
����������
�������

Citation: Cantinotti, M.; Marchese, P.;

Giordano, R.; Franchi, E.; Assanta, N.;

Jani, V.; Kutty, S.; Gargani, L.

Overview of Lung Ultrasound in

Pediatric Cardiology. Diagnostics

2022, 12, 763. https://doi.org/

10.3390/diagnostics12030763

Academic Editor: Po-Hsiang Tsui

Received: 14 December 2021

Accepted: 18 March 2022

Published: 21 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

Overview of Lung Ultrasound in Pediatric Cardiology
Massimiliano Cantinotti 1,2,*, Pietro Marchese 1 , Raffaele Giordano 3, Eliana Franchi 1, Nadia Assanta 1,
Vivek Jani 4, Shelby Kutty 4 and Luna Gargani 5

1 Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy; pitrino91@gmail.com (P.M.);
eliana.franchi@ftgm.it (E.F.); assanta@ftgm.it (N.A.)

2 Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
3 Adult and Pediatric Cardiac Surgery, Department of Advanced Biomedical Sciences,

University of Naples “Federico II”, 80131 Napoli, Italy; r.giordano81@libero.it
4 Taussig Heart Center, Department of Pediatrics, Johns Hopkins Hospital, Baltimore, MD 21205, USA;

vpjani@ucsd.edu (V.J.); shelby.kutty@gmail.com (S.K.)
5 Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa,

56124 Pisa, Italy; lunagargani@gmail.com
* Correspondence: cantinotti@ftgm.it; Tel.: +39-05-8549-3622; Fax: +39-05-8549-3616

Abstract: Lung ultrasound (LUS) is increasing in its popularity for the diagnosis of pulmonary com-
plications in acute pediatric care settings. Despite the high incidence of pulmonary complications for
patients with pediatric cardiovascular and congenital heart disease, especially in children undergoing
cardiac surgery, the use of LUS remains quite limited in these patients. The aim of this review is to
provide a comprehensive overview and list of current potential applications for LUS in children with
congenital heart disease, post-surgery. We herein describe protocols for LUS examinations in children,
discuss diagnostic criteria, and introduce methods for the diagnosis and classification of pulmonary
disease commonly encountered in pediatric cardiology (e.g., pleural effusion, atelectasis, interstitial
edema, pneumothorax, pneumonia, and diaphragmatic motion analysis). Furthermore, applications
of chest ultrasounds for the evaluation of the retrosternal area, and in particular, systematic search
criteria for retrosternal clots, are illustrated. We also discussed the potential applications of LUS,
including the guidance of interventional procedures, namely lung recruitment and drainage insertion.
Lastly, we analyzed current gaps in knowledge, including the difficulty of the quantification of pleural
effusion and atelectasis, and the need to differentiate different etiologies of B-lines. We concluded
with future applications of LUS, including strain analysis and advanced analysis of diaphragmatic
mechanics. In summary, US is an easy, accurate, fast, cheap, and radiation-free tool for the diagnosis
and follow-up of major pulmonary complications in pediatric cardiac surgery, and we strongly
encourage its use in routine practice.

Keywords: congenital; pediatric; echo; ultrasound; cardiac

1. Background

Lung ultrasound (LUS) is an ideal tool for the diagnosis and follow-up of pulmonary
complications after pediatric cardiac surgery. LUS offers the possibility to monitor lung
disease progression easily and quickly at the patient’s bedside, and it allows us to evaluate
the response to medical therapy (i.e., diuretics) and physiotherapy [1–4]. In addition,
several potential applications of LUS exist, particularly for children after cardiac surgery.
In this setting, LUS can be employed for the diagnosis of post-op lung complications,
including atelectasis, effusion, lung congestion, pneumonia, pneumothorax, obstructive
pulmonary disease, and diaphragmatic motion anomalies [1–4]. Compared to traditional
chest radiography, LUS allows for the differential diagnosis of many common pulmonary
complications after pediatric cardiac surgery [1–4]. For instance, LUS easily differentiates
between effusion and atelectasis, both of which are common sequelae of cardiac surgery,
and importantly, require different therapeutic approaches [1–4]. LUS also allows us to
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differentiate among different types of effusion, to quantify the effusion size, and to follow
up on the response to medical therapy [2,3]. In addition, LUS does not expose patients to
ionizing radiation, providing yet another advantage [1–4].

