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Abstract

Our perceptions are often shaped by focusing our attention toward specific features or periods of 

time irrespective of location. We explore the physiological bases of these non-spatial forms of 

attention by imaging brain activity while subjects perform a challenging change detection task. 

The task employs a continuously varying visual stimulus that, for any moment in time, selectively 

activates functionally distinct subpopulations of primary visual cortex (V1) neurons. When 

subjects are cued to the timing and nature of the change, the mapping of orientation preference 

across V1 was systematically shifts toward the cued stimulus just prior to its appearance. A simple 

linear model can explain this shift: attentional changes are selectively targeted toward neural 

subpopulations representing the attended feature at the times the feature was anticipated. Our 

results suggest that featural attention is mediated by a linear change in the responses of task-

appropriate neurons across cortex during appropriate periods of time.

Introduction

A defining feature of visual attention is its flexibility. Subjects may selectively attend to 

locations, objects, periods of time, and visual features in order to enhance their perceptual 
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capabilities1–4. Of these, the selection according location (spatial attention) is the most 

studied. Numerous studies have demonstrated that when subjects covertly attend to a 

location, the sensory responses of neurons representing this location are enhanced 

throughout the visual hierarchy5,6.

Studies of single neurons in monkey visual cortex suggest that non-spatial attention is 

similarly targeted, such that attention preferentially enhances neurons selective for an 

attended feature7 and attentional modulations are strongest during times that the animal is 

maximally focused8. These attentional modulations may be divided into two broad 

categories: linear, gain-like increases in a neural firing9; and more complex non-linear 

modulations. While a variety of non-linear effects have been reported10–12, similar gain 

modulations have been observed in spatial6,13 and featural14 attention studies. Moreover, 

computational modeling suggests that some non-linear effects may actually arise from 

simple gain processes15.

These findings lead us to hypothesize the existence of a single common mechanism for 

visual attention: while attending to a stimulus, simple but computationally powerful16 gain 

modulations are targeted to the neurons and times most appropriate for the task at hand. 

Testing this theory requires the ability to systematically map the representation of a visual 

feature representation across an entire visual area in order to first identify the neural 

subpopulation best matched to the task and then measure how responses within that 

subpopulation change with attention and over time. To this end, the encoding of stimulus 

orientation within primary visual cortex (V1) is ideal. Within V1, a single cortical column 

contains neurons tuned toward a common orientation17, and recently developed fMRI 

techniques are capable of measuring orientation tuning at columnar resolutions18. Moreover, 

orientation tuning can be observed even in voxels which are larger than a cortical column19. 

Such tuning offers an opportunity, for the first time, to map a non-spatial visual 

representation within a single cortical area and to study how that map is dynamically 

changed with attention.

To address how representations of visual information are altered by non-spatial attention, we 

therefore imaged V1 using ultra-high field fMRI (7 Telsa) while subjects performed a 

periodic non-spatial attention task19,20. We discovered that both orientation tuning, and 

attentional modulations of that tuning, are present within individual voxels. Both the 

orientation preferences and the response timing of voxels systematically shift toward the 

featural and temporal foci of attention. These shifts can be explained by a model in which 

featural and temporal attention cause linear changes in activity preferentially directed during 

behaviorally appropriate times to neurons with appropriate feature selectively. Our results 

suggest that representations at the earliest stages of visual processing can be profoundly 

altered by cognitive influences and that all forms of attention may act by common 

mechanisms to selectively enhance behaviorally relevant sensory representations throughout 

cerebral cortex.
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Results

Attention biases single-voxel orientation tuning

Human subjects (n=9, 7 male) participated in a visual change-detection task. Over a five 

minute trial, subjects viewed a continuously rotating (20 s period, 15 rotations/trial), full 

field, counter-phasing Gabor grating and quickly responded by button press when the spatial 

frequency (SF) of the stimulus briefly (50-83 ms) doubled (Fig. 1A). This task was 

demanding (60% hit / 17% false alarm rate) and required the subjects’ continuous vigilance. 

To manipulate attention, there was a non-uniform probability of SF changes occurring; 

subjects were cued prior to each trial to the range of orientations at which changes were 

most likely. Two types of attention trials were presented: one in which changes were more 

likely around 45° (Attend 45° or A45) and the other at 135° (Attend 135° or A135). Subjects 

responded quickly to expected SF changes and suffered a small but significant penalty in 

reaction time to unexpected SF changes (Fig. 1C: 15-22 ms, Rayleigh test, p<0.01). The 

range of orientations associated with quick reaction times (95°, Fig. 1C) was nearly identical 

to the range of orientations at which changes were most likely (87°). However, during a 

control condition where change probability was constant over all orientations (No-Cue), 

subjects were uniformly quick to identify the changes with no behavioral bias in favor of 

one orientation. That No-Cue reaction times were uniformly fast suggests that our 

attentional manipulation behaviorally encouraged subjects to ignore the stimulus during 

periods at the SF change was unlikely. During an alternative control in which the stimulus 

was fixed to vertical and did not rotate but change probabilities still varied (No-Rotate), 

subjects still showed the penalty toward unexpected changes (21 ms). We concluded that 

subjects selectively attended to the stimulus when changes were likely, although with an 

anticipatory advance between peak attentional effect and peak stimulus probability.

To study how such selective attention altered representations in early visual cortex, we 

obtained ultra-high field, high resolution BOLD functional images from a large volume of 

occipital cortex (7T, GE sequence, 690-1050 cm3 image volume, 1.5 x 1.5 x 1.5 mm voxel 

size, TE/TR 20/1500 ms) while subjects performed the task. We discarded data from one 

subject due to substantial motion artifacts. For the remaining eight subjects we explored 

response tuning for individual voxels within a V1 region of interest that was defined on the 

basis of anatomy and retinotopy. During all trials, the stimulus rotated at the same constant 

rate (Fig. 1A). Thus, for orientation selective voxels, we would expect that the BOLD 

response would show modulations over time at this frequency18. The phase of such 

modulation could reflect the preferred orientation of the voxel, while the amplitude would 

reflect its orientation selectivity. Alternatively, a voxel with a 20 second periodic response 

could also be temporally selective and show activity during a specific time point in the 

stimulus cycle without any orientation-specific visual processing. Thus the peak of a voxel’s 

cyclic response could correspond to a preferred orientation or to a preferred time; we will 

use the term “preferred phase” to avoid the assumption that all cyclic activity is necessarily 

