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Abstract

Annexin A1 (anxA1) is an immunomodulatory protein that has been proposed as a tumor

vascular target for antitumor biologic agents, yet to date the vascular expression of anxA1 in

specific tumor indications has not been systematically assessed. Attempts to evaluate vas-

cular anxA1 expression by immunohistochemistry are complicated by a lack of available

antibodies that are both specific for anxA1 and bind the N-terminal–truncated form of anxA1

that has previously been identified in tumor vasculature. To study the vascular expression

pattern of anxA1 in non–small-cell lung carcinoma (NSCLC), we isolated an antibody capa-

ble of binding N-terminal–truncated anxA127-346 and employed it in immunohistochemical

studies of human lung specimens. Lung tumor specimens evaluated with this antibody

revealed vascular (endothelial) anxA1 expression in five of eight tumor samples studied, but

no vascular anxA1 expression was observed in normal lung tissue. Tumor microarray analy-

sis further demonstrated positive vascular staining for anxA1 in 30 of 80 NSCLC samples,

and positive staining of neoplastic cells was observed in 54 of 80 samples. No correlation

was observed between vascular and parenchymal anxA1 expression. Two rodent tumor

models, B16-F10 and Py230, were determined to have upregulated anxA1 expression in

the intratumoral vasculature. These data validate anxA1 as a potential vascular anti-tumor

target in a subset of human lung tumors and identify rodent models which demonstrate

anxA1 expression in tumor vasculature.

Introduction

The vasculature of tumor tissue is distinct from that of normal tissue in both morphology and

gene expression, and expression of multiple proteins is upregulated in tumor endothelium [1–
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4]. These tumor vascular markers present unique opportunities for targeting by antitumor bio-

logics, such as ready availability to circulating drug and the potential to facilitate local accumu-

lation of systemically administered antitumor agents [5–7]. To date, several such markers,

including B7-H3, TEM8, VEGF-A/VEGFR2, PSMA, CD105, and integrin αvβ3, have been

explored as potential antitumor targets [8–18].

Recently it was reported that expression of the immunomodulatory protein annexin A1

(anxA1) is enhanced in tumor-associated endothelium, and an antibody targeting a mem-

brane-associated, proteolytically cleaved form of anxA1 (anxA127-346) was reported to induce

rapid tumor uptake in rodent models, including models of lung cancer [19–21]. AnxA1 is

known to play a role in tumor cell proliferation [22, 23] and has been shown to be involved in

metastatic behavior in cancer cells, including invasion, migration, and epithelial-mesenchymal

transition [24–31]. Immunohistochemistry (IHC) studies have demonstrated that anxA1 is

upregulated in several tumor types, including melanoma [32], hepatocellular carcinoma [33],

gastric cancer [34–36], and non–small-cell lung carcinoma (NSCLC) [37–40], and is downre-

gulated in prostate cancer [41, 42] and many head and neck cancers [43–46]. It has been

reported that the expression of anxA1 was significantly associated with the pathological grade

of lung cancer while the upregulation of anxA1 correlated with decreased survival [47]. To this

date, IHC analyses in these reports have focused on anxA1 expression in tumor parenchyma,

and a thorough assessment of the prevalence and pattern of anxA1 expression in tumor vascu-

lature has not been reported.

AnxA1 possesses several unique structural and functional characteristics that must be con-

sidered when studying its expression profile and function in disease states. The protein can be

localized both intra- and extracellularly and exists in membrane-associated and soluble forms

[30, 48, 49]. It is composed of a core domain and a unique N-terminal domain of approxi-

mately 43 residues in length. The core domain has a high degree of homology to other annexin

family members and facilitates calcium-mediated binding to membranes [50]. The N-terminal

domain confers many of the functional properties of anxA1 and is highly susceptible to proteo-

lytic cleavage in a number of physiological contexts, including tumor endothelium [19, 20, 24,

51, 52]. Thus, it is particularly important to take these structural characteristics into consider-

ation when selecting antibodies to study anxA1 expression profiles in tissue.

In this study, we generated antibodies that are specific for anxA1 and capable of binding its

proteolytically cleaved form. Employing these uniquely specific antibodies, we then evaluated

the expression pattern of anxA1 in human NSCLC tissue samples to determine the prevalence

of vascular anxA1 expression across patient samples. We further identified rodent models of

cancer that demonstrate anxA1 expression in tumor vasculature. The results presented here

provide a comprehensive assessment of vascular anxA1 expression in NSCLC and address the

potential of anxA1 as a vascular target for anti-tumor biologics.

Materials and methods

Reagents and cell cultures

AnxA1 antibody clone 686122 (catalog number MAB37701) was purchased from R&D sys-

tems (Minneapolis, MN). AnxA1 antibody clone CL0199 (catalog number AMAB90558) was

purchased from Sigma-Aldrich (St. Louis, MO). AnxA1 antibody clone 29 (catalog number

610066) was purchased from BD Biosciences (San Jose, CA). AnxA1 antibody clone EPR2767

(2) (catalog number ab138512) was purchased from Abcam (Cambridge, MA).