Despite these advantages, the role of LUS in children undergoing cardiac surgery
remains surprisingly limited [2] compared to other pediatric settings [5–10], probably due
to cultural inheritance mostly relying on chest radiography. The aim of this review is to
provide a comprehensive overview and list of current potential applications for LUS in
children with congenital heart disease (CHD), post-surgery, with the hope of encouraging
its use for this important patient population.

2. LUS Examination Protocols

LUS examinations are performed with either phased array probes or linear/convex
probes. In neonates and children, linear and convex probes are preferred, however, as they
offer a quick and comprehensive view of the entire lung field.

LUS examinations in adult patients should include the evaluation of different pul-
monary areas and be performed in different views and positions. According to standardized
protocols [11], for each hemithorax, 2 or 3 major areas (anterior, lateral, and sometimes
posterior) delineated by the parasternal, anterior axillary, and posterior axillary line, respec-
tively, should be identified and scanned. Each area can be further divided into an upper
and lower half, creating 4 to 6 different quadrants for each hemithorax, namely anterior
superior, anterior inferior, lateral superior, lateral inferior, posterior superior, and posterior
inferior [11] (Figure 1).
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Figure 1. Six segments score. Each hemithorax is divided into 3 major quadrants (anterior, lateral,
and posterior). Each quadrant is further subdivided into the upper and the lower half. (A) anterior
and lateral, (B) posterior quadrants.

In children undergoing cardiac surgery for CHD, the posterior view is crucial for the
diagnosis of atelectasis/effusion, the most common post-surgical, pulmonary complica-
tions. In a study of over 138 examinations at different post-operative times in 79 children
(median age 9.3 months), the posterior areas were found to be more sensitive than the
anterior and lateral areas in the diagnosis of effusion or atelectasis [12]. Lungs may be
scanned posteriorly starting from the diaphragm to differentiate the lung from the liver,
with a continuous brush up to the apex. The posterior view, however, may be not feasible to
acquire in unstable children, particularly those with an open sternum, poorly cooperative
children, or children with poor mobilization. In studies from our group, the posterior area
was precluded in 7% of cases, while the anterior area could not be assessed in 11% due to
bandages and medications covering a substantial part of the hemithorax. In contrast, the lat-
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eral area, despite the frequent presence of drainage tubes and other physical impediments,
was almost always accessible (e.g., feasibility 98%) for LUS examination [12,13].

3. When and Who Should Perform LUS

There has been great debate on which members of the care team should perform
LUS. Theoretically, LUS should be performed by any physician who oversees the patient
(e.g., anesthetist, cardiologist, surgeon). Some recent works [14,15] suggest that LUS can
be performed by mid-level healthcare professionals, including nurses [15] and physio-
therapists [14] for whom LUS represents a unique tool to guide treatment and monitor
results [14].

4. Common Findings
4.1. B-Lines

B-lines are the sonographic sign of partial deaeration of the lung parenchyma [11]. In
CHD patients with left-to-right, or bidirectional shunt, LUS has a high sensitivity (94%),
specificity (96%), and diagnostic accuracy (95%) for the assessment of lung congestion from
pulmonary overflow, compared to CT [16]. Furthermore, neonates with CHD more B-lines
compared to their healthy counterparts [17]. The presence of B-lines is almost universal
after pediatric cardiac surgery due to extravascular fluid accumulation (particularly after
cardiopulmonary bypass) and other effects of the main cardiac defect and post-surgical
imbalance on the lung [4,12,13].

4.2. Classification of Lung Congestion in Children

In each scanning area, B-lines are counted, and a score can be assigned for either single
quadrants or for the entire hemithorax, the latter quantified by summing partial scores for
each single scanning area. In adults, the main scores for the classification of lung congestion
in heart failure are either the sum of B-lines in each area or the number of areas with more
than three B-lines [18]; lung involvement is commonly classified into four categories (none,
mild, moderate, and severe) [18,19]. In children, however, we use simplified scores; either
qualitative or semiquantitative scores have been adopted. Some authors have proposed
semiquantitative scores [13,17] (Table 1), while others [1,20] have proposed a qualitative
score identifying three different patterns: (A) white lung, defined as the presence of
confluent B-lines in two or more of the four areas; (B) the prevalence of B-lines in two or
more areas; and (C) the prevalence of A-lines, or no significant congestion/normal lung
(Figure 2).

