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ABSTRACT

Podocytopathies are glomerular disorders in which podocyte injury drives proteinuria and progressive kidney disease.
They encompass a broad spectrum of aetiologies, resulting in pathological pictures of minimal-changes, focal segmental
glomerulosclerosis, diffuse mesangial sclerosis or collapsing glomerulopathy. Despite improvement in classifying
podocytopathies as a distinct group of disorders, the histological definition fails to capture the relevant biological
heterogeneity underlying each case, manifesting as extensive variability in disease progression and response to
therapies. Increasing evidence suggests that podocytopathies can result from a single causative factor or a combination
of multiple genetic and/or environmental risk factors with different relative contributions, identifying complex
physiopathological mechanisms. Consequently, the diagnosis can still be challenging. In recent years, significant
advances in genetic, microscopy and biological techniques revolutionized our understanding of the molecular
mechanisms underlying podocytopathies, pushing nephrologists to integrate innovative information with more
conventional data obtained from kidney biopsy in the diagnostic workflow. In this review, we will summarize current
approaches in the diagnosis of podocytopathies, focusing on strategies aimed at elucidating the aetiology underlying the
histological picture. We will provide several examples of an integrative view of traditional concepts and new data in
patients with suspected podocytopathies, along with a perspective on how a reclassification could help to improve not
only diagnostic pathways and therapeutic strategies, but also the management of disease recurrence after kidney
transplantation. In the future, the advantages of precision medicine will probably allow diagnostic trajectories to be
increasingly focused, maximizing therapeutic results and long-term prognosis.
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INTRODUCTION

Kidney biopsy has represented the reference standard for the
classification and the diagnosis of glomerular disorders for a
long time. Notwithstanding this, in recent years a growing
amount of attention has been paid to reframing the role of his-
tological findings at kidney biopsy, which must be considered
patterns of tissue damage rather than diseases themselves, and
that should be linked to specific pathomechanisms [1, 2]. This
approach has the advantage of helping to precisely identify ther-
apeutic targets and to define prognosis, thus tailoring clinical
management.We distinguish three main categories of glomeru-
lar diseases: (i) immune-mediated glomerulopathies that en-
compass distinct histopathological patterns [e.g. immunoglob-
ulin A (IgA) nephropathy, membranous nephropathy (MN), C3
glomerulopathy, etc.], all showing immune deposits on kidney
biopsy; (ii) systemic diseases with glomerular involvement [e.g.
lupus nephritis (LN),monoclonal gammopathies,metabolic stor-
age diseases, etc.], with a wide spectrum of histologic find-
ings; and (iii) podocytopathies, with a typical pathological pic-
ture of diffuse mesangial sclerosis (DMS), minimal-changes
(MC), focal segmental glomerulosclerosis (FSGS) or collapsing
glomerulopathy (CG) [2]. Podocytopathies have been increasingly
recognized as a group of glomerular disorders in which di-
rect or indirect podocyte injury drives proteinuria and progres-
sive kidney disease [2]. Following a huge technological develop-
ment, many steps forward have been taken in unravelling the
causes and the pathogenesis of this group of disorders, push-
ing nephrologists to face the challenge of integrating different
types of information and advanced diagnostic tools in the man-
agement of patients suspected to suffer from podocytopathies.

In this manuscript, we will review the current understand-
ing of the main pathophysiologic mechanisms responsible
for podocytopathies together with their clinical presentation,
diagnostic toolkit and lines of treatment available, providing
food for thought for recent, cutting-edge advances in each of
these topics.

WHAT ARE PODOCYTOPATHIES?