orientation-selective. A major goal of our analysis will be to determine the relative 

contributions of orientation and temporal attention within V1 (see below), but in order to 

study such contributions we must first establish that voxels are at all modulated according to 

the orientation/temporal rhythm.
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In all runs from all subjects, we observed single voxels with significant tuning to our 

stimulus as evidenced by BOLD modulation at the orientation frequency. An example voxel 

is shown in Fig. 2A. To quantify this selectivity, we computed the likelihood that each 

voxel's maximum and minimum BOLD activity could be used to distinguish between the 

voxel's preferred and anti-preferred stimulus phase. This is analogous to a classical decoding 

framework, only adapted for our continuous paradigm (see Methods). We found that a 

substantial proportion of individual voxels could distinguish between orthogonal 

orientations with >95% accuracy (Fig. 2B). This is in sharp contrast to most fMRI studies of 

human V121,22, which have been unable to find individual voxels with significant decoding 

performance. Moreover, the performance of many individual voxels in our sample exceeds 

the overall performance reported in previous studies (≈70%) when thousands of V1 voxels 

were analyzed together.

A notable exception exists for studies utilizing ultra-high resolution over a restricted volume 

of V1 (≤4 slices)18,19, which have demonstrated orientation-selective responses from single 

V1 voxels. To enable comparison to these reports, we also computed a coherence coefficient 

to estimate the degree to which each voxel is entrained to the stimulus frequency. Whereas 

Sun et al. reported 35.3% of voxels were significantly coherent with the stimulus, we only 

found such coherence in 15.6% of voxels at baseline (Fig. 2C). Thus, while our imaging 

parameters allowed for the greatest sensitivity to orientation tuning that has yet been 

reported for high-volume imaging using isometric voxels, these parameters did not afford a 

functional resolution equal to that of dedicated ultra-high resolution / low-volume 

methodologies.

In order to restrict the remainder of our analyses to voxels which exhibited a significant 

degree of tuning, we utilized regression analysis to make a binary decision, for each voxel, 

as to whether its response was significantly entrained by the stimulus. In comparison to the 

coherence analysis above, this regression analysis was performed without de-trending or 

other manipulation of the frequency content within each voxel. Across all subjects, we found 

that 14.3% of voxels exhibited such significant tuning (regression F-test, restricted to 5% 

false positives) during No-Cue conditions (Fig. 3A).

We then repeated these analyses for our Attend trials. We found that attention to a cued 

orientation increased the median decoding accuracy and coherence coefficient among all V1 

voxels, as well as the prevalence of selective voxels in all subjects: 19.2% (A45, Fig. 3A) to 

31.9% (A135, 3B) of voxels collected during attend conditions were significantly correlated 

to the stimulus. This recruitment is consistent with known neurophysiology: attention to one 

orientation causes orientation tuning to emerge in otherwise non-orientation selective 

neurons in V46, and an attention-mediated increase in activity should cause weakly selective 

voxels to show a more robust and detectable modulation. The stronger attentional effects of 

the A135 condition, as compared to the A45 condition, likely reflect the predominance of 

vertically tuned voxels in our sample (Fig. 2E), and the behavioral (Fig. 1C) evidence 

suggesting that subjects anticipated likely changes and accordingly increased their attention 

prematurely (i.e. during the presentation of vertical lines during the A135 condition).
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Attention increased the mean amplitude of cyclic activity across V1/V2 (Fig. 1B), though 

increases in the number of both low- and high-amplitude voxels are observed (tails of the 

distribution in Fig. 2D). In addition to increasing stimulus selectivity, attention powerfully 

biased voxels’ baseline (No-Cue) phase preferences. The distribution of phase preferences 

spanned the entire range of orientations, but was non-uniform in all conditions. During the 

No-Cue condition we saw an innate bias toward post-vertical phases (90°-135°), whereas 

preferred phases were biased from the No-Cue distribution toward the cue during the Attend 

conditions (Fig. 3, 2E). Thus attention both increased phase selectivity and shifted phase 

preferences toward the cued orientation. If these were the only task-related changes 

occurring within the brain we would expect that such changes would decrease subjects’ 

reaction times, as information about the stimulus is accumulated faster. We, however, 

observed the opposite: the cue instead increased average reaction times across all stimuli 

(Fig. 1C). This suggests that task-related non-specific changes, such as motor preparation or 

vigilance, which are likely to present in numerous areas other than V1, significantly 

contributed to the overall behavior.

Such non-specific behavior effects open up the possibility that V1 changes might simply 

reflect overall task parameters, rather than task-related changes in stimulus representation 

associated with attention. To examine whether such changes in BOLD response phase may 

occur irrespective of the actual stimulus presented, we applied identical analysis techniques 

for data from No-Rotate trials. During this condition, only 0.5% of voxels were cyclically 

active and no single voxel cycled during two different scans. Thus the temporal pattern of 

SF changes was not sufficient to evoke V1 activity; the cyclic activity we observed is a 

result of cyclic visual stimulation. Moreover, cyclic changes in BOLD response cannot be 

explained by the biased distribution of SF changes, because such changes failed to evoke a 

measurable BOLD response (Fig. 1B) and would therefore be unable to skew the BOLD 

signal at the paradigm's fundamental frequency. Thus the observed changes in orientation 

tuning were due to a top-down modulation of innate orientation-selective responses in V1 

and do not reflect differences in stimulation between the attention runs.

Because we observed voxels with tuning preferences across the entire 180° range for all 

three conditions, we could examine whether attention modulations were selectively directed 

to neural populations appropriate to the particular attention condition. We first identified 

those voxels which had significant phase selectivity during both the No Cue and attention 

conditions (voxels that “Stay-On” with attention, n=7,969). During attention trials, Stay-On 

voxels on average reached peak activity earlier, such that they either had a more clock-wise 

preferred orientation (5.40°) or had a more rapid hemodynamic response (0.60 sec, Upton's 

angular mean test, n=7969, p < 10−10). However, this tuning advance was a function of 

voxel phase preference: when a single orientation was cued, the response of voxels with a 

preference at or after the cue was shifted toward the cue (Fig. 4A,B). As expected, the cue-

selectivity of attention effects was largely orthogonal between the A45 and A135 conditions 

(as was observed with subject reaction times). Directly comparing voxels that were selective 

during both attention conditions (Fig. 4C), we found that 36.3% of voxels had a significant 

difference in orientation preference (likelihood estimation, 356-716 DOF, qFDR<0.01).
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We also explored the effect of attention on the amplitude of single voxel tuning curves. 

