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Carbon ions are an up-and-coming ion species, currently being used in charged par-
ticle radiotherapy. As it is well established that there are considerable interindividual 
differences in radiosensitivity in the general population that can significantly influence 
clinical outcomes of radiotherapy, we evaluate the degree of these differences in the 
context of carbon ion therapy compared with conventional radiotherapy. In this study, 
we evaluate individual radiosensitivity following exposure to carbon-13 ions or γ-rays in 
peripheral blood lymphocytes of healthy individuals based on the frequency of ionizing 
radiation (IR)-induced DNA double strand breaks (DSBs) that was either misrepaired 
or left unrepaired to form chromosomal aberrations (CAs) (simply referred to here as 
DSBs for brevity). Levels of DSBs were estimated from the scoring of CAs visualized 
with telomere/centromere-fluorescence in  situ hybridization (TC-FISH). We examine 
radiosensitivity at the dose of 2 Gy, a routinely administered dose during fractionated 
radiotherapy, and we determined that a wide range of DSBs were induced by the given 
dose among healthy individuals, with highly radiosensitive individuals harboring more 
IR-induced breaks in the genome than radioresistant individuals following exposure to 
the same dose. Furthermore, we determined the relative effectiveness of carbon irra-
diation in comparison to γ-irradiation in the induction of DSBs at each studied dose 
(isodose effect), a quality we term “relative dose effect” (RDE). This ratio is advantageous, 
as it allows for simple comparison of dose–response curves. At 2 Gy, carbon irradiation 
was three times more effective in inducing DSBs compared with γ-irradiation (RDE of 3); 
these results were confirmed using a second cytogenetic technique, multicolor-FISH. 
We also analyze radiosensitivity at other doses (0.2–15  Gy), to represent hypo- and 
hyperfractionation doses and determined that RDE is dose dependent: high ratios at low 
doses, and approaching 1 at high doses. These results could have clinical implications 
as IR-induced DNA damage and the ensuing CAs and genomic instability can have 
significant cellular consequences that could potentially have profound implications for 
long-term human health after IR exposure, such as the emergence of secondary cancers 
and other pathobiological conditions after radiotherapy.
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inTrODUcTiOn

Current radiotherapy regimens use photons or protons for the 
treatment of a plethora of malignancies. However, as ionizing 
radiation (IR) of high linear energy transfer (LET) may poten-
tially offer radiobiological advantages over low LET IR due to 
their inherent physical dose distribution characteristics, cancer 
radiotherapy is now shifting to the use of high-LET heavier ion 
species (1). Low LET IR (e.g., X- and γ-rays) deposits exponentially 
decreasing amounts of energy, as a function of penetration depth 
in the target material, in a uniform pattern of distribution. High 
LET IR, such as heavy ions, on the other hand, are characterized 
by a relatively low entrance dose in the target material, followed 
by a pronounced sharp maximum dose near the end of their 
range called the Bragg peak, and energy close to 0 beyond the 
Bragg peak. This characteristic of high LET IR is useful especially 
for the treatment of deep-seated tumors in the human body, as it 
allows a great amount of energy to be precisely localized at the 
tumor site when it is placed at the Bragg peak, while minimally 
exposing the surrounding normal tissues (2).

Among various types of heavy ion species considered for 
radiotherapy, carbon ions are considered to have the most 
balanced and optimal properties in terms of physical dose 
distribution and relative biological effectiveness (RBE) along 
its Bragg peak curve (3). However, carbon ion radiotherapy is 
not yet widely used, with only a few centers worldwide (six in 
Asia and two in Europe) that have treated ~13,000 patients (as of 
December 2013), compared with ~50 active proton therapy cent-
ers worldwide that have treated over 105,000 patients (4). Though 
preliminary clinical data from the existing carbon ion therapy 
centers suggest favorable results for many of the malignancies 
that do poorly with conventional radiotherapy (3), further 
clinical research and development of more carbon ion (and other 
charged particles heavier than protons) therapy centers in the 
US and worldwide are hindered by the lack of sufficient clinical 
evidence of the benefit of carbon ion therapy over conventional 
radiotherapy that would cost-effectively justify the establishment 
of such expensive facilities (1). Further investigation is necessary 
to characterize and understand how carbon ion therapy works in 
comparison to conventional radiotherapy.

