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Nonuniform subduction of the 
Indian crust beneath the Himalayas
Xiaoyu Guo1, Wenhui Li2, Rui Gao1,2, Xiao Xu1, Hongqiang Li2, Xingfu Huang1, Zhuo Ye2, 
Zhanwu Lu2 & Simon L. Klemperer3

Himalayan tectonic activity is triggered by downward penetration of the Indian plate beneath the Asian 
plate. The subsurface geometry of this interaction has not been fully investigated. This study presents 
novel constraints on this geometry provided by two newly obtained, deep seismic reflection profiles. 
The profiles cover 100- and 60-km transects across the Yarlung-Zangbo suture of the Himalaya-Tibet 
orogen at c. 88°E. Both profiles show a crustal-scale outline of the subducting Indian crust. This outline 
clearly shows Indian understhrusting southern Tibet, but only to a limited degree. When combined with 
a third seismic reflection profile of the western Himalayas, the new profiles reveal progressive, eastward 
steepening and shortening in the horizontal advance of the subducting Indian crust.

The Himalayan-Tibetan Plateau is currently the world’s largest example of an active continent-continent colli-
sional orogen. The plateau formed primarily due to the collision between the Indian and Eurasian tectonic plates 
after subduction and closure of the intervening Neotethyan Ocean in the past 55 Ma1. The plateau rises 4–5 km 
above sea level and spans 2900 km in an east-west direction (inset in Fig. 1). The plateau is scientifically significant 
due to its size, elevation and crustal thickness, which is twice the global average. Due to its position, this feature 
also exerts a strong influence on the regional climate of South Asia2. In addition, the plateau and its formation 
generate significant regional seismic activity, including the 2008 Mw 7.9 Wenchuan earthquake in eastern Tibet3 
and the 2015 Mw 7.9 Gorkha earthquake (Nepal) in southern Himalayas4. These events caused numerous fatali-
ties and significant property damages.

Over the past few decades, geoscientists have analyzed the India-Eurasia collision using a range of different 
geological and geophysical tools. This research has generated several different models for explaining the Tibetan 
Plateau’s unusual style of uplift1,5–8. Models attribute plateau construction to either a doubling of crustal thick-
ness that occurred when the Indian crust had underthrust most of Tibet5 or to crustal shortening that did not 
require the presence of the Indian crust beneath the plateau1. The extent of the subducted Indian crust beneath 
the Tibetan Plateau is thus a critical assumption in models seeking to explain plateau history. Previous receiver 
function studies have provided unequivocal constraints on the northward extent of the downwelling Indian 
continental lithosphere8–13. Given the data resolution of these studies however, crustal geometry within the col-
lision zone remains ambiguous. Multichannel seismic reflection profiling experiments in the 1990s recorded 
lithosphere-scale structure of the Himalayas14–16, but the exact geometry of the collisional suture remains poorly 
constrained. Previous interpretations have been based on single south-north cross-sections and assumed uni-
form subduction of the Indian crust. It is not certain however that the Indian crust does subduct in a uniform 
manner across the entire 2900 km-wide orogenic belt. Results from individual seismic profiles integrate consist-
ently with local structural interpretations but have not provided consistent interpretations for crustal geometry 
at orogen-scale.

In this study, we present two recently acquired, high-resolution, deep seismic reflection profiles that span the 
Yarlung-Zangbo suture zone of the central Himalayas (Fig. 1a). Emerging data collection and processing methods 
enabled acquisition of high quality reflection images showing deep subsurface structure. The overall image clearly 
shows the geometry of the Indian crust beneath Tibet and critical spatial variation in its subducted/underthrust 
areas.