Table 1. Major semiquantitative scores for lung congestion classification in children.

Authors Classifications

Wu (34)

(I) Normal: A lines
(II) Mild: fewer than 3 B lines in 2 rip spaces with spared areas
(III) Moderate: between 3 and 7 B lines between 2 rip spaces
(IV) Severe: more than 7 or coalescent B-lines from the base to the apex

without spared area

Cantinotti (12,13)

(I) trivial-none (LUS-score = 0–6),
(II) mild (LUS-Score = 6–12),
(III) moderate (LUS-Score = 13–24)
(IV) severe (LUS-Score > 24)

Raimondi,
Vitale (15,20)

(I) Type 1- full hyperechoic image of the lung fields or ‘white lung’;
(II) Type 2- prevalence of B lines, that is, vertical, comet-tail artifacts.
(III) Type 3- predominance of A lines
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4.3. Pleural Effusion

The evaluation of pleural effusion is one of the most employed applications of LUS.
LUS has high sensitivity and specificity (93%) for the diagnosis of pleural effusion, compa-
rable to computed tomography (CT), which remains the diagnostic gold standard but is
invasive, time consuming, expensive, and exposes the children to dangerous radiations [2,3].
In addition, LUS may allow us to differentially diagnose the nature of post-surgical pleural
effusion, highlighting yet another advantage. For instance, while anechoic effusion may be
either a transudate or an exudate, the presence of internal echoes is highly suggestive of
an exudate or a hemothorax [21–28]. Despite these advantages, the application of LUS for
pleural effusion is often qualitative, classified as mild, moderate, or severe. Furthermore,
there is lack of consensus for the quantitative measurement of pleural effusion by LUS. In
adults, various algorithms, each using different projections and measurement methods,
have been proposed for pleural effusion quantification [21–28], though none of these have
been validated for infants and children (Table 2 and Figure 3).
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Figure 3. Formulas for pleural effusion quantification according to different authors: (a) Usta
et al. [24], PEV is calculated by the formula D (mm) × 16, (b) Balik et al. [23] PEV is calculated by
the formula Sep (mm) × 20; (c) Eibenberger [25] the major effusion’s diameter (D) is associated with
PEV on a progressive scale (e.g., 10 mm correspond to 50–300 mL of PEV, 20 mm to 150–310 mL,
etc.). (Table 2) D = distance; IVC = Inferior Vena Cava; LL = Lung Lower Lobe; LTW = Lateral
Thoracic Wall; PE = Pleural Effusion; PEV = Pleural Effusion Volume; PTW = Posterior Thoracic Wall;
Sep = maximal distance between parietal and visceral pleura; SP = Spine.
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4.4. Atelectasis, Pneumonia, Consolidations, and Others

One of the main advantages of LUS over chest X-ray (CXR) is the ability to differentiate
between effusion and atelectasis, which, as emphasized, are the most common pulmonary
complications after pediatric cardiac surgery. Atelectasis is a universal complication after
general anesthesia, either with tracheal intubation or laryngeal mask, occurring in about
68–100% of all types of surgery [29–34], with varying degrees of severity, ranging from
small atelectasis to complete lung collapse. In these cases, the etiology of atelectasis is
multifactorial and includes surgical compression, cardiopulmonary bypass, consequences
on the lung of cardiac defect, and inappropriate ventilation. In children without cardiac
defects or with no history of pulmonary disease undergoing minor surgery [29–34], atelec-
tasis tends to resolve spontaneously, though it may persist after 3 days in about 70% of
patients undergoing pediatric cardiac surgery [29].

LUS allows for the precise identification of regions of atelectasis. In several studies
employing LUS after pediatric cardiac surgery, atelectasis was found to occur much more
frequently in the inferior-posterior region (60–92.7%) than in the anterior (5–20.7%) or
lateral regions (5–13.8%) [12,34]. LUS further helps in the differentiation of different types
of consolidations and masses. Consolidations may be due to infection, infraction from
pulmonary embolism, primary or metastatic cancer, compressive or obstructive atelectasis,
or a contusion from thoracic trauma, all of which can potentially be differentiated by
LUS [12,34]. For instance, the use of LUS for the diagnosis of pneumonia is today accepted
in many NICUs, with diagnostic criteria based on major signs, including consolidation, air
bronchograms, and pleural effusion. A recent (2020) meta-analysis [35] of over 22 studies
with a total of 2470 patients demonstrated that LUS has high sensitivity (0.95; 95% CI:
0.94 to 0.96), specificity (0.90; 95% CI: 0.87 to 0.92), and diagnostic odds ratio (137.49;
95% CI: 60.21 to 313.98) for the diagnosis of pneumonia in children.

