented for Purkinje cell axons of CS and XP/

CS patients [94]. The presence of axonal pathology indicates that

many surviving Purkinje cells in 14-week old Xpg2/2 mice display

compromised health. Notably, few small axonal swellings occurred

in Purkinje cells axons in 4-week old Xpg2/2 mice.

To further examine the extent to which neurons in Xpg2/2 mice

show compromised health, we examined the morphology of the

Golgi apparatus in motor neurons. In a previous study in Ercc1
mutant mice we noted that motor neurons displayed a variety of

morphological abnormalities of the Golgi apparatus, and we

proposed that these abnormalities reflect a heterogeneity of

cellular deficits resulting from stochastic DNA damage [90].

Immunostaining for the cis-Golgi marker GM130 showed that

motor neurons in Xpg2/2 mice developed the same heterogeneity

in morphological abnormalities of the Golgi apparatus as observed

in Ercc1D/2 mice. Double labelling of GM130 and p53 indicated

that only a small subset of neurons with abnormal Golgi apparatus

is p53 positive. This variability in p53 expression further illustrates

the heterogeneity of degenerative events that may occur in Xpg2/2

neurons (Figure S4F).

TUNEL staining to determine the amount of apoptotic cells

showed a significant increase in both the cerebrum and the

cerebellum at 4 as well as 14 weeks of age (Figure 4D). Finally,

real-time PCR in Xpg2/2 cerebellum revealed an upregulation of

the p53-responsive kinase inhibitor p21 consistent with the

activation of genotoxic stress pathways (Figure 4E), and increased

expression of several oxidative stress response genes (Figure 4E).

In addition to the brain and spinal cord, we also investigated the

retina, as retinal degeneration is a frequent symptom of CS and

XP/CS patients [38], that is also reproduced in CSA- and CSB-

deficient mice [23]. TUNEL staining revealed cell death in both

the inner and outer nuclear layers of the retina of 4- and 14-week

old Xpg2/2 mice (Figure 4F). Hence, Xpg2/2 mice display loss of

photoreceptor cells as well as degeneration of the retinal circuitry.

Together these data indicate the occurrence of widespread

progressive degenerative changes in Xpg2/2 nervous system,

strongly resembling the phenotype of ERCC1-deficient mice.

Liver-specific inactivation of XPG results in progeroid
features in the liver without causing early death or
reduced body weight

Transgenic expression of ERCC1 in the liver has been shown to

alleviate growth deficiency and to extend lifespan of ERCC1-

deficient mice [83], suggesting that liver abnormalities are an

important determinant of the reduced lifespan of these mice. To

determine the importance of liver pathology in the runting and the

reduced lifespan of our Xpg2/2 mice, we generated mice with

liver-specific inactivation of the Xpg gene by crossing Xpgf/+ mice

carrying the floxed Xpg allele with heterozygous Xpg+/2 mice that

also express the albumin-Cre recombinase transgene that drives

Cre expression specifically in hepatocytes [95] to yield Xpgf/2/

Alb-Cre+ mice, hereafter designated Alb-Xpg mice. This Alb-Xpg
mouse also has the advantage that it allows to study the effect of

liver XPG-deficiency in the absence of abnormalities in other

tissues.

A cohort of Alb-Xpg mice was allowed to reach the age of one

year. All Alb-Xpg mice displayed normal growth and weight gain,

and none of them died prematurely (Figure 5A). Livers of Alb-Xpg

mice had an increased size compared to wild type, while brain,

kidney and spleen displayed unaltered size and weight (Figure

S5A). Albumin and glucose blood levels were the same as in

control mice (Figure S5B and C). Histological analysis revealed

anisokaryosis with karyomegaly in the liver of Alb-Xpg mice

analyzed at 26 and 52 weeks (Figure 5B). The observed

karyomegaly was more prominent than that observed in 14-week

old Xpg2/2 mice, and cells with intranuclear inclusions were more

frequent. In addition, we identified p53-positive cells, increased

cell death and increased cell proliferation in Alb-Xpg liver

consistent with a progeroid degenerative phenotype (Figure 5C–

E). Furthermore, real-time PCR showed that livers of Alb-Xpg
mice displayed a massive induction of the DNA damage response

gene p21 as well as increased expression of several antioxidant

effector genes (Figure 5F). We also observed a trend of reduced

expression of Ghr and Igf1r (Figure 5G), hence, reproducing gene

expression changes determined in livers of Xpg2/2 mice.

Activation of the Nrf2 antioxidant response genes, reduction of

the IGF1 axis, and increased proliferation shown by Ki67-staining

are all consistent with liver regeneration after tissue damage [96].

As an additional control we showed that the expression of these

genes is unaltered in livers from Emx1-Xpg mice that are XPG-

deficient in the dorsal forebrain (see below; Figure S5D and E).

Together the data from the Alb-Xpg mice show that progeroid

and gene expression changes in the liver triggered by the absence

of XPG are not sufficient to explain the runted short-living

phenotype of Xpg2/2 mice.

Dorsal forebrain specific inactivation of XPG results in
a mixed macroglia/neuronopathy in cortex and
hippocampus

Our neuropathological analyses of Xpg2/2 mice uncovered

severe neurodegenerative changes at 14 weeks of age, compatible

with neurological and motor deficits in these mice. Importantly,

the presence of p53 in glia and abundant astrocytosis and

microgliosis in the white matter indicate that abnormalities in

Xpg2/2 mice are not limited to neurons, but also involve glia cells.

This is consistent with our findings in CS mouse models [62,91],

and with the neuropathological changes found in CS and XP/CS

patients that is dominated by white matter pathology, in addition

to neuronal, glial and vascular pathology, and, in severe cases,

developmental abnormalities [39,94,97–99]. In previous studies,

using a Cre-lox approach with CamKIIa-Cre and L7-Cre
transgenic mice that drive Cre expression in post-mitotic forebrain