Across all voxels, the cue increased tuning amplitude by 0.034±0.015%-BOLD (95% CI, t-

test, 7968 DOF, p=.041). This increase was less robust and only reached significance in 

14.7% (likelihood estimation, 356-716 DOF, qFDR<0.01) of Stay-On voxels (Fig. 4D). But, 

as with phase preference, these effects were selective and depended on preferred phase: 

attention to a cue increased the response amplitude of voxels whose preference aligned with 

the period of maximal behavior effect (before the cue).

Because our task utilized a full-field stimulus, subjects should gain no benefit from applying 

spatial attentional strategies. However, because spatial attention was not explicitly 

controlled, it is possible that subjects focused their attention spatially and that focus differed 

between our A45 and A135 conditions. If this were true, one would expect attentional 

modulations would vary significantly across the visual field and differentially between the 

two attention conditions. We therefore examined whether phase preferences of individual 

voxels, and attentional modulation of those preferences, varied according to retinotopic 

position. Consistent with previous reports23, we found a significant correlation between 

preferred phase and retinotopic polar angle (angle-angle correlation, r2: 0.07-0.13) at 

parafoveal eccentricities. However, our attentional effects were uniform across the visual 

field: retinotopy was uncor-related with the changes in preference or amplitude seen in our 

attention trials (regression analysis, Supplementary Fig. 1). This confirmed that the 

modulations we report were targeted to individual V1 voxels solely as a function of their 

featural tuning.

Attention linearly increases BOLD activity over all of V1

While these results establish that appropriate neuronal populations in human V1 are 

preferentially modulated by attention, they do not speak to the nature of this modulation. 

Numerous imaging and electrophysiological studies suggest that spatial attention has a 

simple linear effect on responses9. In these studies, attention either multiplies (“gain” effect) 

or increases (“additive” effect) responses across a range of stimulus conditions. In the 

context of neurons tuned to a particular parameter, such as orientation in early visual areas, 

the model predicts that attention will increase orientation tuning curve amplitudes without 

any changes in preference. When a neuronal population with a variety of preferred 

orientations is sampled, such as individual voxels in our study, this model permits that the 

overall orientation tuning of the sampled population may change in preference, in 

accordance with our observations. However, because previous studies have been unable to 

reveal and map functional preferences other than retinotopy in the human it has not been 

possible to examine linear non-spatial attention models in humans. By contrast, our ability to 

observe significant tuning in a large number of voxels within V1 enables us to 

systematically compare tuning curves across our attention conditions.

To do this, we first grouped Stay-On voxels according to their preferred orientation relative 

to the attended orientation, combining A45 and A135 into a single normalized Attend data 

set. We tested whether a linear model could explain how the mean orientation tuning curves 

(computed over all voxels, grouped by orientation preference into 13 bins and over all 13 

sampled time points) changed with attention (Fig. 5). Across all orientation preferences and 
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all points of time, a simple linear regression provided a good explanation of the effects of 

attention on V1 activity. Having demonstrated that orientation tuning curves between two 

conditions were linearly related, we wanted to further determine whether the effects of 

attention might also be well-described as linear modulations within the voxels that gained or 

lost tuning with attention. Thus we repeated this analysis using voxels that only showed 

significant phase selectivity during the Attend conditions (voxels that “Turn-On” with 

attention, n=13,876 across both attention conditions) or only during the No-Cue condition 

(“Turn-Off”, 5,047 voxels). Even in the absence of well-defined single-voxel tuning curves, 

we found that the average BOLD signals between the Attend and No-Cue conditions were 

also well-described by a simple linear model (Fig. 5). Across all voxel groups, we also 

observed positive linear correlation coefficients between the single-voxel tuning curves 

estimated from No-Cue and Attend data, even when these tuning curves were not 

significantly tuned (median correlation coefficient: Stay-On 0.72, Turn-On 0.36, Turn-Off 

0.31, Supplementary Fig. 2).

Although our ultimate goal is to determine whether attentional modulations act with 

specificity over features and time, we used these linear fits both within single voxels and 

over the entire dataset to justify the assumption that any featurally or temporally specific 

effects should be linear as well. This simplifying assumption enabled us to utilize a two-

dimensional model to disambiguate between temporal and featural attentional mechanisms.

Dissociation of featural and temporal attention mechanisms

The possibility that attention is modulated both over time and feature preference presents a 

potential challenge, because both featural and temporal modulations may enhance neural 

activity in a subset of voxels. Moreover, our periodic stimulus naturally confounds 

orientation and time at the level of single voxels. However, we can use the fact that the full 

range of orientation preferences exist among sample voxels to distinguish the two types of 

attention. This is because feature-specific modulations should cause modulation among 

voxels of an appropriate orientation-selectivity but irrespective of time. Similarly, time-

specific modulation should cause modulations in all sampled voxels irrespective of their 

feature preference. Thus, a model that simultaneously incorporates both types of 

modulations can be used to quantify the effect that can be attributed to each type of 

attention.

To evaluate such a model, we computed a population activity surface in which normalized 

BOLD responses from Stay-On voxels in the No-Cue condition are binned according to 

stimulus time relative to the attended time and by the preferred orientation of the voxel 

relative to the attended orientation (Fig. 6A). We then constructed a similar response surface 

for the same voxels in the Attend conditions (Fig. 6C), using the same grouping as used for 

the No-Cue surface. Examination of this response surface reveals that maximal responses in 

the Attend case are not present at the cued orientation/time, but rather slightly precede the 

cue both in time and in preferred orientation. The anticipation is consistent with our 

behavioral (Fig. 1C) and amplitude (Fig. 4D) data, in which maximal effects precede the 

cued orientation.
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Having constructed these two response surfaces, we then tested whether global, temporally 

specific, and featurally specific modulations could explain the effects of attention. 

Consistent with the global effect of attention seen across all voxels (Fig. 5), we first modeled 

our attention data by invoking a non-specific modulation (Fig. 6E) that has uniform effects 

across all neurons and time. In this model, we found a systematic pattern of error along the 

diagonal of the surface. To account for these errors, we introduced a global response 

advance to the Attend responses of our model. Such a term may represent a systematic 

decrease in the hemodynamic response latency of V1/V2 during Attend conditions, or a 

selective increase of the leading tail of all orientation tuning curves. This is consistent with 

our previous observation of a change in orientation preference across all voxels (Fig. 4). 