Two new deep seismic reflection profiles across the Yarlung-Zangbo suture
The two profiles run 120 km in an N-S direction and overlap by ~40 km around the Yarlung-Zangbo suture 
(Fig. 1a). These transects therefore cover a swath of the Tethyan Himalaya to the south and a broad swath to 
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the north that includes the west-northwest-trending Yarlung-Zangbo suture and Gangdese magmatic belt to 
the north (Fig. 1b). The Tethyan Himalaya in the study area consists of thick marine sedimentary and ophiolitic 
sequences that range from Precambrian to Cretaceous in age (Fig. 1b)17. The Mabja metamorphic core complex 
(Fig. 1b) near the southern terminus of the seismic profiles has been exposed at the surface by mid-crustal ductile 
extension initiated at ~35 Ma and lasting ~12–19 my18. The profiles interpreted in this report also span the Great 
Counter Thrust (GCT) and Gangdese Thrust (GT) (Fig. 1b)19. Structural field investigations show top-to-the 
north displacement along the GCT18. Age constraints suggest an early Miocene initiation (25-23 Ma)18,20–22 for 
the GCT. The GT bounds the southern margin of the Gangdese magmatic belt (Fig. 1b) and has been constrained 
at 27-23 Ma by 40Ar/39Ar methods23.

Data collection and processing steps followed those described in our previous seismic studies of the western 
Himalaya24. We deployed three types of explosive sources: 50 kg shots in single shot holes at 250 m intervals, 
200 kg shots in pairs of shot holes at intervals of 1 km, and 2000 kg shots in clusters of 10 shot holes at 50 m depth 
over intervals of 50 km. Data were recorded by 600 receiver traces over a 60 s two-way travel time window. This 
experimental setup provided a nominal 60-fold common mid-points (CMPs) stacked section. Processing steps 
also used Kirchhoff pre-stack time migration (see Methods details).

Figures 2a and 3a show the near-vertical, uninterpreted seismic reflection images for the east and west lines, 
respectively. These extend to about 30 s two-way time (t.w.t.) (Figs 2a and 3a) or ~90 km depth (assuming an 
average crustal velocity of 6 km/s). To visualize overall structure of the area imaged, we observed high-amplitude 
reflections in the seismic transects (Figs 2b and 3b) and constructed composite line drawings for the east and west 
lines, shown in Figs 2c and 3c (respectively). Figures 2d and 3d present structural interpretations that integrate 
seismic reflection data and previous geological interpretations for the east and west lines, respectively.

The two seismic profiles clearly outline the structural geometry of the collision zone (Figs 2c and 3c). The base 
of the lower crust in both seismic transects appears as a zone of high-amplitude reflectors at depths of ~22–27 s 

Figure 1.  (a) Topographic map of southern Tibet and the Himalayan Mountain Range showing the location 
of two 60 km and 100 km seismic reflection profiles (lines A and B, respectively) interpreted here. Line C 
represents previous seismic transects covering the western Himalayas24. (b) Generalized geological map of 
the research area was modified after The Geology Map of China [1:1,000,000]. Black stars indicate the sites of 
four single shots with 2000 kg explosive sources. The inset shows the location of the research area (red box) in 
a larger regional context. TB: Tarim basin, TP: Tibetan Plateau, SCB: South China Block, IP: Indian Plate, KF: 
Kunlun fault, LG Rift: Longgar Rift, NT Rift: Nyima-Tingri Rift, XD Rift: Xainza-Dingjye Rift, YG Rift: Yadong-
Gulu Rift, GCT: Great Counter Thrust, GT: Gangdese Thrust. Digital elevation data were downloaded from the 
website of http://srtm.sci.cgiar.org. Figures A and B, as well as the inset were drafted by X.G. and X.X. using the 
software of CorelDRAW X5.

http://srtm.sci.cgiar.org
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(t.w.t). Given the ~66–81 km depth range (assuming an average crustal velocity of 6 km/s), we interpreted this 
feature as the crust-mantle boundary (Moho). Both seismic profiles show a crustal thickness of two times the 
global average. The profiles also show a converging geometry indicating an offset structure in the Moho (Figs 2c,d 

Figure 2.  Uninterpreted deep seismic reflection profile (no vertical exaggeration) of the east line (a). See 
Fig. 1 for surface trace of transect (Labeled in A). Superimposed line drawings of high-amplitude reflectors 
from the seismic section (b) and composite line drawings showing major features (c). Structural interpretation 
integrating surface geology and reflection patterns (d). The high-amplitude reflectors in purple represent 
fragments of ophiolitic mélange from the Yarlung-Zangbo suture dislocated during crustal-scale duplexing 
of the subducted Indian crust. GCT: Great Counter Thrust, GT: Gangdese Thrust, YZ: Yarlung-Zangbo, TH: 
Tethyan Himalaya, TAC: Tethyan accretionary complex, MHT: Main Himalayan Thrust. Figure 2a contains raw 
seismic reflection data that were collected in the field. Superimposed line drawings in Fig. 2b and c, as well as 
structural interpretation in Fig. 2d, were drafted by X.G. and X.X. using the software of CorelDRAW X5.
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and 3c,d). This structure (interpreted as a mantle suture) appears in single shot, 2000 kg source datasets from both 
east and west lines (Fig. 4a,b, respectively; 2000 kg shots shown as black stars in Fig. 1b).