The mouse melanoma cancer cell line B16-F10-Luc2 (catalog number ATCC CRL-

6475-LUC2), the Lewis lung carcinoma (LLC) cell line LL/2-Luc2 (catalog number ATCC

CRL-1642-LUC2), the mouse mammary cancer cell lines 4T1-Luc2 (catalog number ATCC
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CRL-2539-LUC2) and Py230 (catalog number ATCC CRL-3279), and the rat mammary ade-

nocarcinoma cell line 13762 (catalog number ATCC CRL-1666) were obtained from American

Type Culture Collection (ATCC) (Rockville, MD). B16-F10-Luc2 and LL/2-Luc2 cells were

cultured in Dulbecco modified Eagle medium (DMEM), and 4T1-Luc2 cells were grown in

Advanced RPMI 1640 medium (Gibco, Life Technologies Europe BV, Zug, Switzerland). The

13762 cells were cultured in McCoy 5a medium, and Py230 cells were grown in F-12K Nutri-

ent Mixture Kaighn’s Mod. (VWR, Radnor, PA) with L-glutamine, 5% HyClone FetalClone II

(GE Healthcare Life Sciences, Chicago, IL), 1× Pen/Strep (Gibco) and 0.1% MITO+ serum

extender (ThermoFisher Scientific, Waltham, MA).All media were supplemented with 10%

fetal calf serum (Gibco). Cells were maintained in tissue culture flasks at 37˚C in a humidified

atmosphere with 5% CO2. The tumor cells were routinely subcultured two to three times per

week, depending on the growth rate and split ratio. All cell lines used in the study were tested

mycoplasma-free.

Expression and purification of murine and human anxA1

Recombinant mouse and human anxA1 and anxA127-346 were produced in a prokaryotic

expression system. Genes encoding anxA1 antigen were digested with restriction enzymes and

ligated into expression vector pET22b (Novagen) with a C-terminal 6×His tag followed by

transformation into competent Top10 cells (Invitrogen) to obtain pET22-anxA1. For trun-

cated anxA1 antigens, genes encoding 27–346 amino acids of anxA1 were cloned into the

expression vector to obtain pET22-anxA127-346. The anxA1 sequences were verified by DNA

sequencing. Recombinant anxA1 proteins were expressed in E. coli BL21 (DE3) cells and puri-

fied with HisTrap HP columns in accordance with the manufacturer’s protocol (GE Health-

care, Piscataway, NJ). Protein concentration was measured with absorbance at 280 nm

(Nanodrop; Thermo Fisher Scientific, Waltham, MA).

Antibody generation

Human monoclonal antibodies were identified from CAT recombinant antibody phage

libraries [53]. Briefly, the phage library was incubated with 2% milk and control human immu-

noglobulin G (IgG) to remove Fc-binding phage before binding to the anxA1-coated immuno-

tubes (20 μg/mL in 0.1 M sodium bicarbonate buffer, pH 9.6). After a 2-hour incubation, the

immunotubes were washed with phosphate-buffered saline (PBS) + 0.1% Tween. The bound

phage was eluted with 1 mL of 100 mM triethylamine (Sigma-Aldrich, St. Louis, MO), neutral-

ized with 0.5 mL of 1 M Tris HCl (pH 7.5), and used to infect log phase TG1 cells (Novagen,

Darmstadt, Germany). The resulting colonies were collected and infected with helper phage

M13K07 (Invitrogen, Carlsbad, CA). The infected cells were cultured overnight in 2YT media

with carbenicillin (Sigma-Aldrich) and kanamycin (Sigma-Aldrich) at 30˚C to generate high-

titer phage.

AnxA1-binding phage was identified by enzyme-linked immunosorbent assay (ELISA),

and the sequence-unique clones were converted to full-length human IgG1 as described previ-

ously [53]. For clone 4, clone 4-muIgG2a was also generated as a human-mouse chimeric anti-

body containing human variable regions and mouse constant regions as a tool antibody to

assess human tissue in immunohistochemistry assay. The antibodies were transiently

expressed in HEK293 cells, using the transfection reagent 293fectin (Thermo Fisher) according

to the manufacturer’s instructions. The secreted antibody in culture supernatant was purified

with a prepacked protein A column (GE Healthcare). The antibody was eluted from the col-

umn with acidic buffer (pH 3.0), neutralized, and dialyzed against PBS. The concentration of
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the purified antibody (molecular weight, 150 kDa) was calculated from the solution’s optical

density at 280 nm.

ELISA

ELISA plates (Costar; Corning, Corning, NY) were coated with antigen in a concentration of

2 μg/mL. After washing and blocking with 3% bovine serum albumin for 1 hour at room tem-

perature, the phage or antibody was added to each well of the blocked plates. The plates were

washed and incubated with anti–M13-HRP antibody (GE Healthcare) or antihuman Fcγ (Jack-

son ImmunoResearch, West Grove, PA) for 1 hour before detection with SureBlue TMB per-

oxidase substrate (KPL, Gaithersburg, MD). The reaction was stopped with 50 μL of 0.2 M

H2SO4, and the ELISA signal was read at 450 nm.