Once this global phase shift was introduced, along with global attentional effects, we found 

a pattern of errors consistent with specific and directed allocations of spatial and featural 

attention. Accordingly, we then found the specific featural, and temporal attention functions 

that, when applied over the rows (featural dimension) and columns (temporal dimension) of 

the No-Cue activity surface, best explain the Attend surface.

Our full model contains four attentional mechanisms: a global modulation; additive featural 

and temporal modulations; and the feature-time interaction. Notably, these mechanisms are 

consistent with previous reports: attention is typically observed to be an additive/constant 

modulation in BOLD studies24 and human visually evoked potentials suggest that featural 

and temporal attention may act synergistically25.

The parameters of this model are shown in Fig. 7, and cross-validated in Supplementary Fig. 

3. While the mode of the feature attention facilitation anticipates the cue by 32°, its width 

averaged across all voxels (80°) is comparable to the width of orientations over which 

behavioral events were most likely to occur (87°) and over which behavioral responses were 

most altered (95°, Fig. 1D). Conversely, we found a temporal suppression across all voxels 

after the cued time. Thus our feature and temporal attention functions are well matched to 

the behavioral manipulation. The interaction term is negative and compensatory to the 

feature attention term, acting to limit the feature-based modulation to only the most relevant 

points of time (Fig. 7D).

To further test the model, we examined whether attentional changes in a tuning parameter 

that was not explicitly fit, namely the selectivity of individual voxels, were also accurately 

predicted. Although there was considerable variance in this tuning width data, on average, a 

clear bimodal pattern of width changes as a function of phase preference was present in both 

the A45 and A135 data (Supplementary Fig. 4). Moreover, both the shape and amplitude of 

this bimodal pattern of tuning width changes was largely replicated in our attentional model.

To further validate these findings, we independently repeated the modeling analysis on the 

Turn-On and Turn-Off voxel subgroups. As a group, these attentional surfaces had greater 

noise and greater model errors. However, the featural, temporal, and feature-time interaction 

parameter estimates from derived from both Turn-On and Turn-Off voxels (Fig. 7E,F) are 

well correlated with those estimates obtained from Stay-On voxels. In all voxel subgroups 

featural attention was characterized by a facilitation which was maximally directed to voxels 

whose preference preceded the cued orientation but restricted in time by a negative 
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interaction term, and temporal attention was characterized by a suppression that was 

maximal after the cued orientation was presented. We concluded that across all subjects and 

all voxels, the major mechanisms of attention were an increase in activity that is targeted to 

voxels with an appropriate feature preference and a suppressive effect gated as a function of 

the temporal rhythm of the task.

Discussion

We have shown that population activity in V1 is selectively enhanced during non-spatial 

forms of visual attention. While V1 cortical columns are tuned across several dimensions, 

the most prominent are tuning to retinotopic location and to stimulus orientation (spatial and 

featural tuning). Just as spatial attention enhances activity in populations that are tuned 

toward the attended region of space regardless of their feature tuning, we found that 

attention to a visual feature selectively enhances neural populations tuned toward that 

feature irrespective of spatial tuning. When considered with the findings that modality-

specific attention enhances stimulus selectivity in primary auditory26 and somatosensory 

cortices27, we interpret our data as consistent with the overarching hypothesis that attention 

selectively targets the neural sub-populations within the earliest levels of sensory processing 

that are best suited for a task irrespective of modality.

We were able to simultaneously measure featural tuning and attentional modulations across 

large portions of V1. The sensitivity of the BOLD signal to attentional modulations is well 

known28,29 even within V1, where the effect of spatial attention on single-unit activity is 

very weak6,30,31. This is likely due to the BOLD mechanism's sensitivity to sub-threshold 

synaptic activity24. However, our data suggest that even presumably weak single-unit 

modulations can profoundly alter the distribution of population activity over a cortical 

region32, biasing neural representations in favor of the attended focus be it a location or a 

visual feature.

In stark contrast to resolving attentional modulations, the ability to resolve V1 voxel-level 

orientation tuning has been largely limited to ultra-high resolution studies that only image a 

small volume of V118,19. We found that imaging with 7T fMRI afforded a superior spatial 

selectivity and signal sensitivity33, permitting orientation tuning to be measured over a large 

enough volume of V1 to exclude the possibility of spatial confounds23. This difference in 

signal quality is highlighted by our finding that, in our data set, the decoding accuracy of 

many single voxels for orthogonal orientations rivals or exceeds the accuracy of the entire 

V1 volume obtained at lower resolutions21.

Single unit studies in non-human primates7,12,13,34 have suggested that attention modulates 

responses according to a gain like mechanism where all responses are multiplicatively 

increased. Such gain modulations, when combined with non-linearities such as response 

normalization, can explain many physiological observations12,15. Our finding that feature 

attention caused a simple additive increase in V1 population activity is seemingly at odds 

with gain-like mechanisms. However, this finding likely reflects a known discrepancy 

between the electrophysiology and fMRI literatures: processes which are known to evoke 

gain-like modulations in single units are typically associated with additive increases in the 
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BOLD signal24,35. In our data, although additive attentional models were superior to gain-

based models, the basic features of the gain terms (early facilitation in the feature domain, 

and late suppression in the temporal domain) were completely consistent with our additive 

model (Supplementary Fig. 5). Thus our observations, while not able to provide direct 

support for gain modulations at the neuronal level,are certainly consistent with such 

modulations underlying a broad spectrum of attentional phenomena.

Consistent with the independence of spatial and featural attention35,36, we also find that 

independent featural and temporal attention is necessary to explain our observations. 

However, an interaction term is additionally required to explain the absence of net response 

modulation among appropriately tuned voxels after the times of likely change. This is 

consistent with both human ERP25 and monkey single unit data8 in which temporal 

expectations restrict spatial attentional modulations to behaviorally relevant periods of time. 

We suggest that the cumulative effect of these attentional modulations is to provide targeted 

feedback to neuronal populations specific for the focus of one's attention (be it an 

object37,38, a location in space, a distributed visual feature) during periods of time that are 

most behaviorally relevant.

The sensitivity of BOLD measurements to attentional modulation highlights the need for 

extreme caution when using imaging to study the functional architecture of cerebral cortex. 

Columnarly organized orientation tuning within V1 is among the most consistent 

phenomena in the neurophysiological literature. Its underlying basis is well 

understood17,39,40, and efforts to resolve orientation selectivity in V1 have served as a litmus 

test for the resolution of columnar activity with fMRI throughout the past decade18,21. 