neurons and Purkinje cells, respectively, we showed that neuron-

specific deficiency of ERCC1 or combined deficiency of XPA and

CSB was sufficient to trigger stochastic degeneration of these

neuronal populations [89,91,92]. These studies showed that

neurodegenerative changes in ubiquitous ERCC1- and XPA/

CSB-deficient mice are not a consequence of developmental

abnormalities, vascular problems, or degenerative changes in other

organs. Furthermore, these neuron-specific mice enabled us to

follow the degenerative process beyond the normal lifespan of the

short-living ubiquitous ERCC1- and XPA/CSB-deficient mice

[89,91,92]. In the present study we therefore used a similar

approach, but with an Emx1-Cre transgenic line that drives Cre

expression in progenitor cells of the dorsal telencephalon, to

achieve inactivation of the Xpg gene not only in excitatory neurons

of the neocortex and hippocampus, but also of astrocytes and

oligodendrocytes in these brain areas [100]. Analysis of a cohort of

Emx1-Xpg mice that were allowed to age for one year revealed no

early death and showed that body weights were indistinguishable

from that of wild type littermates until the age of 30 weeks. At

older age the mean weight gain of Emx1-Xpg mice was

Xpg2/2 as a Mouse Model for Progeria
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Figure 6. Age-related increase of neuronal stress in forebrain-specific Xpg knockout mice. (A) Average body weight of C57Bl6/FVB F1
hybrid wild type (wt) females (black circles) and forebrain-specific XPG-deficient (Emx1-Xpg) females (gray circles); n$4 animals/group. (B) Onset of
clasping of the hind limbs in Emx1-Xpg mice; n = 7 animals/group. (C) Representative images of GFAP immunostained sagittal neocortex sections of
26- and 52-week old Emx1-Xpg and wt mice showing progressive astrocytosis in Emx1-Xpg mice. (D) Representative images of Mac2 immunostained
sagittal brain sections of 26- and 52-week old Emx1-Xpg and wt mice showing Mac2-positive microgliosis and a progressive decrease in size of the
cerebral cortex and hippocampus of Emx1-Xpg mice. Arrows indicate microgliosis in corpus callosum and fimbria fornix. A thionin counterstaining
was used. (E) Quantification of p53-positive cells in neocortex and cerebellum of 26- and 52-week old Emx1-Xpg and wt mice. Values are the average
of four sections per genotype. Arrows indicate p53 positive cells. (F) Representative confocal images showing double labeled p53-NeuN cells in the
neocortex (left) and p53-S100ß in the fimbria fornix (right) of 26-week old Emx1-Xpg mice. Arrows indicate p53 positive cells. NCx: neocortex, cc:
corpus callosum, Str: striatum, ff: fimbria fornix, Hip: hippocampus. Scale bars: 50 mm (C), 500 mm (D), 200 mm (E) and 20 mm (F). Error bars indicate
standard error of the mean. **p,0.01.
doi:10.1371/journal.pgen.1004686.g006
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significantly smaller than in control littermates (Figure 6A). This

difference in weight was associated with a proportional reduced

weight of internal organs (Figure S6A). Basal blood glucose

concentrations were the same as in controls, indicating that

reduced weight of old Emx1-Xpg mice is not a consequence of

reduced energetic intake (Figure S6B).

To obtain a crude impression of the development of neurolog-

ical symptoms, we examined the time of onset of clasping of the

hind limbs when animals were lifted by their tails. This

abnormality developed in Emx1-Xpg between 14–24 weeks of

age and was not observed in control littermates (Figure 6B). The

Emx1-Xpg mice did not develop tremors and deficits in

accelerating rotarod performance (Figure S6C). Both the absence

of these motor deficits and the delayed onset of clasping in

comparison to the Xpg2/2 mice can be explained by the selective

inactivation of Xpg in neocortex and hippocampus, avoiding the

bulk of circuitries controlling motor behavior in mice [101].

Macroscopic inspection of brains of Emx1-Xpg mice at 26- and

52-week already revealed that the neocortex was considerably

smaller. Histological analysis confirmed that the neocortex was

thinner, and showed that also the hippocampus was dramatically

smaller, while other brain regions were unaltered (Figure S6D).

GFAP immunohistochemistry showed a very strong increase in

GFAP staining indicative of astrocytosis in both cortex and

hippocampus (Figure 6C), and no changes in other brain regions.

As in the Xpg2/2 nervous system, astrocytosis was paralleled by

microgliosis, identified by immunohistology with an Iba-1

antibody. Staining for Mac2 (also known as galectin-3), to outline

phagocytosing microglia cells [102], revealed very high levels of

Mac2-positive cells in the corpus callosum and the fimbria fornix

of Emx1-Xpg mice (Figure 6D and S6D,E), and a moderate

amount of phagocytosing microglia in the neocortex and

hippocampus (Figure 6D). Remarkably, the presence of Mac2

could not be explained by axonal degeneration of cortical and

hippocampal neurons solely, as we did not observe this phenom-

enon in our CamKIIa-Ercc1 mice [89]. Furthermore, the capsula

interna of Emx1-Xpg mice, which contains the descending

corticofugal axons and shows severe axonal degeneration, did

not show this dramatic increase of Mac2 staining (Figure 6D and

S6D). Hence, the presence of high levels of Mac2 labelling may

reflect the same phenomenon that we observed in our CS mice,

i.e. the presence of phagocytosing microglia in the absence of

axonal degeneration [91]. Accordingly, we also found an

upregulation of Hsp25 expression in astrocytes in the corpus

callosum and fimbria fornix (Figure S6F), a phenomenon that we

also observed in the white matter of CS mouse models [91].

Furthermore, analysis of p53 expression in Emx1-Xpg showed that

multiple p53-positive cells populated the fimbria-fornix and the

corpus callosum (Figure 6E). Double-labelling of p53 with NeuN

or the glia marker GFAP and S100b showed that some p53-

positve cells were neurons (NeuN), but a large proportion were

astrocytes (GFAP+, S100b+), or oligodendrocytes as identified on

the basis of nuclear morphology (Figure 6F). Together the data

indicate that Emx1-Xpg mice develop a combined neuro- and

gliopathy of cortex and hippocampus.

Discussion

XPG is a 39-endonuclease that is essential for the excision step

of the GG-NER and TC-NER subpathways of NER and that has

additional, yet incompletely defined, roles in other repair processes

and possibly in transcription [15,16,31,53,103–105]. Consistent

with multiple diverse functions, mutations in XPG cause

a spectrum of disease phenotypes varying from the UV-sensitivity

disorder XP to the multisystem developmental/degenerative

disorders XP/CS and COFS [52–55,57]. Several Xpg mouse

models have been generated that partially recapitulate the

spectrum of genetic defects and disorders found in patients

[63–66]. To better define the effect of the complete absence of

XPG, in the present study we have generated mice with a Cre-

inducible Xpg knockout allele and examined the phenotypes of

total (designated Xpg2/2), liver-specific (Alb-Xpg), and dorsal

forebrain-specific (Emx1-Xpg) XPG-deficient mice. Consistent

with previous data [63] we found that Xpg2/2 mice are born

with normal size and weight, but progressively fail to grow and to

gain weight after birth, combined with a short lifespan. In

addition, we found that lifespan was influenced by genetic

background, in that Xpg2/2 mice displayed a much shorter

lifespan in C57BL6 background (3 weeks), compared to FVB or

C57BL6/FVB F1 hybrid background (16–18 weeks). An effect of

genetic background is well known for many mouse models of

disease and was also noted in our Ercc1-mutant mice [51,72].