Upper crustal areas of seismic images show a series of steep, south-dipping reflectors truncated at their base 
by two sets of reflections exhibiting a ramp-flat geometry (Figs 2c and 3c). In accordance with previous studies 
of surface geological features, we interpret these basal, southerly-dipping reflections (0–4 s, t.w.t) as correspond-
ing to the GCT that represents thrusting emplacement of the Tethyan Himalayas over the Kailas succession17 
(Figs 2d and 3d) and the GT that marks the southern edge of the Gangdese belt17 (Fig. 2d). The GCT and GT 
appear to displace the base of the Yarlung-Zangbo suture complex in a low-angle thrust giving each element a 
southerly dip (Figs 2d and 3d). It is noteworthy that, instead of being top to the south, the whole-scale geometry 
of the GT in the seismic transect appears top to the north, which is opposite to previous studies from surface 
geological investigations23. In addition, surface structural investigations have documented top-to-the north dis-
placement bounding the ophiolitic mélange17, which also appeared in the INDEPTH seismic reflection profile 
across the Yarlung-Zangbo suture zone16. This observation runs contrary to the assumption that faults bordering 
the exposed suture zone trend parallel to the direction of subduction. The bivergent structure appearing in the 
upper crust indicates progressive thickening within the accretionary prism and the area to the south. The suture 
zone within the upper crust’s accretionary prism thus steepened and developed into a retrowedge with southward 
truncation of the GCT and Gt at its base.

Along the southern segment of the seismic transect, a group of prominent reflectors appear at depths of 
14–15 s (t.w.t.) and extend continuously downward to a depth of 28 s (t.w.t.) (Figs 2a and 3a, see additional review 
material for higher-resolution seismic images). Comparison with features identified by previous seismic reflec-
tion and wide-angle studies of the southern Himalayan Mountain Range12,14,25 indicate that laterally extensive 

Figure 3.  Uninterpreted deep seismic reflection profile (no vertical exaggeration) of the west line (a). See 
Fig. 1 for surface trace of transect (labeled in B). Superimposed line drawings of the high-amplitude reflectors 
from the seismic section (b) and composite line drawings showing major features (c). Structural interpretation 
integrating surface geology and reflection patterns (d). The high-amplitude reflectors in purple represent 
fragments of ophiolitic mélange from the Yarlung-Zangbo suture dislocated during crustal-scale duplexing of 
the subducted Indian crust. GCT: Great Counter Thrust, YZ: Yarlung-Zangbo, TH: Tethyan Himalaya, TAC: 
Tethyan accretionary complex, MHT: Main Himalayan Thrust. Figure 3a contains raw seismic reflection data 
that were collected in the field. Superimposed line drawings in Fig. 3b and c, as well as structural interpretation 
in Fig. 3d, were drafted by X.G. and X.X. using the software of CorelDRAW X 5.
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reflectors at 14–15 s (t.w.t.) depth represent the Main Himalayan Thrust (MHT). The Main Central Thrust (MCT), 
the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT) are supposed to branch on the MHT, a 
major regional detachment fault12,14,25. An additional set of high amplitude reflectors (bright-spot) appear just 
above the MHT at depths of 6–15 s (t.w.t.) in the Tethyan accretionary complex (TAC) (Figs 2c and 3c). These 
sub-horizontal reflectors terminate to the north against a set of south dipping “bright-spot” reflections. This 
latter feature differs from the overlying crust and accretionary prism to the north. Given the well-documented 
crustal-scale duplexing that has transferred material from the lower to the upper plate in the western Himalayas24, 
we interpret this anomalous zone (bright-spot) as consisting of fragments of ophiolitic mélange from the 
Yarlung-Zangbo suture (Figs 2d and 3d) dislocated during crustal-scale duplexing of the subducted Indian crust 
along the MHT at its base24 (Figs 2d and 3d).