However, our results demonstrate that measurements of orientation tuning based on 

population activity, such as fMRI, may be heavily influenced by the observer's mental state. 

In our present study, we control a subject's attentional state and can therefore distinguish 

between intrinsic orientation tuning and attentional tuning changes. However, this control 

depended on our prior knowledge of feature selectivity in V1: namely, that neurons within 

V1 are strongly tuned for orientation. For areas or regions in which the underlying 

functional properties are less well understood, the potential of uncontrolled behavioral 

factors to alter responses is a great concern. Many imaging experiments do not control for 

attention or attentional fluctuations, and if they do so, concentrate on spatial, but not 

temporal or featural, controls (e.g. tasks at fixation). Even a mild, idiosyncratic preference 

for one of two stimuli (e.g. for a face instead of an inanimate object) may cause a profound 

attentional modulation throughout the cortex32. This is particularly true for regions that are 

known to be modulated by subjects’ cognitive state, including association cortex and limbic 

structures, but as shown in our data can be a factor even at the earliest, presumably most 

“sensory”, levels of processing.

Attentional modulations at such early stages can significantly bias downstream processing 

and allow for complex attentional changes to emerge at higher stages of processing in the 

visual system15. For example, in the case of orientation and form processing, a weighting of 

particular orientations could bias the sensory preferences of higher order object 

representations which include that orientation, and thus be responsible for observations of 

“biased competition” reported in single neuron studies of higher areas such as V413. 
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However, such a reweighting of early features would also have consequences for all the 

higher order visual areas receiving input from V1, including parietal areas associated with 

spatial and motion processing. Therefore, for tasks in which specific higher order features, 

such as faces or objects, are particularly behaviorally relevant it may be advantageous to 

directly modulate the populations that encode those higher-order features without changing 

all visual representations. If such higher order feature selectivity is spatially localized within 

a particular visual area41,42, high field imaging may be able to reveal single voxel tuning, 

and attentional modulation of that tuning. Such studies could be used to directly test the 

hypothesis suggested by our data that all forms of attention may rely on simple linear 

modulations of activity that are selectively directed to task-appropriate neurons.

Subjects

Nine human volunteers (1 author, 2 female, ages 20-48) participated in this study: 9 

performed the two Attend experiments, 8 performed the No-Cue experiment, and 6 

performed the No-Rotate experiment. Data collected from one male subject were discarded 

due to motion artifacts. All subjects gave informed consent and the human subjects protocol 

was approved by the institutional review board at the University of Minnesota.

Stimulus and Behavioral Analysis

The stimulus consisted of a large continuously rotating, counter-phasing, achromatic Gabor 

(≈30° field of view, counter-phase frequency 2-4 Hz, rotational frequency 0.05 Hz), with a 

central fixation point. Use of a periodic stimulus provided enhanced statistical power to 

detect stimulus-evoked BOLD activity19,20. At random times, the spatial frequency (SF) of 

the Gabor would briefly double (from 0.5 to 1.0 cyc/deg). Subjects were required to quickly 

respond by button press when these SF changes occurred. To manipulate attention, subjects 

were notified prior to each trial (by the presentation of a 20 second static cue) whether the 

probability of SF changes would be uniformly distributed around all orientations (No-Cue 

test condition) or whether there would be a bias in the probability of SF shifts such that 

approximately twice as many shifts (20-fold increase in hazard function) would occur in a 

45° range (FWHM = 87.15°) centered on either 45° or 135° orientation (Attend 45°/A45 and 

Attend 135°/A135, respectively). Two subjects performed an alternative No-Cue task in 

which they identified a change in the color of the center fixation point. No difference in 

results was noted between subjects performing the SF-change detection and the color-

change No-Cue task, and these data are presented as one condition in this report. In a final 

control condition, the stimulus did not rotate but SF shifts still occurred with a predictable 

and sinusoidal timing (No-Rotate).

Subjects received performance feedback (brief color change) at fixation, but eye movements 

were not monitored and fixation was not overtly instructed. A button press within 250-750 

ms of a SF shift was counted as a correctly identified target. These reaction times were 

averaged and used as weights in a statistical test of the second-order angular mean43 to 

determine whether reaction times were uniform across all orientations.
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Magnetic Resonance Image Acquisition

Subjects viewed this stimulus via projection onto a mirror while supine in the 90 cm bore of 

a 7T MR scanner, controlled by a Siemens (Erlangen, Germany) console equipped with a 

head gradient insert operating at up to 80 mT/m with a slew rate of 333 T/m/s. A half 

volume 4-channel radio-frequency coil was used for transmission, and a 9 channel surface 

receive array was used for reception. We took gradient-echo echo-planar BOLD contrast 

functional images from a volume perpendicular to the occipital pole with a variable field of 

view (96x192mm or 144x144mm) and number of slices (25-34) but with a constant 

temporal and spatial resolution across subjects (TR=1500 ms, TE=20 ms, flip angle 65°, 1.5 

mm isometric voxels). Retinotopic maps, when obtained, were measured using the same 

functional sequence over the same volume in the same session. Also in the same session and 

with the same hardware, high-resolution T1-weighted and proton-density (PD) anatomic 

images of the occipital cortex were obtained. All anatomic analysis, including volume 

registration, white/gray matter segmentation, and surface modeling, inflation, and flattening 

was performed on PD-normalized T1-weighted partial-volume anatomic images44.

In MATLAB, utilizing the NIFTI Toolbox (Jimmy Shen, MATLAB Central, 2005), raw 

BOLD images were visually inspected for aliasing artifacts, which were present in 6 

subjects and manually masked. The 21st volume (the first volume after 30 seconds of data 

are discarded) of the first set of functional images collected for each subject was designated 

as the reference volume. All functional images from all experiments for that subject 

(including retinotopic mapping) were aligned via rigid-body transformation (FSL45, mcflirt 

function) to this reference volume, such that a given row-column-slice index referred to the 

same volume of cortex for all test conditions.