Differences in genetic background likely explain the differences in

lifespan of our C57BL6/FVB F1 hybrid Xpg2/2 mice and the

Xpg2/2 mice of Harada and coworkers [63], which all died at 3–4

weeks of age similar to our C57BL6 Xpg2/2 mice. However, what

mechanism defines the short lifespan of our C57BL6 Xpg2/2 mice

remains to be determined. Importantly, the effect of genetic

background in mice suggests that genetic context may also impact

the disease phenotype in CS and XP/CS patients. Interestingly,

preliminary analysis of neuropathological changes of our C57BL6

Xpg2/2 mice at 3 weeks of age revealed subtle degenerative

changes (Figure S7) that are comparable in severity to the

neurodegenerative changes of C57BL6/FVB Xpg2/2 mice of 4

weeks of age, and considerably milder than those in 14-week old

C57BL6/FVB F1 hybrid Xpg2/2 mice (compare Figure S7 with

Figure 4). These data suggest time-dependence of the neurode-

generative phenotype and indicate that the much shorter lifespan

of C57BL6 Xpg2/2 mice cannot be explained by enhanced

neurodegeneration. An alternative possibility suggested by the

data of Harada and coworkers [63] is that C57BL6 Xpg2/2 mice

display an exaggerated developmental phenotype with more

prominent developmental deficits, such as an improperly de-

veloped gastro-intestinal tract, that would reduce their ability to

cope with extra-uterine life. Recent evidence from XPA/CSA-

deficient mice bred in C57BL6 background suggest that providing

mutant pups with soft food before weaning is sufficient to increase

survival from 3–4 weeks to 12–18 weeks [106]. So far, we found no

beneficial effect of soft food in our C57BL6 Xpg2/2 mice, but this

remains to be further examined. Nevertheless, together the data

suggest that the ability of short-living NER mutant mice to survive

beyond weaning might also depend on the ability to cope with the

transition from mother milk to other food.

Xpg2/2 mice as a progeria model
The main goal of the present study was to determine the extent

to which XPG deficiency in mice results in multisystem progeroid

degenerative changes as observed in CS and XP/CS patients, as

well as in other NER-deficient mouse models including Xpa/Csb,

Xpd, and Ercc1 mutants [48,51,68,69,72,77,107]. Our data show

that, although seemingly normal at late embryonic stage, and

showing only mild degenerative features at 4 weeks of age,

C57BL6/FVB Xpg2/2 at 14–16 weeks showed abundant de-

generative changes in multiple tissues, indicative of accelerated

aging. These degenerative/accelerated aging features included

kyphosis, cachexia, osteoporosis, liver aging, and abundant

nervous system degenerative changes. In addition, the data from

our liver- and dorsal forebrain-specific Xpg mice showed that

Xpg2/2 as a Mouse Model for Progeria
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a much more severe tissue-specific degenerative phenotype could

be obtained in these mice because of survival beyond the maximal

lifespan of Xpg2/2 mice. Hence, the data indicate that Xpg2/2

mice indeed develop a multisystem premature aging phenotype

reminiscent of the phenotypes of some of our other NER-deficient

mouse models, in particular the Ercc1D/2 mice, which show

a slightly longer lifespan and comparable pathological changes in

liver and nervous system (see below). Moreover, the Xpg2/2 mouse

phenotype shares many features with XP-G/CS patients

[17,94,108] including a cachectic ‘frail’ appearance with loss of

subcutaneous fat and signs of osteoporosis (Table 2).

Compensatory survival response in Xpg2/2 liver
Previously we have shown that transcription-blocking lesions

trigger a ‘‘survival response’’ involving somatotroph attenuation

and increased resistance to oxidative stress, which resembles the

response triggered by dietary restriction and is associated with

delaying many aspects of aging and increasing lifespan [51,68,84].

This mechanism has been observed in response to direct but

persistent DNA damage as well as during the course of aging, both

in natural aging as well as in specific progeroid mouse models, and

is activated in long-lived mutant mice and centenarians

[51,68,109]. A central hallmark of this survival response is the

downregulation of genes involved in the GH/IGF axis, combined

with upregulation of genes involved in the antioxidant response.

Using real-time PCR for selected genes of these pathways in the

present study, we show that Xpg2/2 mice display survival-

response-like changes in gene expression in liver cells, including

a decrease in Ghr mRNA levels and a robust increase in expression

of the antioxidant defense effector genes Nqo1, Srxn1, Gstt2, and
Gsta1. Similar changes were observed in the liver of liver-specific

XPG-deficient mice. Consistent with previous observations

concerning the survival response, we found significantly reduced

circulating glucose levels in the Xpg2/2 mouse. However, we

found no change in glucose in the liver-specific mouse, indicating

that reduced glucose levels are not necessarily a consequence of

gene expression changes in the liver. We did not observe

significantly lower levels of Igf1 and Igf1r, as previously found

for several other progeroid DNA repair mutants [51,84], although

we did find a trend of reduced expression.

Increased expression of antioxidant genes was also observed in the

central nervous system (i.e. cerebellum) of Xpg2/2 mice, but the

identity and the degree of changed expression is somewhat different.

For instance, Nrf2 shows a relatively increased expression in

cerebellum but not in liver, while Nqo1 shows a very large relative

increase in liver, and a modest relative increase in cerebellum. These

differences may be explained by altered stress responses in different cell

types [110]. In addition, in the nervous system, changes in gene

expression may result from the death and disappearance of neurons

and reactive proliferation of glial cells and as a consequence, reduced

and increased expression of neuronal and glial genes, respectively.

Progeroid features in the livers of Xpg2/2 animals are not
sufficient to cause reduced growth and lifespan

The liver of Xpg2/2 mice showed several characteristics also

found in aging liver, i.e. increased nuclear size and the presence of

Table 2. Comparison of the Xpg2/2 phenotype to that of XP/CS patients.

Phenotypic characteristics XPG mouse XP(G)/CS patient

UV sensitivity

Cellular level y y

Organismal level nd y

Sensitivity to oxidative damage-cell n y

Growth and lifespan

Growth retardation y y

Reduced subcutaneous fat y y

Reduced lifespan y y

Sensory systems

Retinal degeneration y y

Sensorineuronal hearing loss nd y

Bones

Osteoporosis y y

Kyphosis y y

Nervous system

Gait ataxia y y

Action tremor y y

Cognitive decline y y

Brain calcifications nd y

Ventricle enlargement y y

White matter abnormalities nd y

Cerebral and cerebellar atrophy y y

Astrogliosis y y

y = present, n = not present, nd = not determined.
doi:10.1371/journal.pgen.1004686.t002
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nuclear inclusions. These changes were much more prominent

and associated with additional degenerative changes in liver-

specific XPG-deficient mice. However, despite prominent liver

pathology, the liver-specific Xpg2/2 mice at 52 weeks did not show

altered weight, nor altered glucose and albumin levels suggestive of

metabolic problems. Although at this point we cannot exclude that

our liver-specific mutants will develop health problems in their

second year of life and might develop a shorter than normal

lifespan, it is safe to conclude that liver problems on their own

cannot be the main culprit of the reduced lifespan and the small

cachectic appearance of Xpg2/2 mice. In contrast to our data,

findings in Ercc1 mutant mice show that transgenic overexpression

of ERCC1 in the liver alleviates growth deficiency and extends

lifespan [83], indicating that liver abnormalities are an important

determinant of the reduced lifespan of these mice. A possible

explanation is that liver pathology is more prominent in Ercc1
mutant mice, putatively as a consequence of additional defects in