In northerly areas of both seismic transects (Figs 2a and 3a), areas beneath 8 s (t.w.t) in Fig. 2a and beneath 
6 s (t.w.t) in Fig. 3a appears as a zone having only a few short-wavelength south dipping reflectors. The basal 
geometry of the Moho and orientation of its offsets indicate that this zone represents the crystalline basement 

Figure 4.  Single-shot section from the 2000 kg explosive source along the east (a) and west (b) lines. Mantle 
suture appears beneath a crustal section thickened to twice its global average thickness. Blue stars in Fig. 1a 
indicate individual surface localities where mantle suture appears beneath the Lhasa terrain. Black stars in 
Fig. 1b show shot sites along the two seismic reflection lines.

Figure 5.  Interpretive sketch (not to scale) showing variation in the regional-scale crustal geometry of the 
Indian crust as it subducts beneath southern Tibet. Interpretations based on results from new deep seismic 
reflection images described here as well as previous seismic8,14 and structural studies29. MFT: Main Frontal 
Thrust; MBT: Main Boundary Thrust; MCT: Main Central Thrust; MHT: Main Himalayan Thrust; STD: 
Southern Tibetan Detachment; YZS: Yarlung-Zangbo suture; GT: Great Counter Thrust; GT: Gangdese Thrust. 
DSZ: Ductile shear zone; Figure was drafted by X.G. and X.X. using the software of CorelDRAW X5.
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of the Lhasa terrain undergoing intense collisional compression. High temperatures therein may eliminate 
long-wavelength converters.

The continuous trace of the MHT and prominent Moho reflections (Figs 2c and 3c, see additional review 
material for higher-resolution seismic images) highlight the geometry of the subducting Indian crust (Figs 2 and 
3). Images clearly show the limited extent of Indian crust subduction beneath the Lhasa terrain. Figure 1a (blue 
stars) shows surface projections of Moho offsets (mantle suture). The subducting Indian crust extends beneath 
the Gangdese batholith along the western profile but only advances to a limited extent beyond the northerly 
Yarlung-Zangbo suture zone along the eastern one. The western profile thus shows greater horizontal advance for 
the subducting Indian crust than that indicated by the eastern profile (Fig. 1a). Leading edge of the subducting 
Indian crust within the western profile exhibits a dip angle of about 27°NE (Fig. 2d), while the eastern profile 
indicates a dip angle of about 45°NE (Fig. 3d). Previous seismic reflection studies of the western Himalaya (solid 
black line C in Fig. 1a) detected relatively flat Moho reflections and no offset related to continent-continent 
collision beneath the dominant collision zone24. The overall crustal geometry imaged by these seismic reflection 

Figure 6.  Block diagrams schematically illustrating a proposed crustal-scale tectonic evolution of the 
subducting Indian crust from (a) ocean-continent collision through (b) continent-continent collision to (c) 
present. Geometric variation of the contractional wedge as a result of rapid uplift of the northern Himalayas 
since ~20 Ma28 is highlighted. See discussion for details. MFT: Main Frontal Thrust; MBT: Main Boundary 
Thrust; MCT: Main Central Thrust; MHT: Main Himalayan Thrust; STD: Southern Tibetan Detachment; YZS: 
Yarlung-Zangbo suture; GT: Great Counter Thrust; GT: Gangdese Thrust. DSZ: Ductile shear zone; Figure was 
drafted by X.G. and X.X. using the software of CorelDRAW X 5.
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profiles (seismic lines A, B and C in Fig. 1a) affirms lateral variation along the subductive margin and indicates 
progressive eastward steepening of the down-going Indian crust.