Flow cytometry

Association of recombinant human and mouse anxA127-346 to RAJI cells was induced by co-

incubating cells with 2 μM protein in Tris-buffered saline (TBS) + 5 mM CaCl2 for 30 minutes

at 4˚C, followed by washing with TBS + 5 mM CaCl2. Cell-associated antigen binding of anti-

anxA1 antibodies was measured by flow cytometry, using anti-human Fcγ labeled with Alexa

Fluor 647 (Thermo Fisher Scientific) for detection. Cells were collected and distributed onto

96-well plates at 2 × 105 cells per well. Cells were incubated with 50 nM antibody in fluores-

cence-activated cell sorting buffer (Dulbecco PBS + 5% heat-inactivated fetal bovine serum),

followed by Alexa Fluor 647–labeled antihuman Fcγ secondary antibody (Jackson ImmunoRe-

search); each incubation was 1 hour with washes at 4˚C to keep cells viable. Cells were resus-

pended in 1:1,000 DAPI (40,6-diamidino-2-phenylindole) stain (Invitrogen), assayed on an

LSRII flow cytometer (BD Biosciences, Franklin Lakes, NJ), and gated on a live-cell, DAPI-

negative population for analysis.

Animals

Female C57BL/6J mice approximately 5 weeks of age were obtained from Jackson Laboratories

(Bar Harbor, ME). Female BALB /c (BALB/cAnNHsd) mice and female fisher rat approxi-

mately 5 weeks of age were obtained from Envigo (Indianapolis, IN). Animal were housed in

individually ventilated cages on hardwood bedding and fed a commercially available diet (Har-

lanTeklad 2918 Diet, 18% Global Protein Diet; Harlan, Indianapolis, IN). According to the

vendor’s certification program and our institutional quarterly health surveillance program, the

mice were free of commonly tested rodent pathogens. All procedures were conducted in accor-

dance with the Guide for the Care and Use of Laboratory Animals in our facility, which is

accredited by the Association for Assessment and Accreditation of Laboratory Animal Care

and were approved by AstraZeneca’s Institutional Animal Care and Use Committee.

Lung metastasis tumor models

Mouse tumor cells (B16-F10-Luc2, LL/2-Luc2, 4T1-Luc2) in an exponential growth phase

were harvested and centrifuged at 335 × g (relative centrifugal force) in a refrigerated centri-

fuge, and the medium was aspirated. For cell inoculation, the cell pellet was resuspended in

10× volume serum-free DMEM, filtered through a 70-μm nylon mesh cell strainer, and

counted. The cell suspension was centrifuged again at 300 × g and resuspended in serum-free

DMEM to obtain 2.5 × 106 cells per mL. Mice were anaesthetized using 3% isoflurane in oxy-

gen in an induction chamber until the respiratory rate slowed and stabilized. Each animal was

then inoculated by intravenous (IV) injection in a tail vein with a single-cell suspension of
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more than 95% viable tumor cells in 0.2 mL of serum-free DMEM. B16-F10-Luc2 cells or LL/

2-Luc2 cells were injected into C57BL/6J mice, while 4T1-Luc2 cells were injected into BALB/

c mice. The total number of cells to be implanted was 0.5 × 106 per mouse. Metastatic lung

tumor growth in mice were monitored by bioluminescence imaging with a spectrum in vivo

imaging system (PerkinElmer, Waltham, MA). To generate rat metastatic lung tumor 13762

mammary adenocarcinoma, female Fischer rats were injected via tail vein with a cell suspen-

sion of 13762 breast adenocarcinoma cells (0.5 × 106 cells per rat). After inoculation, the ani-

mals were checked daily for morbidity and mortality. At the time of routine monitoring, the

animals were checked for any effects of tumor growth and treatments on normal behavior,

such as mobility, food and water consumption, hair matting, and other functions.

To collect lung tumors, mice were euthanized by CO2 inhalation. Only CO2 from the house

supplied gas nozzle was used for euthanasia. Lung tumors were excised and fixed in 4% para-

formaldehyde for 24 hours. B16-F10-Luc2 lung tumors (day 0, n = 3; day 9, n = 3; day 12,

n = 3; day 15, n = 2), LLC-Luc2 lung tumors (day 18, n = 4), 4T1-Luc2 lung tumors (day 15,

n = 4) and 13762 rat lung tumors (day 15, n = 5) were collected. Fixed tissues were then paraf-

fin-embedded before IHC assessment.

