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PURPOSE. Currently, the only available and approved treatments for glaucoma are various
pharmacologic, laser-based, and surgical procedures that lower IOP. Although these
treatments can be effective, they are not always sufficient, and they cannot restore vision
that has already been lost. The goal of this review is to briefly assess current developments in
the application of stem cell biology to the study and treatment of glaucoma and other forms of
optic neuropathy.

METHODS. A combined literature review and summary of the glaucoma-related discussion at
the 2015 ‘‘Sight Restoration Through Stem Cell Therapy’’ meeting that was sponsored by the
Ocular Research Symposia Foundation (ORSF).

RESULTS. Ongoing advancements in basic and eye-related developmental biology have
enabled researchers to direct murine and human stem cells along specific developmental
paths and to differentiate them into a variety of ocular cell types of interest. The most
advanced of these efforts involve the differentiation of stem cells into retinal pigment
epithelial cells, work that has led to the initiation of several human trials. More related to the
glaucoma field, there have been recent advances in developing protocols for differentiation
of stem cells into trabecular meshwork and retinal ganglion cells. Additionally, efforts are
being made to generate stem cell–derived cells that can be used to secrete neuroprotective
factors.

CONCLUSIONS. Advancing stem cell technology provides opportunities to improve our
understanding of glaucoma-related biology and develop models for drug development, and
offers the possibility of cell-based therapies to restore sight to patients who have already lost
vision.
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Glaucoma is a debilitating disease that leads to slow, painless
loss of vision. It is marked by cupping and structural

damage at the optic nerve head, and it is characterized by
pathological features such as thinning of the neuroretinal rim
and the retinal nerve fiber layer.1,2 Vision loss in glaucoma
generally starts in the periphery, but as the disease advances it
moves centrally, and can eventually result in total blindness. In
fact, it is the second leading cause of blindness worldwide.3

The best currently understood and treatable risk factor for
glaucoma is the eye’s intraocular pressure (IOP).4 Despite the
importance of controlling IOP, the ultimate cause of glaucoma-
associated vision loss is axonal damage and progressive loss of
retinal ganglion cells (RGCs), the retinal neurons whose axons
make up the optic nerve and transmit visual information from
the eye to the brain.

Human RGCs are postmitotic neurons that do not
regenerate, and as a result the vision loss sustained from
their death is irreversible. A further challenge is that
significant retinal damage and cell death occurs in glaucoma
before the patient experiences detectable visual field loss,

making early detection and treatment difficult.5,6 In spite of

these challenges, recent exciting discoveries in the ocular

regenerative and related fields raise the possibility that in

future years it may be possible to use cell-based approaches

to restore vision in patients suffering from glaucoma and

other forms of optic nerve diseases. Here, we will review

some of these advances in the ocular stem cell field that will

hopefully aid in our understanding of the mechanisms of

damage in glaucoma, provide tools for the discovery of

neuroprotective drugs and other novel therapeutic agents for

the treatment of the optic nerve diseases, and potentially

lead to the development of cell-based approaches for vision

restoration. Although we will briefly mention some work on

stem cell–derived trabecular meshwork (TM) cells and their

potential as a new approach for IOP control, this review will

focus mainly on the use of stem cell–derived RGCs for drug

discovery and transplantation-based therapy. This review is

based on discussion at a meeting entitled ‘‘Sight Restoration

Through Stem Cell Therapy’’ held on June 13, 2015 in Santa
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Monica, California, United States, that was sponsored by the
Ocular Research Symposia Foundation (ORSF).