interstrand crosslink and double-strand break repair [48]. An

alternative explanation for the differences in results could be that

the impact of liver pathology on survival depends on the severity of

pathology in other organs. This hypothesis is testable by studying

survival of liver-specific ERCC1-deficient mice, and vice versa by

generating liver-corrected Xpg2/2 mice using a transgenic ‘rescue’

strategy as reported by Selfridge et al. [83]. A possible conclusion

from these studies could be that Ercc1 and Xpg mutant mice die

prematurely as a consequence of a synergistic deleterious effect of

multi-organ failure. In view of the severe neurological and

neurodegenerative deficits in 14–16 week old Xpg2/2 mice, yet

an alternative scenario is that Xpg2/2 mice die as a consequence of

nervous system abnormalities (see below). This scenario is realistic

for a subset of human NER-deficient patients, in particular those

developing XP with neurological abnormalities [36,40]. Interest-

ingly, our dorsal forebrain-specific XPG-deficient mice also

showed reduced weight-gain after 30 weeks of age. At this age

these mice displayed severe neuronal degeneration in neocortex

and hippocampus, as a result of which the mice would be expected

to have severe cognitive deficits, whereas basal motor functions

remain unaltered. Weight loss was not associated with altered

glucose levels or gene expression changes in the liver (Figures S5

and S6). We noted the same reduced weight-gain in our forebrain

neuron-specific XPA/CSB-deficient mouse model [91]. The data

suggest that severe disruption of cortical or hippocampal circuitries

may result in the weight loss, but the precise mechanism remains

to be defined.

XPG deficiency causes age-dependent degeneration of
neurons and macroglia

Our data show that Xpg2/2 mice, within their relatively short

lifespan (16–18 weeks), develop neurological abnormalities of

increasing severity in association with degenerative changes

throughout the nervous system. These nervous system degenera-

tive changes seemingly are more severe than those previously

reported for another line of Xpg2/2 mice [111]. The differences in

nervous system neurodegenerative changes can be explained by

the very short lifespan (3 weeks) of previously reported Xpg2/2

mice, since our C57BL6 Xpg2/2 mice, which show the same short

lifespan, also displayed a low level of nervous system pathology at

the end of life (see above and Figure S7). Together with our

demonstration that dorsal forebrain-specific XPG-deficient mice,

allowed to age for one year, display very severe neurodegenerative

changes, our data indicate that age is a key determinant in the

development of neurodegenerative changes in Xpg2/2 mice. Our

data also indicate that XPG deficiency does not result in obvious

neurodevelopmental abnormalities, although subtle developmental

abnormalities cannot be excluded at this point.

The neurodegenerative changes in our Xpg2/2 mice strongly

resemble those of incomplete ERCC1-deficient Ercc1D/2 mice

that have a slightly longer lifespan (24–30 weeks). Our studies with

Ercc1D/2 mice and neuron-specific Ercc1 knock-out animals

indicate that ERCC1-deficient neurons in time stochastically

accumulate structural and functional deficits to eventually die and

disappear [89,90,92,112]. A stochastic accumulation of deficits

also appears to occur in Xpg2/2 neurons. Thus, the widespread

distribution of astrocytosis and microgliosis, as well as p53 and

TUNEL staining, indicates that degenerative changes in the

Xpg2/2 nervous system affect all neuronal populations. The

increased size and frequency of axonal spheroids in Purkinje cells,

and a diversity of Golgi apparatus morphological abnormalities in

motor neurons, on the other hand, illustrate that Xpg2/2 neurons

may asynchronously accumulate a variety of degenerative features

over time. This widespread and asynchronous accumulation of

cellular damage in Xpg2/2 neurons is consistent with a model in

which neurons are afflicted by stochastic DNA lesions that deregulate

gene expression, as we have proposed for Ercc1D/2 mice [89]. A

prime role for genotoxic stress in causing the degenerative phenotype

in the Xpg2/2 nervous system is further suggested by the presence of

stochastically distributed p53-positive cells and increased expression

of the DNA damage responsive p21 gene.

Together the degenerative changes in the Xpg2/2 nervous

system favor a pathogenic model involving deficient DNA repair

in the same way as proposed for ERCC1-deficient mice [48,89].

The central role of DNA damage in the Xpg2/2 nervous system

raises questions about the identity of the DNA lesions involved.

Importantly, the absence of a significant neurodegenerative

phenotype in entirely NER-deficient Xpa2/2 mice has led to the

conclusion that DNA lesions that accumulate in the nervous

system in the absence of NER are not sufficient to trigger neuronal

degeneration within the normal lifespan of mice [74,91,113]. In

the case of ERCC1-deficient mice, it therefore has been proposed

that the degenerative nervous system changes result from

combined deficiencies in NER and other DNA repair pathways,

i.e. interstrand crosslink repair and double-strand break repair

[48,89]. It is possible that a similar mechanism may contribute to

the severe neurodegenerative phenotype caused by XPG de-

ficiency, as XPG has been reported to play a role in repair of

crosslinks induced by mitomycin C [114]. An alternative

possibility is that XPG deficiency reproduces the severe de-

generative phenotype resulting from crossing NER-deficient Xpa2/

2 with the Csb2/2 or Csa2/2 CS mouse models [67–69,91,106]. In

this scenario XPG deficiency combines the deleterious synergistic

interaction between NER deficiency and loss of the yet in-

completely understood non-NER activities that underlie CS. CS

proteins operate together at the interface of DNA repair and

transcription regulation, and several mechanisms have been put

forward to explain CS symptoms [46].

XPG can interact directly with both CSB and RNA Polymerase

II [31], and may be implicated in the repair of transcription

blocking oxidative lesions, for instance by recruiting base excision

repair factors [32–34]. Accordingly, cells from CS patients

including XP-G/CS cells have been found to display increased

vulnerability to inducers of oxidative DNA lesions [55,115,116].

Importantly, Soltys et al. showed oxidative damage sensitivity of

XP-G/CS, but not of XP-G patient cells [55]. Yet, in accordance

with findings by Harada and coworkers [63], we found that cells

from our Xpg2/2 mice do not display increased vulnerability to

inducers of oxidative DNA lesions such as KBrO3 (Figure S1B).

This is despite clear indications of endogenous damage in, for
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example, the retina of these mice, as has been previously observed

for Csb/Xpa mice that are sensitive to oxidative damage [23]. It is

currently unclear whether this is a peculiarity of these particular

mouse cells in culture, as we have reported that cells from

CSB-deficient mice are sensitive to IR and paraquat [117,118]. It

has been argued that cultured cells may build up defense responses

that mask the increased vulnerability of these cells in vivo [119].