Py230 breast orthotopic tumor model (in vivo Py230 tumorigenesis)

The Py230 cell line is an epithelial-like murine mammary tumor cell line with properties simi-

lar as those of normal mouse mammary stem cells. Upon orthotopic injection in C57BL/6

mice, Py230 cells form luminal mammary tumors and lung metastases [54]. Py230 cells were

harvested in exponential growth phase, washed three times with cold 1× Hank’s buffered salt

solution, and filtered through a 70-μm strainer. A total of 106 Py230 cells in 0.3 mL HBSS were

implanted into the mammary fat pads of 6–7-week-old, lightly anesthetized C57BL/6J mice by

subcutaneous injection. Following implantation, mice were monitored daily until a palpable

tumor was observed. Tumor volumes were then measured by caliper three times per week and

then daily once the tumor volume exceeded 1800mm3. Mammary tumors appeared at an aver-

age of 9 days after injection, remained approximately 200 mm3 in size until an average of 30

days after injection, and grew to the maximum allowed tumor size (2,000 mm3) by an average

of 51 days after injection. Mice were euthanized when the tumor volume exceeded 2000mm3

or earlier if the animal(s) showed signs of distress (labored breathing, lethargy, and/or

anorexia) in the study. To collect tumors, mice were euthanized by CO2 inhalation. Py230

tumors (day 25, n = 4; day 30, n = 4; day 35, n = 4; day 44, n = 4) were collected. Fixed tissues

were paraffin-embedded before IHC assessment.

IHC staining Human tissues

Multitype human normal organ tissue microarrays (TMAs) (Tristar Technology Group, Rock-

ville, MD) and NSCLC TMAs (US Biomax, Derwood, MD) were used in accordance with the

ethical principles of the Declaration of Helsinki and in compliance with all national and local

regulatory guidelines. Tissues were sectioned at approximately 4 μm and placed on positively

charged slides. After sectioning, the slides were air dried overnight before IHC staining.

To assess anxA1 expression, a chromogenic IHC assay was developed with an anti-anxA1

monoclonal antibody (clone 4-muIgG2a). Formalin-fixed, paraffin-embedded sections were

deparaffinized and stained with a Discovery Ultra IHC/ISH research slide staining system

(Ventana Medical Systems, Oro Valley, AZ) with a heated antigen retrieval pretreatment step

(Cell Conditioner 1; Ventana). The sections were incubated with an anti-anxA1 primary anti-

body at a concentration of 0.6 μg/mL for 28 minutes at 36˚C. The anti-anxA1 primary anti-

body (clone 4-muIgG2a) was detected by using secondary goat anti mouse IgG_
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OmniMapHRP (catalog no. Cat #760–4310, Lot #G04502, Ventana), followed by diaminoben-

zidine chromogen substrate (Roche Diagnostics, Indianapolis, IN) and the slides were coun-

terstained with hematoxylin. Nonimmune mouse isotype antibody (IgG) was included as a

negative assay control.

Mouse tissues

Briefly, 4 μm paraffin mouse lung tissue sections were mounted on glass slides and were depar-

affinized. The immunostaining was performed on the Ventana Discover ULTRA autostainer

(Ventana Medical Systems, Oro Valley, AZ) using OmniMapHRP detection method. The pri-

mary antibody was anxA1 antibody (clone 4-huIgG1) and was incubated with concentration

at 0.5 μg/mL Following primary antibody incubation, the samples were incubated in the spe-

cific link antibody rabbit anti-human IgG at concentration 2 μg/ml (Jackson ImmunoResearch

Laboratories1 cat# 309-005-082) for 16 minutes. Then, primary antibody was visualized with

OmniMap goat anti-rabbit HRP (catalog no. Cat #760–4311, Ventana) respectively, and DAB

(catalog no. cat# 760–159, Ventana).

All IHC stained slides were assessed by an experienced board-certified pathologist (JAC).

The intensity of Annexin A1 IHC staining was assessed semi-quantitatively: 0 (none), 1+

(faint) 2+ (moderate), 3+ (maximum); and the extent of staining was estimated as the percent-

age of tissue stained positively. In the tumor samples, neoplastic cell staining was assessed as

present or absent.

Statistical analysis

Prism software, version 8 (GraphPad), was used for data analysis. Comparison between two

systems was performed by Student t test, and that among multiple systems was performed by

one-way analysis of variance with either Dunnett test or Tukey post hoc test. A P value of

�0.05 was considered to be statistically different.

Results

Binding characteristics of anxA1 antibodies and isolation of novel

antibodies by phage panning

To characterize anxA1 expression in tumor vasculature, we initially assessed a number of com-

mercially available anti-anxA1 monoclonal antibodies for a) binding to both human and

mouse anxA127-346 as previously reported in tumor vasculature, b) but not binding to other

annexin family member, e.g. annexin A2 (anxA2) [19, 20]. Remarkably, none of the commer-

cially available antibodies evaluated were found to meet the criteria of the binding capability to

characterize the tumor vascular anxA1 in both human and mouse tissues. Clone CL0199

(Sigma-Aldrich) and clone 29 (BD Biosciences) did not demonstrate species cross-reactivity

with mouse, and in addition, clone 29 only recognized the N-terminal domain of the protein.