V1/V2 Region of Interest (ROI) Selection

In eight subjects, standard phase-encoded retinotopic maps46 were either collected (one five-

minute scan each for polar angle and eccentricity maps, 6 subjects) or acquired from past 

experiments (2 subjects). Retinotopic maps were visualized on a flattened representation of 

occipital cortex using FreeSurfer47, a V1 ROI was selected on the basis of reversals in polar 

angle, and this ROI was transformed into the functional image space to determine which 

voxels would be included for further analysis. Because the retinotopic maps were not of 

optimal quality (derived from a single 5 minute scan instead of a typical 1 hour session), we 

consider it likely that the V1 border was not precisely defined and that our ROI likely 

contains a small portion of V2 voxels. For one subject, no retinotopic data were available 

and anatomic volumes were manually registered to the anatomic volume of subjects with 

known retinotopy. This manual registration focused exclusively on aligning the calcarine 

sulcus, an anatomic landmark for V1. After alignment, these two subjects used the same 

functionally defined ROI. No difference in major results was observed between subjects 

with functionally and anatomically defined ROIs.

All analysis of correlation between retinotopy and orientation tuning (Supplementary Fig. 1) 

were performed exclusively on the subjects for whom retinotopic and orientation images 

were acquired in the same session with the same resolution over the same volume23.
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Single-voxel Statistical Analysis

All single-voxel analysis was performed using custom software written in MATLAB, except 

where noted. Following motion correction, the time-series of each voxel was analyzed 

independently with no spatial smoothing. Not all subjects performed each control 

experiment; in total 51,954 voxels from V1/V2 were studied during A45/A135 (8 subjects), 

45349 voxels during No-Cue (7 subjects), and 32226 voxels during No-Rotate (5 subjects). 

Except when repetitions are explicitly compared, analysis was performed on concatenated 

data in which the time series of all repetitions of a given task were analyzed at once. Any 

time data from two or more conditions are compared, the comparison is made on the same 

voxels from the same subjects.

The first 30 seconds of data from each scan were discarded to eliminate start-up artifacts. 

We removed signal means and applied a Hamming taper to limit the effect of edge 

discontinuities, and a 1-dimensional, discrete Fourier transformation provided the spectral 

content of each voxel. From this we estimated the phase of each voxel's 0.05 Hz component 

(the frequency of stimulus rotation). This phase was adjusted by 5 seconds (45°) to account 

for the hemodynamic response latency, which was assumed to be constant in all subjects. 

This sinusoid plus a constant term was regressed against the raw voxel time series, where 

the ratio of the mean square model to the mean square model error provides an F-statistic of 

the goodness of fit of the sinusoid model. This is similar to a standard general linear model 

approach, except only one regressor was used. No detrending, artifact removal, or other 

temporal filtering was performed prior to identifying modulated voxels.

To limit false positives without compromising statistical power we used the method of False 

Discovery Rate (FDR) to choose a critical value for our data such that only 5% of selected 

voxels would be false-positives48. A voxel with an F-statistic beyond this critical value was 

defined as orientation selective, where the peak of its tuning curve, i.e. orientation 

preference, was given via Fourier analysis and its tuning amplitude is twice the regression 

coefficient for the sinusoidal component. FDR-controlled data are denoted by use of a qFDR 

value instead of a p-value in this text.

Once a voxel was defined as significantly modulated, its time series was detrended by 

regressing out a second-order polynomial. Additionally, to account for the possibility of a 

BOLD response to individual target events, we regressed from reach voxel a predictor 

consisting of a target-event impulse function convolved with a canonical hemodynamic 

response function with a latency of 5 s. Tuning parameters of amplitude and orientation 

preference were then determined by finding the best-fitting sinusoid. To define a confidence 

interval on these tuning parameters, we computed by numerical approximation the second 

derivative of each voxel's likelihood function with respect to each parameter. This derivative 

may be converted to a confidence interval for each tuning parameter49. We confirmed that 

our data generally met the assumptions for this form of confidence interval estimation, 

namely that the likelihood surface is bivariate normal at its maximum.

To derive a non-parametric tuning curve for each voxel, we averaged its response to all 

cycles of the stimulus. These tuning curves were used to derive an estimate of the decoding 

accuracy (DA) for each voxel by computing the likelihood that each voxel could be 
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explained by a sine-wave modulation at each voxel's preferred versus anti-preferred phase. 

The ratio of these likelihoods (LLRpref/anti) provides the probability that a maximal voxel 

response was due to a stimulus at the preferred versus null orientation:

(1)

The DA values reported in Fig. 2 were obtained by using 75% of cycle as training data to 

estimate the voxel's orientation preference and the remaining 25% of cycles as validation 

data to obtain likelihoods relative to this orientation . For all other analyses, a single tuning 

curve defined a the mean of all cycles is used.

In order to compare our orientation tuning results to previous reports, we also computed a 

coherence coefficient (CC) at the stimulus frequency for each voxel:

(2)

where F refers to the Fourier coefficient at a given frequency f. The CC is also computed 

after detrending and is F-distributed under the assumption of white noise19,46.

In order to estimate the tuning width of each voxel, we required an angular distribution that 

might accommodate widths larger than a sine-wave in order to describe voxels with very 

poor tuning specificity. This required us to modify the standard circular Gaussian function, 

as the full-width at half maximum (FWHM) of a circular Gaussian may not be wider than a 

sine-wave (  FWHM = π radians, Amplitude = 0). Our modified circular distribution 

consists of a square-wave with sinusoidal on- and off-ramps. It is identical to a circular 

Gaussian function for FWHM ≤ 90°, but becomes artificially wider with a flat peak for 

larger widths. This permitted us to estimate tuning widths from the entire range of [0°,180°).

For all analyzed data, we performed a minimum of two scans (5 minutes each) of each 

condition with at least 30 minutes between repeats. Voxels which were significantly active 

during both scans had highly similar orientation preferences (A45 3.9% of voxels, A135 

7.4%, No-Cue 2.8%; mode difference, 0°; 95th percentile 33.6°). We concluded that our 

estimates of orientation tuning were reliable enough to justify concatenating all data from 

each condition into a single dataset for all future analysis. These concatenated data gave 

substantially more power to detect cyclic activity. Notably, no voxel was active during two 

repetitions from the No-Rotate data set, leading us to conclude that these data did not 

contain orientation-selective information.

Attentional Modeling

As the attentional changes observed during A45 and A135 are orthogonal (Fig. 4) and 

independent of visual field location (Supplementary Fig. 1), we combined data from the A45 

and A135 to create a single Attend dataset by aligning both datasets to their attended 

orientation. After alignment, preferred orientation and time are reported as relative to the 

cued orientation/time, which occurs at 0°/0 sec. We then normalized the Attend and No-Cue 
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datasets such that each voxel's No-Cue tuning curve is defined as oscillating between 0-1. 