To what extent do Xpg2/2 mice reproduce the nervous system

abnormalities of patients carrying XPG mutations? Roughly, the

progressive widespread neurodegenerative changes of Xpg2/2

mice are reminiscent of neuropathological changes of patients with

‘XP-type neurological degeneration’ [39,40,97,120]. In well

documented cases these patients, carrying XPA mutations

resulting in complete NER deficiency, develop a wide array of

neurological symptoms that show early juvenile onset, over time

become more severe, and ultimately cause premature death in

mid-adult life [39,40,97]. However, the limited documented cases

indicate that XP-G patients either develop no neurological

symptoms, or reproduce mild to severe neurological and

neuropathological features of CS [39,40,57,94,120]. In CS and

XP/CS patients, neuronal degeneration generally is less promi-

nent. Instead, these patients, including documented XP-G/CS

cases, show prominent white matter degeneration, vascular

pathology, calcium depositions, and, in severe cases, developmen-

tal abnormalities [39,94,97–99]. We have recently noted that

CSA- and CSB-deficient CS mouse models, in addition to mild

neurodegenerative changes, develop subtle white matter abnor-

malities and glial pathology reminiscent of the glia and white

matter degenerative changes of CS patients, albeit milder [62,91].

The higher levels of neuronal degeneration in Xpg2/2 mice

hamper detection of primary glial and white matter pathology, due

to secondary glial pathology caused by neuronal degeneration.

However, the severe white matter pathology in the corpus

callosum and fimbria-fornix in our dorsal forebrain specific

XPG-deficient mice strongly indicates that XPG deficiency

triggers CS-like white matter pathology in mice.

Concluding remarks
In this study, we show that Xpg2/2 mice from young age

onwards develop a multisystem degenerative phenotype and die

before the age of 20 weeks. This phenotype strongly resembles the

progeroid features of CS and XP/CS patients. In addition, the

Xpg2/2 mouse model shows a number of similarities to other

NER-based mouse models of progeria such as Xpa/Csb and Ercc1
mutants [3,62], pointing to the importance of NER in multiple

tissues. In particular, a detailed analysis of commonalities and

differences between Xpg2/2 and Ercc1 mutant mice may aid in

our understanding of the contribution of different types of DNA

damage and DNA repair defects in the accelerated aging process,

since both endonucleases have a joint role in the damage excision

step of NER but have divergent additional non-NER roles.

Together our findings further stress the relationship between

compromised DNA repair and acceleration of specific aging

features, as well as progressive neurodegeneration. Finally, the

neurodegenerative phenotype indicates that Xpg2/2 mice may

serve as a model to test intervention strategies aimed at reducing

the formation of detrimental DNA lesions in neurons.

Materials and Methods

Generation of a floxed Xpg allele
The Xpg targeting construct was generated using multiple

elements. First, a cassette consisting of a Neomycin (NEO)

resistance marker, flanked by Frt sites, and followed by a single

LoxP site was cloned into a modified pBlueScript SK+ vector

containing a PGK-DTA negative selection marker, making use of

a klenow blunted ApaI (insert)/XbaI(vector) and a NotI restriction

site. Second, Xpg homologous arms were PCR amplified from

C57BL6 genomic DNA (originating from BAC clone RP24-

343K18) and cloned into the same plasmid. The following primers

(non-homologous regions indicated in italics; the LoxP sequence is

underlined) were used for amplification of the 59 and 39 arm,

respectively: LAF2 (59-CGCACCCGGGTGTGATCCTGTGGT-

CCTGTAGT-39) and LAR2 (59-CCATCGATATCCTCAGAA-

AGGTATCTCTTAAGCA-39), yielding a 3.2-kb XmaI-ClaI

fragment; RAF1 (59-CCCTGCTAGCGGGATGAGGAATCGT-

GACTAAGGAG-39) and RAR1 (59-CCGCAGCGGCCGCAAA-

CAAGGGACCCAAATGTAGGCT-39), yielding a 2.0-kb NheI-

NotI fragment, where the restriction sites were introduced in the

PCR primers. Last, the third exon of Xpg followed by a PCR-

introduced LoxP site was amplified using the primers Ex3Lox

F2 (59-GGGAACCGGTTTGAGTGTCCTTGGTGACAGG-39)

and Ex3LoxR2 (59-CCCTGCTAGCATAACTTCGTATAGCA-

TACATTATACGAAGTT ATCC-39), yielding a 350-bp AgeI-

NheI fragment, which was inserted between the neomycin cassette

and the 59 homology arm.

Next, a total of 10 mg of NotI-linearized targeting vector was

electroporated to Ola129 ES cells, and the targeted clones were

selected through the use of the Neomycin selection marker (G418

200 mg/ml). Clones resistant for G418 were initially screened

by PCR, using a forward primer in exon 3 (F3 59-GAGA-

CAGGCTCTGAAAACTGCTT-39) and a reverse primer outside

the 39 homologous region (R3 59-CACTGAACAAACAAGG-

GACCCAAA-39). ES clones showing a 2.2-kb fragment in

addition to the wild type 2.3-kb fragment after NheI digestion of

the PCR product were further screened by Southern blot. ES

genomic DNA was digested with EcoRI and hybridized with a 0.9-

kb DpnI restriction fragment from BAC RP24-343K18, spanning

the 2nd exon of Xpg. The probe hybridizes to a 7.4-kb fragment in

wild type DNA and to an additional 4.1-kb fragment in targeted

DNA.

ES cells from two independent targeted clones were micro-

injected into C57BL6 blastocysts. Heterozygous mutant mice were

generated by crossing the male chimeras with C57BL6 females

and verified by coat color and PCR genotyping. The Neomycin

(NEO) resistance gene was flanked by Frt sites to allow specific

elimination of this dominant selectable marker by an Flp
recombinase to avoid potential undesired influence of the Neo
gene on Xpg transcription or mRNA processing. The NEO

cassette was removed by crossing mice carrying the targeted allele

with Cag-Flp recombinase FVB/N transgenic animals [121].

These mice carry the floxed allele, and are referred to as Xpgf

throughout this paper. Thereafter, the F3 offspring was crossed

with a Cag-Cre C57BL6 transgenic [73], resulting in Cre-

mediated recombination and excision of the third exon. Xpg+/2

animals were backcrossed to C57BL6 and FVB/N in parallel, at

least ten times, and interbred to obtain C57BL6, FVB/N and

C57BL6/FVB F1 hybrid Xpg2/2 mice. To achieve liver specific

Xpg gene inactivation, a transgenic line with Cre recombinase

under the control of the albumin promoter (hereafter referred to as

Alb-Cre) was used [95]. Female Alb-Cre+ mice were crossed with

male Xpg+/2 mice (both in a C57BL6 background). Female Xpg+/

2 Alb-Cre+ mice, obtained from these breedings, were crossed with

male Xpgf/f FVB/N mice to yield hybrid Xpgf/2 Alb-Cre+ mice.