Clone 686122 (R&D Systems) and clone EPR2767[2] (Abcam) were not specific to anxA1 and

bound to anxA2 as well (Fig 1A). Furthermore, besides characterization of anxA1 expression

using IHC, we would also like to identify antibody capable of binding cell membrane–associ-

ated anxA127-346 for tumor uptake imaging study in tumor vasculature anxA1 positive rodent

model. Although Clone 686122 (R&D Systems), Clone CL0199 (Sigma-Aldrich) and clone 29

(BD Biosciences) were able to bind cell membrane–associated anxA127-346 shown by flow cyto-

metric assay (Fig 1A), they either have non-specific binding to anxA2 or have no species cross-

reactivity with mouse. Therefore, there is a need to generate anti-anxA1 monoclonal antibod-

ies for IHC study and in vivo tumor uptake study.
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We isolated a panel of monoclonal antibodies by screening a human antibody phage library

for binding to anxA1, then assessed anxA1 binding properties. From this panning campaign,

we selected antibody clone 4 as a tool antibody for IHC study due to its high binding affinity

(EC50 for human and mouse anxA127-346, 2.36 pM and 3.09 pM, respectively), species cross-

reactivity, and specificity for recognizing anxA1 (Fig 1B). Clone 4-muIgG2a was generated as a

human-mouse chimeric antibody containing human variable regions and mouse constant

regions as a tool antibody to assess human tissues in immunohistochemistry assay, while clone

4-huIgG1 as a full-length human IgG was used to assess mouse tissues. Furthermore, several

additional antibodies discovered during the phage panning campaign were shown to bind cell

membrane–associated anxA127-346 by flow cytometry. Antibody clones 1, 77, and 84 all dem-

onstrated binding to recombinant anxA127-346 localized to the surface of RAJI cells in the pres-

ence of calcium, as well as binding by ELISA (S1 Fig).

IHC analysis of anxA1 expression in human lung intratumoral vessels and

normal tissue

Five of eight human lung tumor specimens exhibited positive staining for anxA1 in intratu-

moral vessels by IHC analysis (Fig 2A). The intensity of staining was 2+ (moderate) to 3+

(maximum) in the positively stained intratumoral endothelial cells. The extent of vascular

endothelial staining (percent staining) for anxA1 ranged from 1% to 10% of vessel staining,

with endothelium defined on the basis of architectural location and cellular morphology by an

experienced pathologist. AnxA1 staining in neoplastic cells was detected in 3/8 human lung

tumor specimens. There was no association between anxA1 staining in intratumoral endothe-

lial cells and neoplastic cells. No anxA1 staining was detected in the microvessels of normal

lung tissue, though anxA1 staining intensity of 1–3+ was detected in macrophages and neutro-

phils within all human lung tumor specimens and normal tissue specimens. The positive stain-

ing of anxA1 in macrophages and neutrophils are consistent with anxA1 expression in the

immune cells as literature reported [55, 56].

Fig 1. Binding characteristics of commercial anti-anxA1 antibodies. Summary of binding characteristics of

commercial antibodies and clone 4-huIgG1 (A), and ELISA binding of clone 4-huIgG1 to full length and N-terminal

truncated human and mouse anxA1, with negative binding to human annexin A2, A5, and A6 (B). Interpolated EC50

values: full length human anxA1 7.53 pM, full length mouse anxA1 6.19 pM, human anxA127-346 2.36 pM, mouse

anxA127-346 3.09 pM based on One Site—Total Binding, least squares fit.

https://doi.org/10.1371/journal.pone.0234268.g001
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Fig 2. Vascular anxA1 IHC expression. Representative immunohistochemistry of human lung tumors (A) and normal lung (B) showing annexin A1 expression (brown)

in the intratumoral vessels of human lung tumors, but not in the microvessels of normal lung. Vascular staining (yellow arrows) in 1–10% of total endothelial cells was

observed in 5/8 human lung tumors (A), while positive staining of neoplastic cells was seen in 3/8 samples (not shown). In normal lung (B), no endothelial cell staining was

observed in the 4 samples examined; however, interstitial and alveolar macrophages were strongly positive (red arrows). All scale bars = 10 μm.

https://doi.org/10.1371/journal.pone.0234268.g002
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AnxA1 expression in human TMAs as examined by IHC was consistent with the specimen

IHC analysis. Of 80 human tumor samples, 30 exhibited 2–3+ staining for anxA1 in the intra-

tumoral vessels (Table 1, S2 Fig). Neoplastic cell staining was observed in 54 of 80 samples.

Staining was most commonly observed in the cytoplasm with or without membrane staining.

No association was observed between anxA1 staining in the intratumoral endothelial cells and

anxA1 staining in the neoplastic cells. In contrast, in a panel of 32 normal tissue types, vascular

staining was negative in all TMAs except in kidney medulla (two of two positive) and stomach

fundus (three of three positive) (Table 1).

Table 1. Vascular anxA1 staining in TMAs of NSCLC and normal tissues. Vascular anxA1 staining was positive in 30/80 NSCLC TMA samples, with 54/80 samples

demonstrating neoplastic staining. Vascular staining in normal tissues was negative with exceptions of kidney medulla (2/2 positive vascular staining) fundus (3/3 positive

vascular staining).