STEM CELL–DERIVED TRABECULAR MESHWORK CELLS:
CONTROL OF INTRAOCULAR PRESSURE

Depending on the anatomy of the anterior chamber, glaucoma
is broadly categorized as open or closed angle.4 Insufficient
drainage of aqueous humor in both cases can lead to increased
IOP. Essentially all drugs currently available for glaucoma
treatment lower IOP by modifying aqueous dynamics, by
inhibiting aqueous production by the ciliary body and/or by
increasing aqueous outflow, through the trabecular and/or
uveoscleral outflow pathways.7 Trabecular outflow involves
fluid passage through the fenestrated beams of the TM, an area
of tissue located in the anterior chamber in close proximity to
the ciliary body.8 The TM plays an important role in
determining the resistance to aqueous humor outflow,9 and
loss of TM cells has been shown to compromise IOP
homeostasis.10 Mechanical stress, insults, and injuries can lead
to death or dysfunction of TM cells.11 For example, during
progression of POAG, IOP increase has been linked to
oxidative stress, to which the TM cells are very suscepti-
ble.12,13 Damage to the TM can result in changes in cell
morphology, attenuation of its ability to maintain aqueous flow
and phagocytize unwanted cellular material, and can also
trigger apoptosis. Through these and other mechanisms,
dysfunction and death of TM cells can lead to progressive
IOP increase and initiation of a ‘‘glaucomatous cascade’’
leading to RGC degeneration. Although some glaucoma drugs
can stimulate aqueous outflow through the TM, no therapies
are currently available to improve the health of or replace
damaged or senescent TM cells in POAG patients. Through
stem cell technology it may be possible to develop such
therapies.

The presence of stem cells in the TM has been suspected for
a number of years.14–16 and attempts have been made to
characterize these putative cells.17 Recently, mesenchymal
stem cells (MSCs) isolated from human TM samples were
successfully propagated in vitro.18,19 Interestingly, these TM-
derived stem cells were capable of differentiating into
phagocytic TM cells in vitro, as well as in vivo when
transplanted into wild-type mice.19,20 Injection of bone
marrow–derived mouse MSC has also been shown to mediate
regeneration of damaged TM in vivo, apparently through
production of paracrine factors.21 It would be interesting to
test if human TM–derived stem cells are also capable of
secreting analogous factors and mediating in vivo regeneration
of TM cells in mice, and eventually in humans. If the relevant
factors are more fully defined, it might also be possible to
provide them either by a gene therapy approach or by a
transplantation approach using cells that have been engineered
to secrete the relevant factors.

Successful differentiation of TM cells from mouse induced
pluripotent stem cells (iPSCs) as well as human iPSCs has also
been reported. Ding et al.22 performed a coculture of mouse
iPSCs with primary human TM to achieve TM-like cells, and
Abu-hassan et al.10 used TM cell–derived extra cellular matrix
(ECM) and TM cell–derived conditioned media to achieve TM
differentiation from human iPSCs. In their encouraging study,
Abu-Hassan et al.10 further reported that when transplanted
into an ex vivo human TM cell loss model, the iPSC derived TM-
like cells resembled endogenous TM cells and successfully
restored, at least partially, IOP homeostatic function. This
result suggests the promising possibility of using stem cell–
derived TM cells as a cell-based therapy to restore IOP
regulatory function in open-angle glaucoma patients, which

should aid in the preservation of remaining optic nerve
function. In addition, the availability of SC-derived human TM
cells could provide a powerful resource to screen and discover
novel pathways and therapeutic drugs that could target the TM
to reduce IOP.

PLURIPOTENT STEM CELLS AS A SOURCE OF RGCS

In addition to their potential role in helping to control IOP, an
even more exciting and transformative role for stem cells in
glaucoma research and treatment is their possible use in the
direct preservation and restoration of RGC function. As noted
above, it is the damage and loss of RGC axons and cell bodies
that ultimately leads to vision loss. Encouragingly, a number of
signaling pathways and neuroprotective compounds that
promote RGC function and survival in cell culture or animal
models have been reported,1,23–29 but none have yet success-
fully made it to the clinic.

In the developing mammalian eye, RGCs arise from retinal
progenitor cells (RPCs), a multipotent cell type that differen-
tiates to the six major neuronal cell types of the retina and to
Müller glia.30–32 Retinal cells are born in chronologic order, in a
highly conserved but overlapping manner. Retinal ganglion
cells are the first cells to arise from RPCs followed by
horizontal cells, cone photoreceptors, amacrine cells, bipolar
cells, rod photoreceptors, and Müller glia.33 Coordinated
expression of multiple transcription factors is involved in
specifying retinal cell fate. For example, Pax6 is one of the
early transcription factors required to maintain the multi-
potency and competence of RPCs and to generate all retinal
cell types except amacrine cells.34 The basic helix-loop-helix
(bHLH) transcription factor Atoh7 (Math5) is required for RGC
specification and subsequent expression of the POU-homeo-
domain transcription factor Brn3b.35,36