Clinical outcomes of radiotherapy can be significantly influ-
enced by interindividual variations in sensitivity to IR, which is 
well established to exist in the general population. Highly radio-
sensitive patients, for instance, may develop early and/or late side 
effects due to radiation toxicity, while radioresistant patients may 
receive an insufficient dose of radiation due to dose limitations 
in current general radiotherapy protocols. However, current 
radiotherapy and radiation protection protocols do not take into 
account the individual variations in radiosensitivity, but rather 
rely on population averages of radiation responses. Refining these 
protocols to consider individual radiosensitivity, especially the 
more radiosensitive and cancer-prone, may help to alleviate the 
detrimental delayed effects of IR (5–7).

In this study, we evaluate individual radiosensitivity follow-
ing exposure to carbon-13 ions or γ-rays in peripheral blood 
lymphocytes (PBL) of healthy blood donors using the telomere/
centromere-fluorescence in  situ hybridization (TC-FISH) 

technique. TC-FISH, which simultaneously stains telomeres 
and centromeres using peptide nucleic acid (PNA) probes 
(8), was shown in a recent study in our laboratory (9) to be a 
cost-effective method that significantly simplifies and improves 
the “gold standard” dicentric chromosome (DC) assay, which 
relies on the manual scoring of DCs following Giemsa staining 
by trained specialists. The radiosensitivity of each analyzed 
individual in this analysis was ranked based on the estimation 
of the frequency of IR-induced DNA double strand breaks 
(DSBs) that either was misrepaired or left unrepaired to form 
chromosomal aberrations (CAs). For brevity, we refer to these 
misrepaired or unrepaired DSBs that generate CAs simply as 
“DSBs” henceforth. Levels of DSBs were estimated from the 
scoring of CAs visualized with TC-FISH, including dicentrics, 
centric and acentric rings, and acentric fragments (with 0, 2, or 
4 telomeres). We demonstrated in our previous article (9) that 
this modified scoring technique provides improved sensitiv-
ity compared with the classical DC analyses. Additionally, as 
presented in this same paper, we developed a novel automated 
system (TCScore) that can perform these TC-FISH analyses 
with the same efficacy as manual scoring, but in a fraction of 
time; this improved, automated approach will open up new 
horizons for the assessment of genotoxic risk and for biological 
dosimetry, particularly for low doses.

We examine radiosensitivity at the dose of 2 Gy, a routinely 
administered dose during fractionated radiotherapy (10, 11), and 
at other doses (0.2–15  Gy), to represent hypo- and hyperfrac-
tionation doses. As we are particularly interested in comparing 
the levels of biological effect (misrepaired or unrepaired DNA 
DSBs generating CAs in this case) at a particular dose of car-
bon irradiation compared with the same dose of γ-irradiation 
(isodose effect), we also define a quality we term “relative dose 
effect” (RDE). This ratio is advantageous as it allows for simple 
comparison of dose–response curves.

resUlTs

individual radiosensitivity Following 
exposure to 2 gy of γ-rays
Individuals in this cohort of 18 healthy blood donors were 
first ranked in the order of increasing radiosensitivity based 
on the mean number of IR-induced DSBs (i.e., misrepaired or 
unrepaired DSBs that generated CAs) per cell following in vitro 
exposure of isolated PBL to 2 Gy of low LET γ-rays. The mean 
number of DSBs per cell was calculated based on the scoring of 
CAs following TC-FISH staining, as described in Figures 1A,B, 
in cells undergoing first mitosis at 60 h postirradiation. As shown 
in Figure 2A, individuals were designated as Donors A through 
R in this order of “radioresistant” to “radiosensitive” donors. We 
use this ranking throughout the study as the definition of each of 
these donors’ radiosensitivity.