Values less than 0 and greater than 1 are permitted, as these values represent real peaks 

above / valleys below the estimated sinusoid component. The same scaling factors were then 

applied to the Attend data. Thus if tuning in the Attend condition is of a larger amplitude 

than in the No Cue condition, then Attend tuning curves will vary between 0 and a number 

greater than 1 (Fig. 6). Voxels were binned by preferred orientation and tuning curves 

averaged to generate each row of the activity surfaces shown in Fig. 6.

We grouped voxels into three groups: those which exhibited orientation selectivity in all 

conditions (Stay-On, 7,696 voxels), those which were only selective with attention (Turn-

On, n=13,876), finally those which were only selective in the absence of attention (Turn-

Off, n=5,047). Turn-Off voxels had lower tuning amplitudes (0.24 %-BOLD or 14% lower, 

t-test, 6,506 DOF, p<10−10) during the No-Cue condition, and we concluded that Turn-Off 

voxels were predominately associated with regions whose noise precluded our ability to 

observe attentional effects. For all three groups of voxels, we performed a regression 

analysis of attended versus unattended responses to determine the potential for simple linear 

models to explain our data and to quantify global effects of attention

Our objective was to find the model of attention, as a function of relative preferred (ϑ) and 

stimulus (Φ) orientations, that best predicts the attended responses (A45 and A135) from 

unattended (No-Cue) responses. First, we applied a constant phase shift to all standardized 

tuning curves

(3)

as we found that during the Attend condition all voxels reached a peak activity 

approximately 0.5 seconds (ωStayOn = 0.60s, ωTurnOn = 0.65s, wTurnOff = 0.36s) earlier than 

during No Cue conditions. Then a complete attention model, including both additive (a) and 

multiplicative (m) featural and temporal attention effects can be described by:

(4)

(5)

(6)

where Ncirc is a circular Gaussian function over preferred orientation (feature) or over 

stimulus orientation (time) with a peak at µ and with a standard deviation of s. AF and AT are 

functions describing the specificity of featural and temporal modulations, respectively. 

Again, to accommodate attentional modulations that might be wider than p radians (FWHM 

> 90°), we used our modified circular Gaussian as described above.

Two of these parameters refer to a global non-selective attentional effect whereby the entire 

surface is both multiplied (mG) and incremented (aG) by a constant. These parameters are 

derived by first regressing all observations across voxels and time from the Attend data set 
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with all observations from the No-Cue data set (Fig. 5), and are not allowed to covary with 

other model parameters. In addition, interaction parameters (aI,mI) test the hypothesis that 

these forms of attention may not be independent but rather may directly influence one 

another. This is an extension of an approach that has been used previously to determine the 

relationship between orientation preference and time during a V1 adaptation paradigm50: we 

have added the potential for additive parameters, the interaction parameters, and the 

potential for attention functions with a FWHM > π radians.

As orientation is sampled to 13 bins, each activity surface consists of 169 points, and a full 

model potentially consists of 13 parameters. In our data, the effects of featurally and 

temporally specific multiplicative gain (m parameters) were only marginally distinguishable 

from the effects of the corresponding additive parameters (a terms). Because exclusively 

additive models consistently performed better than exclusively gain models (Supplementary 

Fig. 5), we set the m parameters to zero to test whether temporally and featurally specific 

modulations were present. Thus, because the global parameters were also set according to 

regression analysis on the entire data set, there were a total of 3 functions (featural, 

temporal, featural-temporal interaction) that could potentially contribute and seven 

parameters (aF, aT ,aI, μF, σF, μT, σT) which needed to be evaluated and tested for 

significance. The maximum likelihood estimate of these parameters was found using global 

optimization methods (GODLIKE toolbox, Rody Oldenhuis, MATLAB Central, 2009), and 

this likelihood estimate was used to compute the model's Bayesian Information Criterion 

(BIC). BIC is a tool to select the most parsimonious model by imposing a penalty upon 

models with greater complexity. The full model BIC was compared to the BIC of submodels 

in which one of these functions were removed in order to determine whether any smaller 

subset of attentional mechanisms was sufficient to explain our observed data. Such analysis 

revealed that all 3 functions were justified and the full model's BIC was lower than that of 

any individual submodel. We performed a 90/10 split train/test cross-validation on this 

model- results from 10 repetitions gave almost identical model parameters and always 

provided a good explanation of the testing data (Supplementary Fig. 3). To test the 

generalizability of this model, we separately fit the 3 attention functions for voxel subsets 

with very different attentional modulation (Stay-On, Turn-On and Turn-Off, Fig. 7).

Approximately 86% of the variance within our activity surfaces is due to the diagonal 

pattern of activity that is defined by the process of generating the surface and does not 

reflect an attentional effect. To account for this, when reporting variance we use a 

measurement of “attentional variance,” defined as the proportion of explained variance a 

given model accounts for that was not accounted for by a model with only global attention 

terms:

(7)

where R2 is the standard linear regression statistic commonly used to measure the amount of 

variance in a dataset that is explained by a linear model. This adjusted attentional variance 

term is 0 for the global attention model, 100% for a model which perfectly recreates the 
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observed effects of attention, and varies linearly between 0 and 100% for any model which 

improves upon the global attention model as measured by the R2 metric.

All authors declare no competing financial interests.
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Refer to Web version on PubMed Central for supplementary material.
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1. 
Selective attention in a change detection task. A. Human subjects viewed a full-field, 

continuously rotating Gabor and responded by button press when the spatial frequency of 

the stimulus briefly changed (dashed outline). During attention conditions, these target 

events were more likely to occur at a single orientation (green, A45; violet, A135). Prior to 

each trial, a static grating indicated to the subject the orientation about which targets are 

likely to occur. In one control condition, the target probability is static over time (No-Cue, 

black). B. Mean event-related response to stimulus rotation (aligned to preferred phase, 

solid) and to target events (dashed, aligned to individual target events per condition) 

averaged across all voxels with significant orientation selectivity. The response to individual 

target events was negligible, but removed via linear regression in all future analyses. The 

mean global response increased with attention. C. Reaction time, indicated by radius, is 

fastest prior to the cued orientation when subjects anticipate target events. [uni03BC], 

orientation with the fastest mean response during each Attend condition; colored arc, full-
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width at half-maximum (FWHM) range of fastest reaction times (A45 FWHM 98°, A135 

FWHM 92°).