Xpgf/2 Alb-Cre+ mice (in a C57BL6/FVB F1 hybrid background)

are heterozygous for Xpg in their entire body, except for the

hepatocytes in the liver, which are homozygous for Xpg after Cre

excision of the floxed allele. All littermates, with and without
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Cre-recombinase expression were used as controls (referred to as

wt).
FVB/N Xpgf/f animals were similarly bred to the female

offspring from C57BL6 Xpg+/2 and C57BL6 Emx1-Cre mice

[100] to obtain forebrain specific XPG knock-out animals (referred

to as Emx1-Xpg). All animals used in the studies described in this

paper were of the same C57BL6/FVB F1 hybrid background

(unless otherwise stated) and had ad libitum access to water and

standard mouse food (CRM pellets, SDS BP Nutrition Ltd.; gross

energy content 4.39 kcal/g dry mass, digestible energy 3.2 kcal/g

or AIN93G synthetic pellets, Research Diet Services B.V.; gross

energy content 4.9 kcal/g dry mass, digestible energy 3.97 kcal/g).

Since the Xpg knockout animals were smaller, food was

administered within the cages and water bottles with long nozzles

were used from around two weeks of age. Experiments were

performed in accordance with the Principles of Laboratory Animal

Care (National Institutes of Health publication no. 86-23) and

with the guidelines approved by the Erasmus University Animal

Care Committee.

Genotyping
For PCR genotyping the following primers were used: F1

forward primer (59-TCTGTTTAGGTGGTGCCCATTT-39) an-

nealing 59 of the third exon of Xpg; NeoF forward primer (59-

GCTTCCTCGTGCTTTACGGTAT-39) located in the Neo-

mycin resistance marker; R1 reverse primer (59-CGACAG-

CACTTCTTTCTCCTTAGT-39) annealing 39 of the third exon

of Xpg. A 711-bp fragment was generated from the targeted allele

using primers NeoF and R1, whereas a 495-bp and 227-bp

fragment are amplified from the wild type and knockout allele,

respectively, using the F1/R1 primerset. Cycling conditions were

95uC for 45 sec, 58uC for 45 sec, 72uC for 1 min (35 cycles),

followed by an extension at 72uC for 5 min.

Sequencing
Total RNA was extracted from wild type and Xpg2/2 liver

using TRIzol reagent and reverse transcribed with SuperScript II

Reverse Transcriptase (Life technologies), according to the

manufacturer’s instructions, to generate cDNA. A 0.4-kb PCR

fragment ranging from the 2nd to 6th of Xpg was produced using

the following primers: Ex2F (59-GCTCATCTTCTCACAT-

TATTCC-39) and Ex6R (59- GGTAAACTCTTTCATGT-

CAGTC-39) and analyzed by Sanger sequencing.

Phenotype scoring
The mice were weighed and visually inspected weekly, and were

scored for the onset of various phenotypical parameters. Clasping

was measured by suspending mice from their tails for 20 seconds.

A clasping event was scored when retraction of both hind limbs

towards the body was observed for at least 5 seconds. Whole body

tremor was scored if mice were trembling for a combined total of

at least 10 seconds, when put on a flat surface for 20 seconds.

Mice showing an abnormal curvature of the spine were scored as

having kyphosis.

Isolation and analysis of MDFs
Primary MDFs were isolated from the tail of 12–14 week old

Xpg2/2 animals and wild type littermates. Minced tail skin was

immersed in F10/DMEM culture medium supplemented with

20% fetal calf serum, 50 mg/ml penicillin/streptomycin, and

1.6 mg/ml type II collagenase (Gibco, Life Technologies). After

incubation at 37uC for 24 hours, MDFs were filtered through

a 40 mm cell strainer, centrifuged for removal of the collagenase,

and cultured at 37uC, 5% CO2, and 3% O2.

Immunoblot analysis of XPG protein in MDFs
Whole cell extracts were prepared from cultured MDFs using

cells isolated from four wild type mice and four Xpg2/2

littermates. Proteins from 30 ml of each extract were separated

by electrophoresis on 7% SDS-PAGE gels and transferred

overnight onto a nitrocellulose membrane. As previously described

[31], XPG protein was detected with a rabbit polyclonal antibody

designated R2 (97727) that was raised against a conserved peptide

from the spacer region (R-domain) of XPG corresponding to

residues 267–281 of the human protein, which are identical with

the same residues in mouse XPG except for amino acid 267, which

is E in the human protein but Q in mouse. Whole cell extract from

human embryonic kidney 293 cells was used as a positive control

for XPG protein. As a loading control, tubulin was detected using

a commercial antibody.

Cell survival assays
MDFs were seeded in triplicates at equal densities and treated

24 h after seeding as indicated. After 48 h recovery cell survival

was determined by cell count on Beckman Coulter, Z2 Coulter

particle count and size analyzer.

Unscheduled DNA Synthesis (UDS)
UDS was performed using the Click-iT EdU imaging kit (Life

technologies). MDFs were seeded on coverslips and 24 h later

washed with PBS and irradiated with 16 J/m2 UV-C (Philips) or

mock treated. Cells were directly labelled for 3 h in thymidine-

free Ham’s F10 medium supplemented with 10% dialyzed

serum, 50 mg/ml penicillin/streptomycin, 20 mM Ethynyl-deox-

yuridine and 1 mM Fluoro-desoxyuridine. After a PBS wash, the

cells were chased with 10 mM non-labelled thymidine in normal

medium for 15 minutes and fixed with 3.7% formaldehyde.

Slides were washed 36 with PBS/3%BSA and permeabilized

with PBS/0.5%Triton-X100 for 20 min. The Click-iT reaction,

linking azide-conjugated Alexa dye to ethynyl groups was

performed for 30 min in a dark, humid environment. After 36
PBS/3%BSA and 26 PBS wash, the slides were mounted with

vectashield containing DAPI (Vector Laboratories) to stain

nuclei.

Recovery of RNA Synthesis (RRS)
RRS was performed using the Click-iT EU imaging kit (Life

Technologies). MDFs were seeded on coverslips and 8 h later

washed with PBS and irradiated with 16 J/m2 UV-C (Philips) or

mock treated. After 14 h recovery, the cells were labelled for 2 h in

0.1 mM EU-containing medium (Ham’s F10 medium supplemen-

ted with 10% dialyzed serum, 50 mg/ml penicillin/streptomycin

and 20 mM HEPES). After a PBS wash, the cells were fixed and

processes as described for UDS.

Mechanical testing of bone strength
Force-deflection curves from the left femora of 14-week-old

and 16-week-old mice were acquired in a three-point bending

assay using a Chatillon TCD series mechanical test frame

(Technex BV, The Netherlands), equipped with 3 mm hemi-

cylindrical supports with a 8.5 mm total span. Width between

the supports was adjusted according to the anatomical

landmarks of the femur, i.e. lesser trochanter and condyles.