Organ System Tissue type No. of cores examined� No. vascular positive No. vascular negative

Respiratory Lung 3 0 3

Immune Lymph node 3 0 3

Spleen 2 0 2

Thymus 2 0 2

Cardiovascular Heart 1 0 1

Gastrointestinal Stomach (fundus) 3 3 0

Stomach (muscularis) 2 0 2

Ileum 2 0 2

Colon (descendens) 2 0 2

Gallbladder 2 0 2

Liver 3 0 3

Parotid gland 3 0 3

Integumentary Skin 1 0 1

Reproductive Prostate 3 0 3

Testis 2 0 2

Ovary 2 0 2

Exocervix 3 0 3

Uterus 1 0 1

Breast 2 0 2

Endocervix 2 0 2

Endometrium 1 0 1

Placenta (early) 3 0 3

Seminal vesicle 2 0 2

Fallopian tube 3 0 3

Urinary Ureter 1 0 1

Urinary bladder 1 0 1

Kidney (cortex) 3 0 3

Kidney (medulla) 2 2 0

Central nervous system Cerebellum (cortex) 1 0 1

Cerebrum 3 0 3

Endocrine Adrenal gland 3 0 3

Thyroid 3 0 3

Tumor NSCLC 80 30 50

�Tissue cores were 1 mm in diameter.

https://doi.org/10.1371/journal.pone.0234268.t001
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AnxA1 expression in rodent intratumoral vessel models

To identify rodent tumor models that are representative of the vascular anxA1 staining

observed in human lung tumor specimens, we conducted IHC analysis of intratumoral vessels

in multiple rodent models. We chose primarily metastatic and orthotopic models in this study

because host immune systems in these models are not compromised, and these models better

mimic tumor growth within the tissue environment than subcutaneous or xenograft tumor

models [57–61]. The tumor models that were examined included a metastatic LLC model [20],

a B16-F10 lung metastatic model, a 4T1 lung metastatic model, and a 13762 rat lung metastatic

model [19], as well as the Py230 orthotopic breast tumor model. Luciferase-expressing

LLC-Luc2 cells, B16-F10-Luc2 cells or 4T1-Luc2 cells were used in the three models for the

convenience of monitoring metastatic lung tumor growth in mice by bioluminescence imag-

ing. The tumors were harvested at the end point of the tumor growth curve.

Within a majority of B16-F10-Luc2 lung metastatic foci, a majority of neovessels were lined

by endothelial cells that exhibited 2–3+ staining for anxA1in the cytoplasm, whereas very weak

anxA1 staining was detected in the infiltrated and expanded neoplastic cells at 15 days after

implantation (Fig 3A). Based on this finding, we subsequently tested clones 1 and 84 for tumor

uptake in mice bearing B16-F10-Luc2 lung metastases that had been injected into a tail vein.

Ex vivo fluorescence imaging of Alexa Fluor 680–conjugated clones 1 and 84 demonstrated no

significant tumor uptake in this model as compared with isotype control (S3 Fig).

Throughout the tumor areas of the Py230 orthotopic breast tumor model, the walls of neo-

vessels were strongly positive (2–3+) for anxA1 staining by endpoint day 44; however, the sig-

nal was localized to the vascular smooth-muscle cells, and the subjacent endothelial cells were

negative for anxA1 (Fig 3B). In comparison, the small, thin-walled intratumoral neovessels

were consistently negative for anxA1 staining in the LLC-Luc2 metastatic model (Fig 3C), the

4T1-Luc2 lung metastatic model (Fig 3D), and the 13762 rat lung metastatic model (Fig 3E),

despite moderate to strong anxA1 staining in metastatic neoplastic epithelial cells within the

three models. These results were similar to the IHC analysis of human tissue in so much as no

direct association of anxA1 expression was observed between intratumoral vessel staining and

neoplastic cell staining across these models.

To further understand the timing of anxA1 expression in intratumoral vessels, we under-

took a time course IHC study in the Py230 orthotopic breast tumor and B16-F10-Luc2 lung

metastatic models. In the Py230 model, anxA1 expression was exhibited in approximately 10%

of tumor vessels by day 30 and increased to 50–75% by termination at day 44 (Fig 4).

B16-F10-Luc2 metastasis-bearing lungs were collected and assayed by IHC on day 0

(n = 3), day 9 (n = 3), day 12 (n = 3), and day 15 (n = 2) after IV cell implantation. On day 0,

there was no evident metastases; the endothelial cells lining the lung microvessels were consis-

tently negative for anxA1 (Fig 5A). On day 9, numerous small metastases were multifocally

distributed throughout the pulmonary parenchyma. No obvious neovessels were apparent and

no anxA1 staining was observed within the metastatic foci (Fig 5B). On day 12, numerous

moderate-to-large, multifocal-to-coalescing foci of metastases were distributed throughout the

pulmonary parenchyma and occupied approximately 50% of lung area. Neovessels were appar-

ent within most metastatic foci, and one of the three animals exhibited 2–3+ staining in neo-

vessels (Fig 5C). On day 15, approximately 60–70% of the pulmonary parenchyma was

infiltrated and expanded by large, multifocal-to-coalescing foci of metastases. In two of the

two animals, the neovessels of larger foci were lined by endothelial cells that exhibited 2–3