Warren et al. Page 21

Nat Commun. Author manuscript; available in PMC 2015 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. 
Orientation-selectivity in single V1 voxels. A. Fourier and regression analysis (see Methods) 

provides the amplitude (A) and peak (O) of each voxel's orientation tuning curve. Peaks are 

offset to account for the hemodynamic lag between stimulus presentation and BOLD 

response. Shaded region shows a confidence interval of the fitted sine wave for this example 

voxel. Orientation-selectivity metrics for this voxel: coherence coefficient = 0.2131 

(p=1.7·10−5), decoding accuracy ≈ 100%. B. Many individual voxels accurately 

discriminate between their preferred and anti-preferred orientations (mode at 50% represents 

chance performance). C. Many voxels have significant coherence at the signal frequency. 

Coherence coefficient of 0.0984 (arrow) is the threshold for statistical significance. B and C 

include all V1 voxels. D. Among orientation-selective voxels, attention recruited weakly 

orientation-selective voxels. E. Among orientation-selective voxels, the distribution of 

preferred orientations is biased toward the attended orientation.
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3. 
Attention biases the orientation preference map. A. Preferred orientation from one subject, 

coded by color and measured during No Cue task, plotted on a medial view of occipital 

cortex. Inset is a flattened representation of the occipital pole. Greater color saturation 

indicates a higher certainty in preference estimate. Orientation selectivity was greatest along 

gyri, likely due to the use of a surface coil. (white scale bar: 2 mm. black line: calcarine 

sulcus). B, C. As A, with orientation preference measured during the attention conditions. 

Attention increased the extent of orientation-selective activity across the occipital cortex 

(top) and biased population orientation preferences at the hyper-columnar scale (bottom).
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4. 
Attention selectively advances and amplifies orientation tuning curves. A. Voxels with an 

orientation preference near 79° respond sooner (have a less positive orientation preference) 

during A45 condition. Error bars show 99.9% confidence intervals of the mean. Note that 

270° is equivalent to 90°. Inset histogram shows distribution of tuning preference shifts as 

distance from the identity line. (black line, identity line; [uni03BC]O, center of range with 

significant tuning advance; [uni03BC]S, mean tuning curve advance over all voxels). Color 

indicates individual voxels that are a significant (qFDR<0.01, likelihood estimation) distance 

from the identity line. B. As A, showing an orthogonally-distributed tuning curve advance 

during A135. C. Direct comparison between A45 and A135 conditions reveals a strong and 

orthogonal relationship between preferred orientation and changes in tuning preference. D. 
As C, comparing tuning amplitude between A45 and A135. Amplitude increases for voxels 

with preference prior to the attended orientation (* significant change, von Mises (A,B,C) or 

t-test (D), variable DOF, p<0.001).
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5. 
Attentional modulations are linear over V1. Normalized activity (see Methods) during No-

Cue and Attend conditions is highly similar in Stay-On voxels (gray). Each point represents 

the mean normalized activity of all voxels with a set range of phase preferences over a 

single sample interval; preference and time are sampled to thirteen points each, providing 

169 data points. The effect of attention over all points is well described by a linear fit (R2 = 

0.92, slope 0.96, y-intercept 0.11). Changes in tuning curves observed in Turn-On (red) and 

Turn-Off (blue) voxels are also relatively well-described by linear functions (Turn-On: R2 = 

0.61, slope 0.95, intercept 0.93; Turn-Off: R2 = 0.86, slope 0.27, y-intercept 0.14).
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6. 
A combination of featural and temporal mechanisms is required to explain attentional 

changes in orientation tuning. A. Normalized BOLD activity during No-Cue condition, 

averaged across all subjects and retinotopic locations, for the Stay-on voxel group. Each row 

represents the mean tuning curve (response over the stimulus cycle) for voxels that share a 

common orientation preference relative to the cue. Orientation and time are given relative to 

the cue, which occurs at 0º/0s. B. The No-Cue activity surface is enhanced by a linear 

transformation and phase advance (0.6 sec) in order to most closely approximate the 

corresponding Attend activity surface (C) defined from the same voxels with the same 

scaling. D. The residual difference between the observed (C) and predicted (B) Attend 

activity is small (R2= 0.99,  after removing variance due to global effects [see 

Methods]). The Bayesian information criterion is used to compare this full model with 

simpler submodels in order to determine which mechanisms of attention are most consistent 

with these data. E. The model in (B) is generated from the sum of four different attentional 

mechanisms (small images): a global term which modulates all data points equally, featural 

and temporal terms which act purely as a function of either the feature (row) or time 

(column) dimension, and an interaction term which acts with both featural and temporal 

specificity. All terms may incorporate both a multiplicative and additive component (i.e. are 

linear functions of the form y = mx+b, see Methods); however only additive effects are 

shown in this and in Fig. 7 as multiplicative modulations were not statistically justified. 

Each attentional mechanism alone is insufficient to explain the effects of attention, as shown 

by the patterned error surfaces produced when only one mechanism is modeled.
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7. 
Attention model parameters from three separate groups of voxels are nearly identical. The 

optimal model (lowest BIC) is comprised of three attentional mechanisms: a feature-specific 

additive enhancement, a time-specific subtractive inhibition, and an inhibitory interaction 

term which gates the feature-attention to the relevant period of time. A. The empirical 

attention surface generated from Stay-On (SO) voxels, computed as the difference between 

the Attend and No-Cue activity surfaces. Variance that is explained by global changes in 

activity over all voxels (the trend line in Fig. 5) has been removed. The middle of this 

surface represents the cued orientation/time. B, C. As A, showing the attention surfaces 

generated from Turn-On (ON) and Turn-Off (OFF) voxels. All surfaces show an increase in 

activity within voxels that prefer an orientation just prior to the cue, and all surfaces show a 

global suppression after the stimulus passes the cued orientation. D. The best-fitting model 

surface for the SO voxel attention surface. Curves along the left and bottom sides show the 

modeled featurally and temporally specific modulations, while the black-and-white surface 

shows the feature-time interaction term (always suppressive). The sum of all three 

attentional mechanisms provides the colored model surface. E, F. As D, showing models 

derived for the ON and OFF voxels. All three models approximate their respective attention 

surfaces well ( ), and all three models agree as to 

when and where in V1 attentional modulations are found (featural attention peaks: SO -32°, 

ON -52°, OFF -34°; featural attention widths: SO 51°, ON 115°, OFF 30°; temporal 

attention peaks: SO 63°, ON 71°, OFF 66°; temporal attention widths: SO 47°, ON 64°, OFF 

36°).
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