4.5. Pneumothorax

Pneumothorax is a common complication in cardiac surgery. Pneumothorax is diag-
nosed by LUS based on three major findings, namely the absence of lung sliding and lung
pulse, the absence of B-lines, and evidence of the ‘lung point’ [1,36]. The first two signs
are required, whereas the lung point may not always be detectable. LUS revealed optimal
diagnostic accuracy, with superior sensitivity and similar specificity compared to CXR for
the detection of pneumothorax, and it was found to be superior to CT in the classification
of pneumothorax size [1,36]. Thus, LUS may be extremely useful for the diagnosis of
pneumothorax in a pediatric cardiac surgery setting [13,37]. LUS may be used to monitor
the occurrence of pneumothorax after drainage removal, avoiding serial CXRs as is routine
practice in many centers [37] (Figure 4 and Video S1).
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Table 2. Major studies proposing formula for pleural effusion quantification.

Authors Population Protocol of Examination Formula

Remérand
et al. [22], France

58 (45 M)
Age 58 ± 17 years

SUPINE
Transverse views positioning the transducer in
each IS. The transducer was slipped between the
patient’s back and mattress. The lower and
upper IS where PE was detected were drawn on
the patient’s skin
PE length measured in paravertebral regions
between the apical and caudal limits.
Cross-sectional area measured at the mid-length
of PE

PEV (mL) = ACT (cm2) × LCT (mm)

Usta [24],
Germany

135 (90 M)
Age 60 (45–67) years

SITTING
The transducer was moved in a cranial direction
in the mid-scapular line.
PE diameter: maximal distance between
mid-height of the diaphragm and visceral pleura

PEV (mL) = D (mm) × 16

Balik et al. [23],
Czech Republic

81 (47 M)
m. ventilated
patients
Age 60 ± 15 years

SUPINE
The transducer was moved in the cranial
direction in the posterior axillary line
PE diameter: maximal distance between parietal
and visceral pleura at the lung base

PEV (mL) = 20 × Sep (mm)

Eibenberger [37],
Austria

51 (21 M)
Age 28–82 years

SITTING
Latero-dorsal wall of the chest
PE diameter: the maximal perpendicular
distance between the posterior wall of the lung
and the posterior chest wall

D (mm) PEV (mL)
0 0–90
10 50–300
20 150–310
30 160–660
40 490–1670
50 650–1840
>60 950–251

Vignon et al. [21],
France

97 (61 M)
age 59 ± 20 years

SUPINE
From the base to the apex of the chest, along the
dorso-lateral part of the chest wall, as far as
possible posterior between the mattress and the
patient’s back without lifting the hemithorax.
PE diameter: the maximal distance from the
leading edge of the dependent surface of the
lung to the trailing edge of the posterior chest
wall, on transverse views of pleural spaces.
Measurements were made at the base and at the
apex of the pleural space

D > 45 mm at the RTB
D > 50 mm at the LTB
base predicted a PEV ≥ 800 mL
sensitivity of 94% and 100 and
specificity of 76 and 67%,
respectively

ACT: pleural effusion cross-sectional area; EE: end-expiration; EI: end-inspiration; IS: inter-costal space; LCT:
pleural effusion length; LTB: left thoracic base; m.: mechanical; PEV: pleural effusion volume; RTB: right thoracic
base; Sep: separation; V: volume; D: diameter; PE: pleural effusion; BMI: body mass index. A Typically, the
inter-pleural distance was greater at end-expiration in ventilated patients and on inspiration in spontaneously
breathing patients.

4.6. The Retrosternal Area: Diagnosis of Clots

To conclude our discussion of the LUS examination, we found it useful to explore the
inspection of the parasternal region for the evaluation of the retrosternal area, a zone where
clots are commonly known to form after pediatric cardiac surgery [2,28,38].