+ staining of anxA1 (Fig 5D). Throughout the time course, endothelial cells in adjacent normal

lung tissue remained almost completely negative for anxA1 staining, with only very rare posi-

tive staining observed.
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Discussion

Tumor vascular markers present a unique antitumor targeting opportunity due to their avail-

ability to circulating drug and potential to facilitate local accumulation of systemically admin-

istered antitumor agents [5, 6]. Previously published data on anxA1 expression in tumor

vasculature has established the presence of a membrane-bound, N-terminal–truncated form of

anxA1 on the luminal membrane of tumor-associated endothelium, and anxA1 has been pro-

posed as a vascular antitumor target [19–21]. However, until now a systematic study of anxA1

expression in tumor and normal vasculature has not been published.

Fig 3. AnxA1 expression in rodent models of cancer. Representative IHC images of tumor area in (A) B16-F10-Luc2 lung tumors, (B) Py230 breast tumor, (C)

LLC-Luc2 lung tumors, (D) 4T1-Luc2 lung tumors, and (E) 13762 lung tumors. AnxA1 expression (brown) was seen in endothelial cells lining microvessels (yellow

arrows) in the B16-F10-Luc2 lung metastatic tumor model and the Py230 tumor model, but not in the LLC-Luc2 lung metastatic tumor model, the 4T1-Luc2 lung

metastatic tumor model, or the 13762 rat lung metastatic tumor model, despite 1–3+ staining in metastatic neoplastic cells. Note that in B, C, D, and E, there is strong

anxA1 expression in macrophages (red arrows). All scale bars = 10 μm.

https://doi.org/10.1371/journal.pone.0234268.g003

Fig 4. Time course of anxA1 expression in Py230 orthotopic breast tumor model. Immunohistochemical expression of anxA1 (brown) in Py230 tumors at (A) day

25, (B) day 30, (C) day 35, and (D) day 44. Microvascular endothelial cell expression of anxA1 (yellow arrows) begins at day 30 and increases in extent and intensity

through day 44. Note that macrophages also exhibit strong anxA1 expression (red arrows). All scale bars = 10 μm.

https://doi.org/10.1371/journal.pone.0234268.g004
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To characterize anxA1 expression in tumor vasculature, we assessed the binding character-

istics of a large panel of antibodies to identify those that bind N-terminal–cleaved anxA1. A

related family member protein anxA2 has a high degree of sequence homology to anxA1

(55%), is upregulated in cancer, and is known to be expressed on endothelium [62–64]; there-

fore binding to anxA2 was assessed to ensure antibody specificity. In addition, human-mouse

cross-reactivity was sought to facilitate translational studies. Based on these criteria, no com-

mercially available anti-anxA1 monoclonal antibodies tested demonstrated the required bind-

ing profile and specificity, underscoring the importance of properly characterizing anti-anxA1

antibodies used in IHC studies. Many published papers on anxA1 expression in cancer report

the use of either polyclonal antibodies, which have high liability for cross-reaction with other

annexins, or antibodies such as clone 29, which was shown in our study to recognize the cleav-

able anxA1 N-terminal domain.

Given the lack of suitable commercially available antibodies, we undertook a phage panning

campaign to isolate antibodies that specifically bind anxA1 and detect anxA127-246. From this

campaign we isolated clone 4, an antibody which demonstrated specificity for anxA1 over

other annexins as well as species cross-reactivity, sub-nanomolar affinity, and excellent speci-

ficity in staining cytosolic and membrane anxA1 in fixed IHC samples.

Using clone 4 to investigate vascular anxA1 expression in lung tumor, we observed that five

of eight lung tumor samples stained positive for vascular anxA1 in 1–10% of total endothelial

cells. In addition, 30 of 80 NSCLC TMA cores demonstrated positive staining for anxA1,

whereas in contrast no vascular staining of anxA1 was observed in normal tissue samples with

the exceptions of stomach fundus and kidney medulla cores. Tumor parenchyma staining was

positive in a majority of NSCLC samples (54 of 80), which is consistent with previous reports

of anxA1 expression in lung tumors [37–40]. Although induction of anxA1 expression in lung

tumor vasculature was not as prevalent and widespread as that seen in other tumor vascular

targets, notably B7-H3 [8] and PSMA [65, 66], these data validate anxA1 as a potential tumor

vascular drug target in a proportion of human lung tumors.

To identify translatable rodent tumor models that could be used to study tumor vascular

anxA1 expression, we also used IHC to assess vascular and neoplastic anxA1 expression in sev-

eral rodent models of cancer. Because the induction of tumor endothelial markers involves a

complex interplay between tumor parenchyma and stromal cells, we chose metastatic and

orthotopic syngeneic models for this study, as these models more accurately reflect tumor

growth within the tissue environment and do not involve compromised immune function [58,

60, 61]. In addition, it is believed that lung metastatic models replicate the mechanism of vas-

cular recruitment seen in lung cancer [67, 68].