The femora were aligned such that the femoral head was in the

horizontal plane and the posterior aspect of the condyles was
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facing down. All samples were preconditioned for five cycles to 2

Newton (N) at a rate of 0.6 mm/min before testing to failure at a rate

of 0.1 mm/min. The obtained force-deflection curves were

analyzed for bone strength (N/mm), which was represented by

the D force/deflection of the linear part of the curve.

Micro-computed tomographic (micro-CT) quantification
of bone thickness

Xpg2/2 and wild type mice were sacrificed by cervical

dislocation at scheduled ages (7, 14, 16, 18 weeks), femora were

excised and non-osseous tissue was removed. Left femora were

placed in PBS and stored at 220uC until further use for

mechanical testing and the right femora were fixated (4%

formalin). Two days post-fixation, the right femora were scanned

using the Skyscan 1076 in vivo X-Ray computed tomography

(Skyscan, Kontich, Belgium) with a voxel size of 8.88 mm. Osseous

tissue was distinguished from non-osseous tissue by segmenting the

reconstructed grayscale images with an automated algorithm using

local thresholds [122]. The region of interest (ROI), i.e. distal

metaphysis of the femora, was selected by using 3D data analysis

software. To compensate for bone length differences between the

Xpg2/2 and wild type mice, the length of each ROI was

determined relative to the largest specimen femur of the cohort.

Cortex and trabeculae of the metaphysis were separated using

in-house developed automated software. Thickness of the trabec-

ulae and cortices were assessed using 3D analysis software as

described [123] using the CT analyzer software package (Skyscan).

A bone specimen with known bone morphometrics was included

within each scan as a quantitative control.

Real-time PCR
TRIzol reagent (Life Technologies) was used to isolate total

RNA from mouse tissue specimens. 4 mg RNA was reverse

transcribed using SuperScript II (Life Technologies). Real-time

PCR was performed on a Bio-Rad CFX96 thermocycler using

SYBR Green (Sigma-Aldrich) and Platinum Taq polymerase (Life

Technologies). Generation of specific PCR products was con-

firmed by melting-curve analysis and gel electrophoresis. For data

analysis, the induction of target cDNA was calculated by the

method described by [124]. p-values were determined using two-

tailed t-tests. The used gene specific real-time PCR primers are

listed in Supplementary Table S1.

Blood glucose and albumin levels
Mice were euthanized by CO2 asphyxiation and blood was

immediately collected from the heart. Glucose levels were

measured using a Freestyle mini blood glucose meter. Albumin

levels were measured in blood plasma using a mouse albumin

ELISA kit (Immunology Consultants Laboratory, Inc.).

Antibodies
Primary antibodies (supplier; dilutions) used in this study were

as follows: rabbit anti-Calbindin (Swant; 1:10,000); goat anti-

ChAT (Millipore; 1:500); rabbit anti-GFAP (DAKO; 1:8,000);

mouse anti-GM130 (BD Transduction; 1:100); rabbit anti-Hsp25

(Enzo; 1:8,000); rabbit anti-Iba-1 (Wako; 1:5,000); rat anti-Ki67

(DAKO; 1:200); rat anti-Mac2 (Cedarlane;1:2,000); mouse anti-

NeuN (Millipore; 1:1,000); rabbit anti-p53 (Leica; 1:1,000). For

avidin– biotin–peroxidase immunocytochemistry biotinylated sec-

ondary antibodies from Vector Laboratories, diluted 1:200 were

used. FITC-, Cy3-, and Cy5-conjugated secondary antibodies

raised in donkey (Jackson ImmunoResearch) diluted at 1:200 were

used for confocal immunofluorescence.

Histological procedures
TUNEL staining on liver, brain and retina: To quantify

apoptotic cells, specimens were fixed overnight in 10% buffered

formalin, paraffin-embedded, sectioned at 5 mm, and mounted

on Superfrost Plus slides. Paraffin sections were employed for

TdT-mediated dUTP Nick-End Labeling (TUNEL) assay using

a commercial kit (Apoptag Plus Peroxidase in situ apoptosis

detection kit, Millipore). Sections were deparaffinized and in-

cubated as described by the manufacturer. HE staining on liver,

skin and small intestine: Liver, skin and intestine specimens were

processed using the same fixation and sectioning methods as

described for the TUNEL staining. Paraffin sections were

deparaffinized, rehydrated in decreasing concentrations of ethanol

and stained with haematoxilin and eosin.

For immunohistochemistry, paraffin sections of liver and

intestine specimens were deparaffinized, rehydrated in decreasing

concentrations of ethanol, treated for 10 minutes with 3% H2O2

to quench endogenous peroxidase activity and heated to 100uC for

1 h in 10 mM sodium citrate buffer, pH 6, for antigen retrieval.

The amount of damaged (p53) and proliferating (Ki67) cells were

subsequently detected using the avidin–biotin–immunoperoxidase

complex method (ABC, Vector Laboratories, USA) with diami-

nobenzidine (0.05%) as chromogen.

Gelatin sections of brain and spinal cord: Mice were

anaesthetized with pentobarbital and perfused transcardially with

4% paraformaldehyde. Brain and spinal cord were dissected out,

post-fixed for 1 h in 4% paraformaldehyde, cryoprotected,

embedded in 12% gelatin, rapidly frozen, and sectioned at

40 mm using a freezing microtome or stored at 280uC until use.

Frozen sections were processed free floating using the ABC

method (ABC, Vector Laboratories, USA) or single-, double-, and

triple-labelling immunofluorescence. Immunoperoxidase-stained

sections were analyzed and photographed using an Olympus

BX40 microscope. Immunofluorescence sections were analyzed

using a Zeiss LSM700 confocal.

Rotarod performance
Average time spent on an accelerating rotarod (Ugo Basile).

Xpg2/2 mice and wild type controls were given four consecutive

trials of maximally 5 minutes with inter-trial intervals of 1 hour.

Emx1-Xpg mice were given two trials per day with a 1 hour inter-

trial interval for four consecutive days.

Grip strength
Grip strength was determined by placing mice with forelimbs or

all limbs on a grid attached to a force gauge, and steadily pulling

the mice by their tail. Grip strength is defined as the maximum

strength produced by the mouse before releasing the grid. For

each value the test is performed in triplicate.

Statement of ethical approvement
This study was performed in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Committee on the Ethics of Animal

Experiments of the Erasmus MC (Permit Numbers: 139-03-08,

139-09-03, 139-12-18).

Supporting Information

Figure S1 (A) Recombination of Frt and LoxP sites yield a Xpg2/

2 genetic status with a premature STOP codon in exon 3 as shown

by Sänger sequencing of mRNA isolated from Xpg2/2 liver tissue.

(B) Primary Xpg2/2 and wild type (wt) MDFs, cultured at low (3%)
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O2 levels were treated with the indicated doses of KBrO3 (left) or

cisplatin (right) for 1 h. After 48 h recovery, survival was assessed

by cell count. Error bars indicate standard error of the mean.