Following exposure to a dose of 2 Gy of γ-irradiation, there 
was a range of ~1.5–2.8 DSBs per cell (1.8-fold difference), and a 
mean of 2.17 DSBs per cell in the PBL samples. Comparison of data 
obtained from samples irradiated on different dates and analyzed 
by different individuals showed no significant differences in the 
measurement of the mean number of DSBs per donor (p > 0.05). 
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FigUre 1 | (a) Visualization of IR-induced dicentric chromosomes (dic) and other chromosomal aberrations (CAs), such as acentric fragments (ac), using telomere/
centromere-fluorescence in situ hybridization (TC-FISH). This image shows 3 dic and 5 ac [3 with 4 telomeres (telo), 1 with 2 telo, 1 with 0 telo]. (B) Examples of the 
method used to estimate the number of IR-induced DSBs per cell (i.e., misrepaired or unrepaired DSBs that generated CAs) using TC-FISH. A dic or a centric ring 
with an ac containing four telo was considered as two DSBs. Excess ac with two telomeres was considered as resulting from one DSB that failed to rejoin (terminal 
deletion). Excess ac with 0 telomeres were considered as resulting from 2 DSBs (interstitial deletion). Note that these sample images of chromosomes are not an 
analysis of (a), and lines denoting DSBs from IR interactions are not necessary from traversal with the same IR track. (c) Visualization of IR-induced translocations 
using M-FISH. This image shows the same metaphase as in (a). Each chromosome involved in the dic and ac can be identified. Furthermore, three additional 
translocations can be observed that was not able to be visualized using the TC-FISH technique. (D) Examples of the method used to estimate the number of 
IR-induced DSBs (i.e., misrepaired or unrepaired DSBs that generated CAs) using M-FISH. Dic or translocations involving two chromosomes often involve two 
DSBs, whereas more complex rearrangements with three chromosomes may involve four DSBs. Note that these sample images of chromosomes are not an 
analysis of (c), and lines denoting DSBs from IR interactions are not necessary from traversal with the same IR track.
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Donors classified as more radiosensitive harbored more DSBs per 
cell, with a wider range of distribution of DSBs per cell, compared 
with the more radioresistant donors (Figure S1 in Supplementary 
Material). For example, the mean of the range of DSBs per cell in 
radioresistant donors (Donors A through F) was found to be 9.0 
compared with 12.5 in radiosensitive donors (Donors M through 
R). This indicates the presence of more IR-induced damage in 
radiosensitive donors compared with radioresistant donors fol-
lowing exposure to a dose of 2 Gy of γ-rays.

No correlations were observed between this radiosensitivity 
and levels of spontaneous or IR-induced apoptosis (0–6  Gy; 
data not shown). Furthermore, no correlations were found 
(R2 =  0.045; data not shown) between radiosensitivity to 2  Gy 
of γ-irradiation and the susceptibility to IR-induced apoptosis in 
the T4-EM subpopulation (measured as the slope of IR-induced 
apoptosis in T4-EM lymphocytes between the doses of 0 and 6 Gy 
of γ-irradiation), as previously described (12). Radiosensitivity 
may be moderately correlated with interindividual variability in 
the induction of global γH2AX fluorescence at 30  min postir-
radiation (R2 = 0.595), but not at later time points postirradiation 
(3–24 h); global γH2AX fluorescence data of this cohort of PBL 
were previously published (13).

individual radiosensitivity Following 
exposure to 2 gy of carbon ions
Individual radiosensitivity following in vitro exposure to 2 Gy of 
high LET carbon-13 ions (75 MeV/u; LET ~36.5 keV/μm at the 
plateau region of the Bragg peak curve) was measured in PBL of 
13 of the healthy blood donors analyzed for γ-irradiation above in 
cells undergoing first mitosis at 60 h postirradiation.

As shown in Figure  2A, interindividual differences in 
radiosensitivity was also observed following carbon irradiation, 
a range of ~5–8 DSB per cell was measured (1.6-fold difference), 
and a mean of 6.45 DSBs per cell in the PBL samples. As with 
γ-irradiation, radiosensitivity was not correlated with apoptosis 
and global γH2AX fluorescence (data not shown). Based on the 
ranking of increasing radiosensitivity following carbon irra-
diation, we find that the more radiosensitive donors to carbon 
irradiation harbored more DSBs per cell compared with the more 
radioresistant donors (Figure S2 in Supplementary Material); for 
example, the mean of the range of DSBs per cell in radioresistant 
donors (Donors C, H, E, and J) was found to be 14.8 compared 
with 19.8 in radiosensitive donors (Donors F, A, Q, M, and K).

no correlations between radiosensitivity 
to 2 gy of γ-rays and carbon ions
Comparison of radiosensitivity to carbon irradiation and 
γ-irradiation at the dose of 2  Gy showed a different order of 
increasing radiosensitivity within this cohort, as illustrated in 
Figure 2A. Indeed, the order of low to high radiosensitivity as 
classified according to 2 Gy of γ-irradiation did not hold for car-
bon irradiation following exposure to the same dose (Figure 2A). 
This indicates that donors are not equally sensitive to different 
types of IR. Interestingly, though the ranking of radiosensitivity 
to carbon ions and γ-rays was different within this cohort, the 
trend lines for radiosensitivity to each type of IR (plotted in the 