Two of the rodent models (B16-F10-Luc2 lung metastatic and Py230 mammary orthotopic)

showed substantial induction of vascular anxA1 expression. In contrast to these models, the

4T1-Luc2, LLC-Luc2, and rat 13762 models were uniformly and consistently negative for vas-

cular anxA1 expression, although each of these models exhibited anxA1 expression in tumor

parenchymal cells to various degrees. In both the human lung tumor and the mouse models

we tested, there was no apparent correlation between anxA1 expression levels in the tumor

vasculature and the tumor parenchyma, suggesting that the function of anxA1 in these cell

types may be independent of each other.

Fig 5. Time course of anxA1 expression in B16-F10-Luc2 lung metastases. Immunohistochemical expression of anxA1 (brown) in B16-F10-Luc2

tumor-bearing lungs at (A) day 0, (B) day 9, (C) day 12, and (D) day 15. Microvascular endothelial cell expression of anxA1 (yellow arrows) begins

at day 12 and increases in extent and intensity through day 15. Note that macrophages also exhibit strong anxA1 expression (red arrows). (E) shows

gross appearance of lungs excised at the various time points. Note the progressively darker color as the B16-F10-Luc2 melanoma cells metastasize to

the lungs. All scale bars = 10 μm.

https://doi.org/10.1371/journal.pone.0234268.g005
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Previously, tumor uptake of anti-anxA1 antibody was observed in syngeneic rodent

tumors generated by co-implantation of tumor spheroids with orthotopic tissue in a dorsal

window chamber [19–21]. In the B16-F10-Luc2 lung metastatic model, which was shown by

IHC to express anxA1 in the tumor neovasculature, anti-anxA1 antibodies 1 and 84 did not

demonstrate significant tumor uptake upon systemic injection (S3 Fig). On the basis of these

data, it appears that tumor uptake of anti-anxA1 antibodies may be dependent on the tumor

model or involves the engagement of specific epitopes that are not addressed by these

antibodies.

The defined time course of anxA1 expression in tumor vasculature in the B16-F10-Luc2

and Py230 models suggests a potential role for vascular anxA1 in facilitating or modulating

growth in these tumors. Stromal-derived anxA1 has previously been shown to play a role in

tumor angiogenesis, and anxA1 has been found to be induced in sprouting endothelial cells in

an aortic ring assay [69]. In addition, it has been hypothesized that anxA1 could act to modu-

late the tumor immune environment, and anxA1 and its cleavage products are known to mod-

ulate neutrophil extravasation and transendothelial migration through interaction with formyl

peptide receptors [52, 70, 71]. Additional studies are required to determine the functional role

of vascular anxA1 in these tumor models.

In conclusion, we used phage panning techniques to isolate anti-anxA1 antibodies with

binding profiles designed to target anxA127-346, a truncated form of anxA1 that had previously

been identified on the luminal surface of tumor endothelium. We used one such antibody for

IHC studies to assess the prevalence and extent of vascular anxA1 expression in human

NSCLC and normal tissues, as well as in a diverse set of rodent tumor models. Our results

demonstrate that vascular anxA1 expression is present in a subset of human lung tumors and

rodent tumor models, thus supporting its potential as a vascular tumor target for biologic

agents. Studies of additional tumor indications and correlating rodent translational models

will be useful for further assessment of anxA1 as a vascular tumor target.

Supporting information

S1 Fig. Binding characteristics of anti-anxA1 clones 1, 77, and 84. ELISA binding to recom-

binant mouse and human anxA1 and anxA127-346. (A) EC50 values were as follows. Clone 1:

mouse full-length anxA1, 3.75 nM; mouse anxA127-346, 2.64 pM; human full-length anxA1,

1.98 pM; human anxA127-346, 2.64 nM. Clone 77: mouse full-length anxA1, 9.88 pM; mouse

anxA127-346, 11.12 pM. Clone 84: mouse full-length anxA1, 27.93 pM; mouse anxA127-346,

32.71 pM. (B) Antibody binding to cell-associated anxA127-346 localized to the surface of

anxA1-negative RAJI cells in the presence of 5 mM CaCl2, assessed by flow cytometry.

(TIF)

S2 Fig. Representative Annexin A1 IHC images showing the variation in expression pat-

terns seen in human NSCLC TMA samples. Left: A core showing expression in macrophages

and neutrophils only with no endothelial (arrows) or neoplastic cell expression. Center: a core

exhibiting positive neoplastic cell expression without endothelial cell expression. Right: A core

exhibiting positive macrophage, neutrophil, and endothelial cell (arrows) expression but no

neoplastic cell expression.

(TIF)

S3 Fig. Biodistribution of anti-anxA1 antibodies. Shown are results at (A) 4 hours and (B)

24 hours. Alexa Fluor 680–labeled clones 1 and 84 and human IgG1 isotype control NIP228

were administered via IV injection to mice bearing B16-F10-Luc2 lung tumor metastases at 12

days after lung seeding of 0.5 × 106 B16-F10-Luc2 cells via tail vein injection. No significant
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differences were observed between groups; n = 3 per group.

(TIF)

S1 Data.
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