Similar to retinal development in vivo, RGCs are the first
retinal cells to be born during in vitro differentiation of retinal
cells from stem cells, and hence they offer a promising area for
research. However, for technical and other reasons, efforts at
RGC differentiation from stem cells have gained less attention
and have had limited success compared to the differentiation
of retinal pigment epithelium (RPE) and photoreceptor cells.
In addition to the transcription factors mentioned above,
retinogenesis involves a number of highly regulated signaling
pathways, such as FGF,37 insulin-like growth factor (IGF),38

epidermal growth factor (EGF), bone morphogenetic protein
(BMP),39 sonic hedgehog (SHH), Wnt,40 Notch, and Nodal.32,41

Researchers have been able to use cocktails of growth factors
and small molecules (e.g., FGF1, FGF2, IGF1, DKK [Dickkopf
family protein and inhibitor of canonical Wnt pathway], and
DAPT [inhibitor of Notch signaling pathway])32 to manipulate
these signaling pathways and direct the differentiation of
various retinal cell types. Boucherie et al.42 reported retinal
differentiation using extra cellular matrix signals provided by
Matrigel, which eliminates tedious embryoid body formation
and suspension culture. En route to differentiating photore-
ceptors and other later-born retinal cells, differentiation of
RGC-like cells has been reported,43,44 but only a few protocols
have focused on RGC differentiation.45–47

Retinal ganglion cell generation in three dimensional (3D)
culture systems has also attracted some attention. In a 3D self-
organization technique, intrinsic cellular programs drive self-
organization of stem cells to form an optic cup, which can
further differentiate into a multilayered structure containing
various retinal cells.48,49 By optimizing the 3D culture
technique, Maekawa et al.47 reported successful RGC neurite
outgrowth from the 3D optic vesicles.
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Although the above described protocols for RGC differen-
tiation from murine46 and human45,47 stem cells are promising,
they yield heterogeneous retinal cell populations with limited
numbers of RGCs. The ability to generate homogeneous RGC
populations would be desirable for a number of reasons, such
as use in biochemical assays, disease modeling, and transplan-
tation studies. With this goal in mind, we have modified the
photoreceptor-directed protocol of Boucherie et al.42 and used
CRISPR-Cas9 genome editing technology to generate a human
ES BRN3B mCherry fluorescent reporter cell line that can be
used with fluorescence activated cell sorting (FACS) to
generate highly purified populations of functional RGCs.50

Additional work is ongoing to further improve efficiency and
yield. High-yield generation of motor neurons51 and efficient
neural conversion of human embryonic stem cells (hESCs)52

have been achieved using small molecules, and it is hoped that
parallel approaches will yield similar improvements in the
speed and extent of RGC differentiation and the ability to
generate RGCs of distinct subtypes.

STEM CELL–DERIVED RGCS FOR TRANSPLANTATION

AND VISION RESTORATION

The progress being made on transplantation of RPE53–56 and
photoreceptor57–59 cells in combination with the above
described advances in RGC differentiation protocols, is
encouraging and suggests that in the coming years RGC
transplantation could progress from a dream to an achievable
reality. However, much work remains to be done, as successful
transplantation of RGCs is a more formidable challenge than
transplanting RPE or photoreceptor cells. Even though
photoreceptor transplantation will also have the challenge of
forming correct synapses to bipolar and horizontal cells, such
synapses will be local in nature while for RGCs the axons will
have to navigate the nerve fiber layer, optic disc, optic nerve,
and chiasm, and travel long distances to reach their appropri-
ate target tissues. And even if they arrive at the correct terminal
regions (lateral geniculate nucleus [LGN] or other secondary
synaptic sites), they will still need to synapse to appropriate
higher order neurons to achieve meaningful spatial-temporal
vision. To add further complexity, it is essential to consider that
normal RGC axonal guidance and synaptogenesis occurs
during development,60 while in glaucoma, due to the natural
history of the disease, transplanted RGCs will need to
recapitulate the process in an adult environment, which may
lack the proper guidance cues, both attractive and repulsive,
that are present during development.60–62