FigUre 2 | comparison of individual radiosensitivity following 
exposure to 2 gy of either carbon-13 ions (75 MeV/u; leT 
~36.5 keV/μm at the plateau region of the Bragg peak curve) or 
γ-rays. Individual radiosensitivity was evaluated in peripheral blood 
lymphocytes (PBL) of healthy blood donors in cells undergoing first mitosis at 
60 h postirradiation; radiosensitivity of each individual was ranked using the 
TC-FISH technique based on the estimation of the frequency of IR-induced 
DNA DSBs (i.e., misrepaired or unrepaired DSBs that generated CAs), 
estimated as shown in Figure 1B. (a) Ranking of individual radiosensitivity to 
2 Gy of carbon ions and γ-rays. Individuals were designated as Donors A 
(“radioresistant”) through R (“radiosensitive”) based on the order of increasing 
radiosensitivity following γ-irradiation. (B) Distribution of the number of DSBs 
per cell for each type of IR for all donors analyzed. (c) No correlations 
between individual radiosensitivity following in vitro exposure to 2 Gy of 
carbon ions and γ-rays (R2 = 0.16).
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order of increasing radiosensitivity to γ-rays) were parallel, both 
with a slope of 0.07. Notably, a high intracellular variability of 
IR-induced DSB among cells of the same donor was observed 
(data not shown). Intracellular variations following carbon 
irradiation were generally found to be larger than those follow-
ing γ-irradiation. This may be expected due to the non-uniform 
spatial distribution of IR-induced DNA damage following heavy 
ion irradiation. A modest correlation was found between the dis-
persion of DSBs per donor (95% confidence interval) following 
γ- and carbon irradiation (R2 = 0.51). As expected, carbon irra-
diation causes more dispersion in the number of DSBs induced 
per cell compared with γ-irradiation, with carbon ranging to up 
to 20 DSBs per cell and γ-rays ranging up to 12 DSBs (Figure 2B). 
This indicates that carbon irradiation causes a larger range of 
DSBs per cell and more IR damage that is less repaired compared 
with γ-rays. As shown in Figure 2C, we find that there are no 
correlations between radiosensitivity to carbon ions and γ-rays 
at the dose of 2 Gy (R2 = 0.16).

rDe Factor of 3 after 2 gy irradiation 
Using Both Tc-Fish and M-Fish 
Techniques
In this study, as we are particularly interested in the differences in 
the effectiveness of induction of DSBs (i.e., misrepaired or unre-
paired DSBs that generated CAs) by carbon irradiation compared 
with γ-irradiation at a given dose (isodose effect), we define a new 
ratio, termed RDE, calculated simply by dividing the mean DSBs 
per cell determined using TC-FISH following exposure to carbon 
ions by that following exposure to the same dose of γ-rays. This 
ratio differs from the usual metric RBE (defined as the ratio of 
doses that produce an iso-effect) and is advantageous, as it allows 
for simple comparison of dose–response curves.

At the dose of 2 Gy, the mean number of DSBs per cell was 
found to be 2.17 DSB per cell after γ-irradiation (18 donors, 
as described in Section “Individual Radiosensitivity Following 
Exposure to 2 Gy of γ-Rays”) and 6.45 DSB after carbon irradiation 
(13 donors, as described in Section “Individual Radiosensitivity 
Following Exposure to 2 Gy of Carbon Ions”). Therefore, the RDE 
of carbon ions was determined to be ~3 times that of γ-rays at the 
dose of 2 Gy using TC-FISH. The RBE at 2 Gy was found to be 2.6.

Relative dose effect results were confirmed using M-FISH 
analysis of chromosomal rearrangements, visualized as illus-
trated in Figure 1C. The number of DSBs per cell using M-FISH 
analysis was calculated, as illustrated in Figure 1D. At the dose 
of 2 Gy, M-FISH analyses in four donors (Donors A, C, L, and R) 
indicated 3.26 DSBs per cell after γ-irradiation and 9.81 DSBs per 
cell following carbon irradiation. As M-FISH is a more detailed 
analysis of chromosomal damage compared with TC-FISH (since 
M-FISH allows analysis of translocations, which are not visible 
with TC-FISH), it is expected that more DSBs per cell be calculated 
using M-FISH than using TC-FISH. However, as both techniques 
give an RDE factor of 3 at the dose of 2 Gy, the determination of 
RDE factor of carbon compared with γ-rays is independent of 
the method of scoring chromosomal damage. Thus, TC-FISH and 
M-FISH can be considered to be two alternative approaches for 
scoring chromosomal damage.