Discussion
Figure 5 presents a sketch showing variation in the regional-scale geometry of the Indian crust as it subducts 
beneath southern Tibet. New high-resolution seismic reflection profiles described here reveal that India is under-
thrusting southern Tibet but only to a limited degree. When interpreted in combination with a previous profile of 
the western Himalayas, the new profiles indicate progressive eastward steepening and shortening, as well as only 
limited horizontal advance of the subducting Indian crust (Fig. 5). Our high-resolution seismic datasets provide 
a consistent image of crustal-scale geometry within the collision zone. Along with previous teleseismic receiver 
function studies26 and body wave tomographic studies27, new data presented here clearly demonstrate west to east 
spatial variation in the Indian lithosphere subducting beneath southern Tibet.

Together with the deep seismic reflection profile in the western Himalayas, the results also outlined the lim-
ited thickness of Indian crust subduction beneath southern Tibet. We tentatively interpret this observation as 
evidence of continental materials resisting subduction due to crustal buoyancy. This process partly contributed 
to initiation of the Main Himalayan Thrust, which may act as an intracrustal ductile detachment fault decoupling 
deformation between the lower crust and overlying crust during continent-continent collision (Fig. 6a). As a 
result, the lower crust of the Indian plate was dragged beneath southern Tibet while the rest of the Indian crust 
peeled off and has experienced top-to-the-south duplexing or exhumation along the Main Himalayan Thrust to 
contribute to the rapid uplift of the Himalayan orogen28 (Fig. 6b). Consequently, an increase in the northward 
compressive forces occurred from the rapid uplift of the northern Himalayas28. The accretionary prism between 
the northern Himalayas and the Lhasa terrain experienced dramatic shortening and thickening (Fig. 6b). As a 
result, extensional collapse of the wedge under its own weight drove progressive development from the forewedge 
to the retrowedge. The ophiolitic suture zone experienced simultaneous reversal during this process and displays 
top-to-the north displacement bounding the ophiolitic mélange (Fig. 6c). On the other hand, contrasting material 
mechanics of the Tethyan sedimentary sequence and the relatively rigid Gangdese magmatic belt caused their 
differing responses to regional crustal shortening and rapid uplift of the northern Himalayas. They specifically 
experienced differing amounts of shortening while a detachment fault, the Gangdese thrust system (GT)17, devel-
oped along the margin between them (Fig. 6b and c). As northward compression continued, Tethyan sediment 
and the ophiolitic suture were thrusted atop the Gangdese magmatic belt.

Overall, the observations of both the limited extent of the Indian crust and lateral variation of the subdut-
ing Indian lithosphere require revision of interpretations regarding uplift and collapse of the Tibetan Plateau. 
Observations are specifically not consistent with a doubling of crustal thickness between the Indian crust and 
the Lhasa terrain evoked to explain the unusual crustal thickness of the Tibetan Plateau. Additionally, the timing 
and development history of lateral variation in the Indian lithosphere may contain important information for 
explaining sudden eastward plateau-wide collapse since mid-Miocene. Additional observation and interpretation 
is needed however in order to address this issue.

Methods
Data processing for producing the deep seismic reflection profile.  Software modules from the 
CGG, Omega and GeoEast packages were used in seismic data processing. Processing procedures included static 
correction, true-amplitude recovery, frequency analysis, filter-parameter tests, surface consistent amplitude cor-
rections, surface consistent deconvolution, coherent noise suppression, random noise attenuation, human-com-
puter interactive velocity analysis, residual statics correction, Kirchhoff time migration for incorporating rugged 
topography, DMO stack and post-stack filtering to remove noise.

After fully analyzing and testing results of the raw data, targeted techniques were used to resolve several imag-
ing problems. Tomographic static correction without ray tracing and multi-reflector interface residual statics 
were used to resolve static problems caused by irregular topographic relief and low-velocity structure of near 
surface layers. Pre-stack multi-domain processing was combined with noise attenuation techniques to suppress 
a range of noise sources. Human–computer interactive velocity analysis methods provided relatively accurate 
RMS (root-mean-square speed) estimates. Treatment of rugged topographic areas with Kirchhoff time migra-
tion improved the quality of seismic images. Four large dynamite shot gathers (charge ≥ 2000 kg) with high 
signal-noise ratios were processed to generate a single-fold profile. This profile revealed the main subsurface 
structures of the study area (Fig. 4 in the main text). The final migrated profile, contained abundant reflection 
events from the surface to the Moho discontinuity and provided a consistent image of the collision zone’s complex 
subsurface structure.
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