(TIF)

Figure S2 (A) Tail suspension test of 16-week old Xpg2/2 and

wild type (wt) mice showing normal spreading of the hind limbs in

wt mice, while Xpg2/2 mice display clasping. (B) Rotarod

performance of 14-week old Xpg2/2 and wt mice. Trials were

performed with 1 h intervals; n = 4 animals/group. (C) Average

grip strength of the forelimbs and all limbs of 14-week old Xpg2/2

and wt mice; n = 4 animals/group. Error bars indicate standard

error of the mean. **p,0.01.

(TIF)

Figure S3 (A) Absolute weight of liver, brain, kidney and spleen

from 4- and 14-week old Xpg2/2 and wild type (wt) males: n = 3

(4 weeks), n = 18 (14 weeks). (B) Representative images of HE

stained skin patches of 4-week old Xpg2/2 and wt mice. Dotted

arrows indicate dermis (d) thickness, which is similar between wt
and Xpg2/2 mice, while subcutaneous fat (sf) is severely reduced in

Xpg2/2 mice as indicated with solid arrows. (C) Relative food

intake of Xpg2/2 males (grey triangles), Xpg2/2 females (grey

circles), wt males (black triangles) and wt females (black circles);

n = 6 animals/group. Scale bars: 50 mm (B). Error bars indicate

standard error of the mean. *p,0.05, **p,0.01.

(TIF)

Figure S4 (A) Representative images of GFAP immunostained

sagittal brain sections of 4- and 14-week old Xpg2/2 and wild type

(wt) mice showing progressive astrocytosis in Xpg2/2 mice.

Magnifications of the areas marked with black dotted squares

are shown in figure 4A. (B) Confocal images showing a double

labeling of Iba1-GFAP in the neocortex of 4- and 14-week old

Xpg2/2 and wt mice. Right panels are magnifications of the areas

marked with the white dotted boxes. Arrowheads indicate resting

microglia, while arrows indicate active microglia frequently found

in 14-week old Xpg2/2 mice. (C) Confocal images showing

a double labeling of Iba1-GFAP in the spinal cord of 14-week old

Xpg2/2 and wt mice. Right panels are magnifications of the areas

marked with the white dotted boxes. Arrowheads indicate resting

microglia, while arrows indicate active microglia frequently found

in Xpg2/2 mice. (D) Confocal images of double labeled p53-NeuN

and p53-S100ß cells in the neocortex of 14-week old Xpg2/2 mice

showing p53 staining in both neurons and astrocytes. (E) Confocal

images of double labeled p53-NeuN cells in the spinal cord of 14-

week old Xpg2/2 mice showing p53 staining mostly in non-

neuronal cells. Right panels are magnifications of the areas

marked with white dotted boxes. Arrowheads indicate non-

neuronal p53 positive cells, while the white arrow indicates a p53

positive neuronal cell. The double arrow points to a p53 positive

motor neuron. (F) Confocal images showing a triple immunostain-

ing of GM130, p53 and ChAT in the spinal cord of 14-week old

Xpg2/2 mice. Abnormal cis-Golgi in ChAT positive motor

neurons can be found in both p53 positive and negative cells.

The yellow arrow indicates a p53 positive motor neuron with

abnormal cis-Golgi, while the blue arrow points to a p53 negative

motor neuron. Scale bars: 1000 mm (A), 200 mm (B, C, E), 20 mm

(D, F).

(TIF)

Figure S5 (A) Absolute weight of liver, brain, kidney and spleen

from 26- and 52-week old Alb-Xpg and wild type (wt) males: n = 3

(26 weeks), n = 5 (52 weeks). (B) Albumin concentration in plasma

of 26- and 52-week old Alb-Xpg and wt mice; n$2 animals/group.

(C) Average basal blood glucose levels of 26- and 52-week old Alb-

Xpg and wt mice; n = 3 (26 weeks), n = 5 (52 weeks). (D) Relative

mRNA expression levels of several antioxidant genes and the DNA

damage response gene p21 in 26-week old Emx1-Xpg liver. All

values are corrected for TubG2, Hprt, and Rps9 (Table S1)

expression and normalized to wt expression levels; n = 3 animals/

group. (E) Relative expression levels of the somatotrophic genes

Ghr, Igf1r and Igf1 in liver tissue of 26-week old Emx1-Xpg mice.

All values are corrected for TubG2, Hprt, and Rps9 and

normalized to the 26-week wt expression levels; n = 3 animals/

group. Error bars indicate standard error of the mean. *p,0.05.

(TIF)

Figure S6 (A) Absolute weight of liver, brain, kidney and spleen

from 26- and 52-week old Emx1-Xpg and wild type (wt) females:

n = 3 (26 weeks), n = 6 (52 weeks). (B) Average basal blood glucose

levels of 26- and 52-week old Emx1-Xpg and wt mice; n = 3 (26

weeks), n = 6 (52 weeks). (C) Rotarod performance of 26-week old

Emx1-Xpg and wt mice. Average of two trials given for four

consecutive days; n = 5 animals/group. (D) Representative images

of Mac2 immunostained sagittal brain sections of 26- and 52-week

old Emx1-Xpg and wt mice showing Mac2-positive microgliosis

and a progressive decrease in size of the cerebral cortex and

hippocampus of Emx1-Xpg mice. A thionin counterstaining was

used. (E) Magnification of the marked areas indicated in S6D. (F)

Representative images of Hsp25 immunostained sagittal brain

sections of 26- and 52-week old Emx1-Xpg and wt mice showing

high levels of Hsp25 in the corpus callossum and fimbria fornix of

Emx1-Xpg mice (arrows), but not in the descending corticofugal

axons of the capsula interna which run through the striatum

(arrowhead). NCx: neocortex, Str: striatum, Hip: hippocampus,

Th: thalamus, Mes: mesencephalon, MeO: medulla oblongata,

Cb: cerebellum, cc: corpus callosum, ff: fimbria fornix. Scale bars:

1000 mm (D), 50 mm (E), 500 mm (F). Error bars indicate standard

error of the mean. *p,0.05, **p,0.01.

(TIF)

Figure S7 (A) Representative images of GFAP immunostained

neocortex sections of 3-week old C67Bl6 Xpg2/2 and wt mice

showing mild astrocytosis in the Xpg2/2 mice. cc:corpus

callossum. (B) Representative images of calbindin immunostained

cerebellum sections of 3-week old C67Bl6 Xpg2/2 and wt mice

showing subtle neuropathology in the Xpg2/2 mice. ml: molecular

layer, gl: granular layer. (C) Quantification of p53-positive cells per

mm2 in neocortex (NCx) and cerebellum (Cb) of 3-week old

C67Bl6 Xpg2/2 and wt mice. Values are the average of three

sections per genotype. Scale bars: 250 mm (A), 100 mm (B, C).

Error bars indicate standard error of the mean. **p,0.01.

(TIF)

Table S1 Primer sequences for real-time PCR.
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