Based on these results, we propose that the TC-FISH tech-
nique is more practical for rapid assessment of genotoxic risk 
and for radiation dosimetry, as M-FISH is both expensive and 
time consuming in terms of hybridization technique and analysis 
compared with TC-FISH.

rDe at Other Doses: high rDe  
at low Doses
To determine RDE at other doses, we compare mean DSBs per 
cell determined using TC-FISH following exposure to a range of 
doses (0.2–15 Gy) of carbon ions and γ-rays in a subset of the PBL 
of the healthy blood donors analyzed above. For γ-irradiation at 
all doses except for 2 Gy (which is the average of 18 donors; data 
in Figure 2A), the mean DSBs per cell represent the average of six 
donors (Donors C, F, H, J, K, and O). For carbon irradiation at all 
doses except for 2 Gy (which is the average of 13 donors; data in 
Figure 2A), the mean DSBs per cell represent the average of four 
donors (Donors G, H, K, and M).

Figure 3A shows a plot of the dose (0–5 Gy) of γ- or carbon 
irradiation and the mean number of DSBs per cell averaged for 
all donors analyzed. This plot indicated second order polynomial 
trends between the doses of 0 and 5 Gy for both IR types. This plot 
was expanded to doses of up to 15 Gy in Figure 3B, which shows 
data for the frequency of DSBs per cell (averaged for all donors 
analyzed) at each dose with the exact mean indicated above each 
bar. Error bars in Figures 3A,B represent the SD of the frequen-
cies of DSBs per cell among the averaged donors, illustrating 
interindividual variations in radiosensitivity at various doses. 
RDE factors shown in Figure  3C were calculated by dividing 
the mean DSBs per cell following a dose of carbon irradiation by 
the mean DSBs per cell following the same dose of γ-irradiation 
(values shown in Figure 3B). The RDE factor is dose dependent, 
with high RDE factors at low doses (0.2 and 0.5 Gy), and an RDE 
factor approaching 1 at high doses (10 and 15 Gy).

DiscUssiOn

In this study, we demonstrate that following in  vitro irradia-
tion with carbon ions or γ-rays at the dose of 2 Gy, a routinely 
administered dose during fractionated radiotherapy (10, 11), 
interindividual differences in radiosensitivity (measured in 
terms of misrepaired or unrepaired IR-induced DNA DSBs that 
led to the formation of CAs) exist in healthy individuals. In other 
words, a given dose of IR can induce a wide range of DNA damage 
among healthy individuals, with highly radiosensitive individuals 
harboring more IR-induced damage in the genome than radiore-
sistant individuals following exposure to the same IR dose. These 
results could have important clinical implications as IR-induced 
DNA damage and the ensuing CAs and genomic instability can 
have significant cellular consequences that could potentially 
have profound implications for long-term human health after IR 
exposure, such as the emergence of secondary cancers and other 
pathobiological conditions after radiotherapy (14–16). A fast and 
reliable clinical method to measure radiosensitivity of cancer 
patients and/or predict radiotherapy toxicity (especially to iden-
tify hyper-radiosensitive individuals) would permit personalized 
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radiotherapy treatment; however, such a method still remains to 
be established (17–20).

It is well established that radiosensitivity is closely linked to 
intrinsic, genetically determined differences in cellular responses 
to IR-induced damage, particularly the repair of DNA DSBs (7). 
In our previously published paper (13), we have demonstrated, 
in this same cohort of PBL from healthy individuals, a high level 
of interindividual variability in the induction and kinetics of 
γH2AX, an important DNA damage response (DDR) protein that 
facilitates the efficient repair of DSBs, following γ-irradiation; this 
variability, measured using global immunofluorescence micros-
copy and confirmed with flow cytometry, was found to increase 
with dose and diminish with repair time, in accordance with 
previously published observations (21–24). This finding supports 
the notion that these individuals vary in their DDR capacities. 
However, in this study, we show a moderate correlation between 
radiosensitivity and global γH2AX fluorescence at 30 min postir-
radiation (R2 =  0.595), but no correlations at later time points 
postirradiation (3–24 h). These moderate to lack of correlations 
between radiosensitivity and γH2AX levels could be due to the 
rapid time-dependent changes in γH2AX levels postirradiation. 
Furthermore, the lack of correlation that we have observed 
between sensitivity to carbon and γ-irradiation may indicate that 
individuals may not be equally capable of repairing the differ-
ent types of DNA damage induced by low LET and high LET 
IR. Indeed, high LET IR causes more clustered DNA DSBs and 
higher frequencies of complex chromosomal aberrations (CCAs) 
that may be less likely to be repaired correctly compared with 
equivalent doses of low LET IR (25–29).