While the nature and status of axonal pathfinding cues in
the adult environment are not well understood,63 there are
some encouraging data, using a combination of genetic
alteration and stimulation of signaling pathways, that suggest
that the process of optic nerve regeneration, at least in the
mouse, may be possible.64–66 In these recent studies, RGC
axons following optic nerve crush injury were able to
regenerate all the way to the brain, and they apparently
restored some limited visual functions, such as optomotor
response and circadian photoentrainment.64 These results
suggest that RGC regeneration is, at least in part, a cell
autonomous process and that regenerating RGCs, with the
proper manipulation, may be able to overcome inhibitory
guidance cues and find appropriate targets. As encouraging as
these results are, it should be noted that the fraction of cells
reaching their target was very small, and the visual phenom-
enon measured was very crude compared with what would be
needed to restore useful human vision. Additionally, due to the
likely hostile environment of a degenerating retina, it may be
necessary to combine transplantation with neuroprotective1,29

(see below) and anti-inflammatory67 strategies to promote
survival and quell the potentially negative inflammatory
response.

Additional encouraging areas of research involve studies of
lower vertebrates, such as frogs and fish that are able to fully
and functionally regenerate their optic nerves.68 Based on
studies of such organisms, it will hopefully be possible to learn
‘‘tricks’’ to help mammalian RGCs regenerate. Additionally, it
may be possible to engineer artificial scaffolds to guide RGC
axons to their proper brain targets.69,70 Through combinatorial
approaches involving genetic engineering of pluripotent stem
cells, differentiation of such cells into RGCs, and the
incorporation of bioengineering guidance scaffolds, it may be
possible to direct stem cell–derived RGCs to integrate into the
retina, repopulate the optic nerve with new axons, and then
reach and synapse with brain targets to make visual recovery
possible. Although there have not yet been any reports of stem
cell–derived RGC axon growth into the optic nerve, a parallel
experiment has been reported describing mouse embryo–
derived retinal precursor cell transplantation into the adult
mouse, demonstrating a limited but clear donor RGC
contribution to the optic nerve.71

In addition to biological intervention for retinal regenera-
tion artificial prosthetic systems for inducing electrical
stimulation of the retina have also been developed, which rely
on stimulating retinal circuitry downstream of photorecep-
tors.72,73 Because visual perception is a complex process that it
is not yet understood well enough on an electrical scale, these
artificial systems can only provide rudimentary perception of
light rather than true vision, but there is hope that this
technology will continue to evolve. Such prosthetic systems
are more difficult to implement in a context of RGC loss, but
deep brain stimulation in areas of the visual cortex and other
brain regions has been proposed as a possible means of
bypassing the optic nerve altogether for visual perception
recovery.74

Although it is definitely a daunting task, RGC transplanta-
tion may prove to be more effective than prosthetic
technologies because direct brain stimulation represents a
risky procedure and it still remains to be seen whether a
computer will be able to recapitulate retinal function and
properly communicate with the brain for visual processing.
Retinal ganglion cell transplantation carries its own risks to be
sure, as inappropriate rewiring of the brain’s visual centers
could result in disturbance of brain function or pain, but RGCs
themselves are relatively unlikely to lead to tumor growth due
to their postmitotic nature. Furthermore, in the unlikely event
of a transplanted RGC-associated tumor, the newly formed
optic nerve could be surgically removed to protect the brain
from harm, although of course at the cost of losing any residual
vision. Regardless of which strategy becomes most tractable,
patients suffering from blindness due to optic nerve disease
currently do not have any options for vision restoration. As
such, it remains an important goal to develop novel
approaches to replace lost neurons as well as to integrate
them into the working visual system.

STEM CELLS AS A SOURCE FOR NEUROTROPHIC

FACTORS

Deprivation of the neurotrophic factor (NTF) required for the
maintenance and survival of neurons in the optic nerve has
been suggested to play a role in the progression of RGC
damage in glaucoma. Elevation of IOP has been reported to
obstruct the retrograde transport of NTFs such as brain-derived
neurotrophic factor (BDNF)75,76 and NT-4/577 to the RGC
soma, and the deprivation of these NTFs can induce RGC
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apoptosis. Supplementing additional BDNF and other NTFs
such as glial cell–derived neurotrophic factor (GDNF),25 ciliary-
neurotrophic factor (CNTF),23,26 and IGF-178 have been
reported to promote RGC survival in vitro and in vivo.
However, delivery of NTFs to the retina and RGCs is
challenging because access to the neural retinal tissue requires
circumventing of the blood–retinal barrier. Systemic adminis-
tration would either fail to reach the neural tissues or not
provide high enough doses for the NTFs to have a positive
effect. Intravitreal injections of BDNF have been shown to
enhance RGC survival in rats with chronic IOP elevation,79 but
long-term delivery through multiple injections is unlikely to be
well tolerated by patients for a disease such as glaucoma.