Advances in microscopy, genetics and molecular studies have
provided significant improvement in the characterization of the
glomerular filtration barrier (GFB), raising podocytes as the cul-
prit cells in maintaining structural and functional integrity [2,
3]. Podocytes’ adaptive response to stimuli preserves glomeru-
lar filtration, prevents the loss of cells and molecules in the
urine and promotes to some extent regeneration [4, 5]. Moving
forward the traditional anatomopathological classification (i.e.
identifying histologic lesions with specific disease entities) trig-
gered off the concept that podocyte patterns of damage could
represent the end result of diverse glomerular noxae with differ-
ent mechanisms, prognosis and potentially specific therapeu-
tic targets [1, 2]. Indeed, podocytopathies encompass a broad
spectrum of aetiologies, including genetic defects, permeability
factor/s, immunologic dysfunction, vascular endothelial growth
factor (VEGF) inhibition, infectious agents, drugs, malignancies
andmaladaptive responses, with different prevalence across in-
fancy, adolescence and adulthood [2, 6] (Fig. 1). To complicate
the picture further, growing evidence suggests the possibility of
the presence of podocytopathy in the context of other immune-
mediated diseases (e.g. lupus podocytopathy, ‘podocytopathic
features’ in the context of IgA nephropathy), with implications
for management and prognosis [7, 8].

For a detailed classification of the aetiology and pathomech-
anisms of podocytopathies, we refer to a recent review on this
topic [2].

Increasing evidence supports the hypothesis that podocyte
injury can result from a single causative agent or a combination
of multiple factors acting with complex mechanisms, prompt-
ing multifactoriality as relevant in the pathophysiology of these
disorders (Fig. 1). Indeed,multiple, low ormedium effect-size ge-
netic, environmental and/or lifestyle-related insults to the GFB
can represent additional risk factors finally favouring podocyte
injury [2] (Fig. 1). The identification of APOL1 polymorphic vari-
ants (namely G1 and G2 risk alleles) represented a revolution
in understanding the racial difference in susceptibility to HIV
infection-associated nephropathy, FSGS or ‘hypertensive nondi-
abetic kidney disease’ in patients of Black ancestry [9, 10]. In this
view, HIV infection probably represents the ‘second hit’ required
to develop glomerular injury and kidney disease in genetically
predisposed subjects [11]. Low birth weight (LBW), prematurity,
gestational and fetal distress, previous episodes of acute kidney
injury (AKI) and nephrotoxins exposure, obesity, diabetes, high-
salt diet and ageing represent other examples of risk factors
(Fig. 1) [2, 12]. Of note, whatever the cause and the combination
of risk factors acting in determining the onset of podocyte injury
and loss, the resulting reduced number of functioning nephrons
causes the workload to be spread over the remaining nephrons
in an attempt to compensate for the metabolic and functional
needs of the body [12, 13]. Although representing a functional
adaptation, hyperfiltration of the remnant units establishes a
vicious circle leading to gradual sclerosis of the entire pool of
nephrons and chronic kidney disease (CKD) progression [12, 13].

CLINICAL MANIFESTATIONS AND INITIAL
DIAGNOSTIC WORK-UP

Irrespective of the primary insult, podocyte damage, detach-
ment and loss increase the permeability of GFB, causing proteins
to be filtered in the urine. According to this, the clinical hallmark
of podocytopathies is proteinuria, ranging from subnephrotic
to nephrotic range [14]. When associated with oedema, hypoal-
buminaemia and hyperlipidaemia, nephrotic-range proteinuria
outlines the complete picture of nephrotic syndrome (NS) [14].Of
note, the severity and variety of clinical features accompanying
proteinuria are usually related to the entity and the rate of pro-
tein loss, with differences between adults and children (Fig. 2)
[2, 15, 16]. In the former, proteinuria usually has a gradual onset,
causing protein levels to drop either in plasma or on the extra-
cellular side, preventing the shift of fluids to the interstitium.
This makes the development of clinically relevant oedema sub-
tle andmostly dependent on sodium retention [2].Consequently,
proteinuria can be frequently detected incidentally in the adult
population. Conversely, in children marked hypoalbuminaemia
causes a fluid shift from plasma to the relatively hyperoncotic
interstitium, resulting in generalized pitting oedema [15–17]. Of
note, these dichotomic presenting features are not exclusive to
specific age groups [15, 16]. AKI and microscopic haematuria are
not typical features of podocytopathies, and their presence is of
no help in either confirming or excluding this hypothesis [18, 19].