Our results demonstrate that the yield of IR-induced DSBs 
fits a polynomial curve very close to linearity, in agreement with 
previous reports of upward curvature, especially following high 
LET IR (29, 30). We showed that RDE is dose dependent, with 
high RDE at low doses (0.2 and 0.5 Gy), and approaching 1 at 
high doses (10 and 15 Gy). This may indicate that the biological 
effectiveness of carbon at low doses, such as in surrounding tissue 
of the primary site of irradiation, may be significantly underes-
timated: IR exposure may be more harmful than expected. On 
the other hand, at very high doses per fraction, such as in hypo-
fractionated radiotherapy schemes, biological effectiveness may 
be significantly overestimated. These results may be important to 
consider for carbon radiotherapy.

In this study, we have found that TC-FISH and M-FISH are 
two complementary methods for the scoring of DSBs and RDE 
determination at the dose of 2 Gy, as carbon ions caused three 
times more DSBs per cell compared with γ-irradiation with both 
techniques with this dose. We have recently further improved 
the speed of the TC-FISH technique and analysis in our 
laboratory with the development of a semi-automated software 
(TCScore) that is able to detect IR-induced CAs (dicentrics, 
rings, acentrics with 4, 2, 0 telomeres) with the same efficacy 
as manual scoring in a fraction of time (9). This software pro-
vides automated analysis of three-channel (RGB) images (red, 
green, and blue channels containing telomere, centromere, and 

FigUre 3 | relative dose effect (rDe) of carbon-13 ions (75 MeV/u; 
leT ~36.5 keV/μm at the plateau region of the Bragg peak curve) 
versus γ-rays at various doses. We define RDE to be the ratio of biological 
effect at a given dose (isodose effect). The mean number of DSBs per cell 
was determined using TC-FISH as illustrated in Figure 1B, and dose–
response curves were plotted for doses of up to (a) 5 Gy and (B) 15 Gy. The 
mean DSBs per cell for all donors analyzed are indicated above each bar in 
(B). Error bars represent the SD of the frequencies of DSBs per cell among 
the donors. (c) RDE of carbon ion versus γ-rays as a function of dose.
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DAPI DNA staining information, respectively) split into their 
individual channels by any image processing software (e.g., 
Image J) and generates an intuitive and interactive report of 
CA classes that can be reviewed and corrected in batches by an 
investigator. This improved, automated approach will open up 
new horizons for the assessment of genotoxic risk for clinical 
uses (e.g., radiosensitivity assessment before radiotherapy) 
and for biological dosimetry following accidental exposure, 
particularly for low doses (9, 31). However, in order for these 
techniques to be used in the clinics for determining intrinsic 
individual radiosensitivity, analyses of a larger cohort of healthy 
individuals are needed to well establish the degree of variations 
within the whole human population.

Meanwhile, the M-FISH technique has been shown to be a 
powerful tool for detailed analyses of translocations and CCAs 
in the whole genome at very low to high doses of IR exposure, 
as it allows all chromosomal homolog pairs to be differenti-
ated (32, 33). It was shown to be sensitive enough to detect 
translocations and other CAs at doses as low as 0.1 Gy of low 
LET IR (34). Though the long-term stability of translocations 
and the usefulness of this technique was recently validated 
(35), M-FISH analysis is laborious, time consuming (~5 days to 
obtain results), and expensive; standardization and automation 
will be key to improving the practical significance of FISH-
based translocation assays. Furthermore, the frequencies of 
translocations at baseline and their persistence postirradiation 
at various doses, as well as potential interindividual variability 
in their levels, need to be further characterized, especially in 
the low dose range (36). Such data would be valuable for study-
ing the long-term health risk of IR exposure and may generally 
contribute to understanding the link between CAs and human 
diseases and cancer (37).