Stem cells could provide a viable approach for long-term
NTF delivery to RGCs. Mesenchymal stem cells derived from
the bone marrow (hBMSC) of adult patients were shown to
secrete several neurotrophic factors (NTFs), such as BDNF and
b-NGF, and promote neuronal cell survival and neuritogenesis
in vitro as well as in vivo.24 In another study, secretion of NGF,
BDNF, and VEGF by hBMSC, human dental pulp stem cells
(hDPSC), and human adipose–derived stem cells (hAMSC)
were tested and the role of these stem cells in neuroprotection
was analyzed. In comparison with hBMSC and hAMSC, hDPSC
was reported to produce higher levels of those growth factors
and promote significantly more neuroprotection in vitro.27 In
an in vivo assay, Harper et al.80 transplanted MSCs engineered
to produce and secrete BDNF into a chronic ocular hyperten-
sion rat, and they reported preservation of RGCs and optic
nerve function in the BDNF-MSC–treated eyes. In a recent
study, Ma et al.28 engineered human neural progenitor cells
(hNP), which intrinsically target the inner retina layer,81 to
produce IGF-1 and transplanted them by intravitreal injection.
The transgenic hNP cells successfully entered the inner retinal
layer and provided neurotrophic support to prevent RGC
loss.28 Overall, these findings provide compelling evidence for
stem cell–based local delivery of neurotrophic factors for
neuroprotection.

Cell encapsulation and transplantation is another prom-
ising, alternative method for NTF delivery.82 Tao et al.83

encapsulated mammalian cells genetically engineered to
produce CNTF and implanted them into the vitreous humor
of a canine retinitis pigmentosa model. The encapsulated
cells remained viable, produced low levels of CNTF, and
enhanced the survival of photoreceptor cells.83 However,
although encouraging in animal models, these Neurotech
CNTF producing encapsulated cells in human clinical trials
for retinal degenerative disease have demonstrated equivocal
efficacy, at best.84 A human glaucoma clinical trial using
these encapsulated cells is also underway, but no clinical
efficacy results have been reported to date.85 As an
alternative to the encapsulated RPE cell line used in the
Neurotech implant, stem cells could be engineered or
differentiated to produce the desired NTFs, encapsulated,
and transplanted into the vitreous of an eye, or unencapsu-
lated NTP-producing retinal cells differentiated from stem
cells could be transplanted and allowed to integrate into the
inner retina.

DISEASE MODELING WITH HIPSCS AND GENOME

EDITING

Genetic study of glaucoma has identified more than 20 genetic
loci associated with the disease. At least three causative genes
(Myocilin, Optineurin, and WDR36) and several risk factor
genes (CAV1/CAV2, CDKN2B, TMCO1, SIX1/SIX6, and
LRP12/ZFPM2, TBK1, and GALC) have been reported to
date.86 However, how the mutations in these genes cause

disease or increase the risk of developing glaucoma is not well
understood. Biochemical studies to test the effects of these
mutations on target cell types such as TM and RGCs have been
difficult because fresh retinal tissues from patients are not
easily obtainable, and tissues with the desired genotypes are
particularly hard to obtain. The ability to obtain TM cells and
RGCs from ES and iPS cells, together with the remarkable
power of CRISPR/Cas9 genome editing, may greatly assist the
study of the mechanisms by which genetic factors modulate
the risk of developing glaucoma.

In summary, although much still remains to be learned, and
important and difficult challenges remain, the increasing pace
of ocular stem cell biology research is very exciting, and the
field offers great promise for increasing our understanding of
glaucoma pathogenesis and for developing new and improved
treatment approaches.
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