Virtually any glomerular disease presenting with proteinuria
may resemble a podocytopathy. For this reason, a stepwise ap-
proach is fundamental in order to establish a precise diagnosis
(podocytopathies versus other glomerular diseases), its aetiol-
ogy and to guide therapy (Fig. 2). As an initial clinical assess-
ment, detailed medical history is essential: some risk factors
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FIGURE 1: The spectrum of podocytopathies. Podocytopathies encompass a broad spectrum of aetiologies (inner semicircles) and risk factors (outer blue circle). While
the latter are widely associated with podocytopathies, different aetiologic agents are more strictly reported behind the histologic patterns of MC, FSGS, DMS and CG.

Genetic causes, light blue semicircle; infectious agents and drugs, red semicircle; VEGF inhibition, grey semicircle; immunological and soluble factors, yellow semicircle;
maladaptive, cyan semicircle. Podocytopathies can result from a single causative factor (e.g. monogenic form, single lifespan risk factor) or a combination of multiple
genetic and/or environmental risk factors with different relative contributions, identifying compound pathological mechanisms.

or possible causes have different epidemiology according to the
patient’s age, ethnicity or gender, and can be simultaneously de-
tected in the same patient (Fig. 2). This process is critical in un-
ravelling the aetiology of the disease, irrespective of clinical pre-
sentation, the severity of proteinuria and age at onset (Fig. 2).
Given the high prevalence of genetic forms in infancy and child-
hood, the presence of extra-renal signs potentially suggestive of
syndromic disorders, as well as a positive familial history of kid-
ney diseases, should be carefully evaluated by deep phenotyp-
ing and genetic counselling, since genetic forms are likely to be
unresponsive to immunosuppressive therapy [18]. Of note, re-
cent evidence suggests that this is not exclusive to the paediatric
population [19]. All additional clinical information (e.g. drug ex-
posure, history of previous or concomitant infections, systemic
symptoms, etc.) should be recorded at the time of the first eval-
uation. Successively, first-line laboratory investigations mainly
aimed at excluding alternative diagnostic hypotheses should be
ordered (Fig. 2, Table 1) [14, 20]. Kidney ultrasound scanning (US)
is usually performed in adults, while it represents a second-tier
examination in children [14, 20].

If the initial diagnostic work-up still points towards the hy-
pothesis of a podocytopathy as the cause of proteinuria, then

the clinical management differs according to the patient’s age
and severity of proteinuria (Fig. 2). Patients with sub-nephrotic
proteinuria should receive antiproteinuric therapy irrespective
of their age at onset. Moreover, if a clear aetiology of podocyte
injury is shown by the diagnostic work-up, then patients should
be treated accordingly (Fig. 2). While in adults, kidney biopsy
is anyway considered in order to confirm the diagnosis and to
assess prognostic markers of disease progression, in children
it is usually reserved for patients showing disease progression,
lack of response to treatment or additional findings (Fig. 2) [2].
Kidney biopsy is mandatory in adults presenting with NS, ei-
ther to exclude other types of glomerulopathies or to assess
the degree of chronicity in podocytopathies (Fig. 2). When kid-
ney biopsy confirms the diagnosis of podocytopathy and blood
tests do not point to a specific aetiology, a steroid challenge
is suggested [14]. A lack of response defines steroid-resistant
NS (SRNS), necessitating the assessment of genetic causes [14].
Conversely, in children kidney biopsy can be initially avoided
in favour of a course of steroids when blood pressure, comple-
ment levels and kidney function are normal and the suspicion
of a podocytopathy is strong [14, 21]. Approximately 80%–90% of
patients will experience complete remission within 4 weeks of
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Table 1. Clinical work-up in patients with proteinuria

Aetiologic clues
Supporting the diagnosis of

podocytopathies Supporting alternative diagnosis Ref.
Drugs

Lithium, NSAIDs, rifampicin,
cephalosporins, IFN therapies,
mTOR and calcineurin inhibitors,
anthracyclines, bisphosphonates,
anabolic steroids, etc.

Penicillamine, gold salts,
elemental mercury, anti-TNF
therapy, tiopronin, etc.