In conclusion, it is evident that individual radiosensitivity 
exists among healthy individuals following irradiation with 
carbon ions and γ-rays, and individuals may not be equally sen-
sitive to different types of IR. Furthermore, the RDE of carbon 
compared with γ-rays could be dose dependent, illustrating the 
complexity of the biological responses to IR. We propose that the 
calculation of IR-induced DSBs (i.e., misrepaired or unrepaired 
DSBs that generated CAs) using TC-FISH may be a sensitive and 
reliable approach to measuring individual radiosensitivity. The 
ability to rank and predict individual radiosensitivity has a wide 
range of real-world applications, as it directly impacts the for-
mulation of cancer treatment strategies and the establishment of 
radiation protection guidelines. Refining radiotherapy and radia-
tion protection protocols to consider individual radiosensitivity, 
especially the more radiosensitive and cancer-prone, may help to 
alleviate the detrimental delayed effects of IR.

MaTerials anD MeThODs

cell culture
Peripheral blood lymphocytes used in this study were isolated 
from the whole blood of 18 healthy blood donors (with nega-
tive viral status) from the Center of Blood Transfusions using 
the standard Ficoll isolation technique. Individuals included in 

this cohort were selected from a larger cohort of 63 individuals 
along the range of radiosensitivity measured previously based 
on the induction of IR-induced apoptosis (38); all analyses, 
however, were performed blindly. After isolation, lymphocytes 
were frozen in liquid nitrogen ( −196°C) until use. Lymphocytes 
were unfrozen 24  h before irradiation and incubated at 37°C 
in an atmosphere of 5% CO2 in RPMI 1640 medium (Gibco) 
supplemented with 20% fetal bovine serum (FBS; Eurobio) and 
antibiotics (penicillin/streptomycin; Gibco).

irradiation
Peripheral blood lymphocytes were irradiated at various doses at 
room temperature (RT) with γ-rays from a Cesium-137 source at 
the CEA Fontenay-aux-Roses, France (dose-rate of 2 Gy/min).

Carbon-13 (13C6+) irradiations were performed on the Grand 
Accélérateur National d’Ions Lours GANIL (Caen, France) D1 
high energy line (IRRABAT beam line) with energy of 75 MeV/u; 
details of dosimetry and other specifications were previously 
published (39). Lymphocytes were irradiated in small tubes with 
a glass wall of 2 mm thickness. Samples were irradiated at the 
plateau region of the Bragg peak curve; the mean LET at the 
sample was estimated to be ~36.5 keV/μm. The dosimetry was 
realized with the assistance of CIMAP–CIRIL physicists using 
a Faraday cup and an X-ray detector (5 μm stainless steel foil 
and photomultiplier). The photons emitted after traversal of 
the foil by the accelerated ions were counted, and a correlation 
at low fluences/doses was established with the real ion tracks 
measured on CR39 tracks detectors (C12H18O7)n. After expo-
sure to the beam, the ion tracks in the CR39 were chemically 
etched for 8–12 min in 12 N KOH at 80°C. Several microscope 
fields were photographed using an Olympus Vanox-S, ×100, 
equipped with a Cohn Pieper FK-7512-Q video camera. The 
tracks were then counted using a homemade image analysis 
application from the Aphelion® software. X-ray detector doses 
were also subsequently correlated with the doses measured with 
an ionizing chamber (Unidos 23332 or 23344, PTW Freiburg, 
Germany, depending on the ion atomic number and its track 
length) for further verification of the dose/fluence ratio. The 
ionizing chamber was not used as reference dosimeter for the 
sample irradiations, since it was designed for measuring photon 
fluxes (utilized in radiotherapy).

chromosome Preparation, staining,  
and image acquisition
Peripheral blood lymphocytes were cultured for 60 h postirradia-
tion, and metaphase preparations were performed using standard 
procedures (40). Slides with metaphase spreads were stored in 
−20°C until use, and were unfrozen and left at RT overnight 
before use.

For TC-FISH analysis, telomeres and centromeres were 
stained, as previously described (9) using telomere-specific 
Cyanine3-labeled PNA probes and centromere-specific FITC-
labeled PNA probes (both from Panagene, Daejon, South Korea).

For M-FISH analysis, slides were hybridized with a 24XCyte 
mFISH kit (MetaSystems Altlussheim, Germany) according to 
the protocol recommended by the manufacturer.
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