By placing the probe close to the parasternal line, the anterior segments can be scanned
up and down. If a clot or hematoma is detected, the probe should be placed over it and
freely tilted in various planes or orientations for visualization.

There is no standardized system to measure and classify clot dimensions. In a recent
series, we defined clot size according to the maximal diameter on an axis perpendicular
to the cardiac wall as follows. We specifically defined four classes of clot size, namely
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(1) large clots: >3 cm; (2) moderate sized clots: >2 to <3 cm; (3) small to moderate sized
clots >1 to <2 cm; and (4) small clots: <1 cm.

Among 37 children undergoing total cavopulmonary connection (mean age 5.5 ± 1.8 years,
(range 2.4–11.7) (2.38) mean body surface area 0.7 ± 0.1 m2 (range 0.3–1.6 m2)), retrosternal
clots were detected in 18 children (48.6%). Of these, seven (13.5%) had small clots (<1 cm),
two (5.4%) had small to moderately sized clots (>1–<2 cm), three (8.1%) had moderately
sized clots (>2–<3 cm), and six (16.2%) had large clots (>3 cm). Four of the six detected
large clots required surgical revision, and the other two clots were not treated because the
patients were clinically stable.

Furthermore, exploring the retrosternal area may be helpful for the diagnosis of
serious complications after cardiac surgery such as mediastinitis [28], which is typically
characterized by retrosternal fluid collection and parasternal hyperconvexity. Hematoma
and infections may have similar finding and may overlap [28]; thus, echographic findings
should always be correlated clinically (Figure 5).
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Figure 5. Retrosternal clot. (Left) In (A), a retrosternal clot is visualized by LUS and confirmed (B) by
CT scan. Using LUS, it is possible to appreciate how the clot is interposed among the sternum and the
plural line. (Right) A retrosternal clot among the strum and the right ventricular outflow tract (RVOT)
is visualized by LUS (A). On chest X-ray and enlargement of right mediastinum can be observed (B).

4.7. Diaphragmatic Motion Anomalies

Diaphragmatic paralysis is a serious complication after pediatric cardiac surgery
and occurs in 0.3–12.8% of patients. Consequences of diaphragmatic paralysis include
respiratory insufficiency, pulmonary infections, and the prolongation of hospital stay.
Diaphragmatic paralysis is usually associated with concomitant atelectasis [12,39,40] and
may be easily diagnosed either with LUS or with conventional echocardiography by
subcostal view. Diagnosis is confirmed by comparing each hemidiaphragm in subxiphoid
view and evaluating their respective movements using M-mode. Diaphragmatic motion can
be classified as normal (towards the transducer in inspiration with a difference of excursion
between the hemidiaphragms of <50%), decreased (difference in the amplitude between
the hemidiaphragms >50%), absent (flat line at M-mode), or paradoxical (with absent
and paradoxical motion away from the transducer in inspiration), the latter indicating
diaphragmatic paralysis [12,39] (Figure 6 and Video S2).
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Figure 6. And Video S2: A left hemidiaphragm paralysis can be visualized by chest X-ray (left
side) and confirmed by echographic analysis of diaphragm by subcostal view. In the middle, a
paradoxical motion of the diaphragm can be appreciated in M-mode, and on the right image, the left
hemidiaphragm lifted can be appreciated (Video S2).

4.8. LUS Guidance of Interventional Procedures

LUS may be used to guide common interventional procedures in pediatric cardiology,
including drainage insertion for pleural effusion and pneumothorax [41]. Adult studies
have demonstrated that the routine use of LUS may drastically reduce the risk of pneu-
mothorax in thoracentesis from 8.8% to 0.97% (p < 0.0001) [41]. The utility of LUS extends to
tracheal tube verification in the NICU [42,43]. The echographic visualization of the tracheal
tube tip by LUS was found to be feasible (i.e., 83% to 100%) and had good sensitivity (i.e.,
0.91 to 1.00) with sufficient specificity (i.e., 5 to 1.0) for appropriate tracheal tube depth
verification. Furthermore, LUS may be used for echo-guided lung recruitment [3].

4.9. Chest X-ray Reduction in Pediatric Cardiac Surgery

In a previous study, we analyzed [44] the medical records of 1487 children and adoles-
cents (7.09 ± 12.34 years, range 0–17 years) who underwent cardiac surgery over a 6-year
period (2013–2018) at our Center, to assess whether the systematic use of LUS reduces the
use of CXR. We retrospectively compared CXR use between 2013–2015, where LUS was
not routinely employed, with CXR utilization between 2016–2018, after the introduction of
systematic LUS use. We found a significant reduction in the number of chest radiographs
(10.68 ± 10.31, p < 0.005), corresponding to a radiation dose reduction of 0.032 mSv for each
individual patient.

4.10. Prognostic Utility of LUS

More recently, several studies evaluated not only the diagnostic capabilities but also
the prognostic potential of LUS in pediatric cardiac surgery [1,13,45]. Vitale et al. showed
that 20 children (<20 kg; 3–7.25 months) with higher pulmonary congestion on day one
post-op had longer times on cardiopulmonary bypass (CPB), longer cross clamp times,
longer need of mechanical ventilation, and lengthened stay in ICU [1]. In another study of
61 children (3 days–7.4 years), the percentage of B-lines 1–6 h postoperatively predicted the
length of mechanical ventilation and PICU stay [45]. The incremental prognostic value of a
new LUS score post-cardiac surgery has been demonstrated. In one study of 237 children
undergoing cardiac surgery (0–17 years) at a single center, the use of a new LUS score
12–36 h post-surgery better predicted the intensive care length of stay (beta 0.145; p = 0.047)
and extubation time (beta 1.644; p = 0.024), compared with conventional risk factors. Of
note, when single quadrants were analyzed, only the anterior LUS score had significant
prognostic value (ICU stay beta, 0.471; p = 0.020; extubation time beta 5.530; p = 0.007).
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5. Current Gaps of Knowledge
5.1. Why Is the Lung White?

In several cases, deaeration, or white lung, can occur due to extravascular water
content in response to hypoxia. Many children with CHD, both before and after surgery,
present cases of pulmonary edema, due to increased pulmonary blood flow, ventricular
dysfunction, valve defects, etc., and deaeration from chronic hypoxia or recovery from
atelectasis [2,3]. Pulmonary atelectasis commonly occurs after pediatric surgery and/or in
the ICU, and if scanned during post-operative recovery, it is difficult to differentiate from
severe pulmonary congestion. Characteristic B-lines help to differentiate cardiogenic lung
congestion from other forms of lung deaeration. In cardiogenic lung congestion, B-lines are
uniformly present on either hemithorax with a gravity-dependent distribution, with thin
and regular pleural lines [11,18] (Figure 7A and Video S3). A patchy, irregular distribution
of B-lines, often with irregular pleural lines, is more characteristic of non-cardiogenic
pulmonary edemas, such as is observed in acute respiratory distress syndrome (ARDS) or
pulmonary fibrosis [11,18] (Figure 7B).
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5.2. Future Perspectives

Studies on adult patients suggest that the use of speckle tracking may improve the
accuracy for the diagnosis of pneumothorax [46,47]; however, as mentioned above, the data
on such applications in pediatric populations are lacking.

Preliminary observations in children suggest that the use of contrast agents is feasible
and may increase the accuracy for the diagnosis of complicated pneumonia, accurately
differentiating necrotizing pneumonia from complex parapneumonic effusion [48]. The use
of contrast agents may further allow us to accurately visualize the drainage tubes during
invasive maneuvers such as drain insertion.

Studies of diaphragmatic structure and motion, including the quantification of di-
aphragm thickness, diaphragm excursion, and diaphragm thickening, are increasing in
relevance for both the diagnosis of post-surgical paralysis and the monitoring of pulmonary
recovery and response to therapy [49,50].

6. Conclusive Remarks

LUS is an accurate, fast, cheap, and radiation-free tool that may be employed for the
diagnosis and follow-up of major pulmonary complications in pediatric cardiac surgery.
The systematic use of LUS in pediatric cardiology should be encouraged to reduce serial
CXR examinations that are not only expensive but also expose children to potentially high
doses of radiation.
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Further studies are warranted to establish a consensus classification system for the
evaluation of disease severity and to further assess the prognostic potential of LUS in
children undergoing cardiac surgery for CHD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12030763/s1, Video S1: pneumothorax, Video S2:
diaphragmatic paralysis, Video S3: A lines cardiogenic.
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