These drugs may be associated with MC
and/or FSGS. In MC, proteinuria generally
resolves within weeks if therapy is
discontinued. This relationship is less
strong in FSGS.

Not reported or unclear association.

Kidney injury related to these drugs is not
limited to podocytopathies. AKI, together
with signs of TIN, suggests alternative
mechanisms of nephrotoxicity. Specific
assessment should be performed.

Exposure to these drugs, in the presence
of nephrotic proteinuria, may underlie
secondary MN.

[22]
[23]
[24]

Infections
HIV, CMV, parvovirus B19,
EBV, SARS-CoV-2

HCV, HBV

Listed viruses are usually associated with
FSGS or CG. In the presence of CG,
proteinuria is usually more severe than
FSGS, and kidney dysfunction is easily
traceable. Once the diagnosis is
established, treatment should be aimed at
resolving the underlying infection.

These viruses are usually not associated
with podocytopathies.

AKI without proteinuria, TIN and, less
commonly, acquired tubulopathies,
suggest different mechanisms of
infections-mediated kidney injury.
Nephrotoxicity caused by anti-infective
drugs can make the diagnosis harder.

HCV- and HBV-associated nephropathies
include MPGN with or without
cryoglobulins, MN and PAN.

[24]
[25]
[26)
[27]
[28]
[29]

VEGF inhibition
Pregnancy

Treatment with VEGF inhibitors

The presence of proteinuria, with or
without full-blown clinical signs of
preeclampsia, suggests a podocytopathy.

Proteinuria is usually associated with MC
or FSGS.

Although preeclampsia is the most
common cause of AKI in pregnancy, other
causes must be ruled out, especially in the
absence of proteinuria.

AKI, TMA, MN, nephritic syndrome and
proliferative glomerulonephritis have
been uncommonly reported.

[30]
[31]
[32]

Autoimmune diseases
SLE

ANCA vasculitis, Sjögren’s
syndrome, PAN, other
vasculitides

In the majority of cases, proteinuria does
not support the diagnosis of a
podocytopathy in patients with SLE. Lupus
podocytopathy, usually presenting with
isolated NS in a patient with LES,
represents an exception.

Podocytopathies are not a feature of these
diseases.

Proteinuria in patients with SLE is usually
associated with specific histologic
patterns (i.e. LN). Additional clinical
findings are common (e.g. active
sediment).

Even though proteinuria can be a
manifestation of these diseases, it is
usually subnephrotic and underlies
rapidly progressive glomerulonephritis
(vasculitis) or a TIN (Sjögren’s).

[33]
[34]
[35]
[36]
[37]

Malignancies
Haematologic malignancies
(leukemias, lymphomas)

Solid tumours

MC and FSGS can be incidentally
associated with leukemias and
lymphomas.

Rarely associated.

Tubular dysfunction, AKI and/or cancer
drug nephrotoxicity are far more common.
MM can anyway present with NS.
Suggest the association with MN.

[38]
[39]

Maladaptive
Congenital (e.g. unilateral renal
agenesis, oligomeganephronia,
kidney hypodysplasia, etc.) or
acquired (e.g. surgical reduction
of renal mass, kidney transplant,
etc.) conditions

These conditions are associated with FSGS
when a biopsy is performed. Proteinuria is
usually sub-nephrotic, slowly progressing.
Occasionally, NS can be the clinical
presentation of these conditions.

Usually associated with hypertension,
kidney dysfunction and other clinical
signs.

[40]
[41]
[42]

Genetic
Extra-renal involvement

Familial history of kidney
disease

Resistance to treatment

Strongly support the diagnosis of
podocytopathies, especially in patients
with NS. MC, FSGS and DMS represent the
typical patterns on kidney biopsy.

Strongly support the diagnosis of
podocytopathies, especially in patients
with NS. MC, FSGS and DMS represent the
typical patterns on kidney biopsy.

Strongly support the diagnosis of
podocytopathies, especially in patients
with NS. MC, FSGS and DMS represent the
typical patterns on kidney biopsy.

Not exclusive to genetic podocytopathies.

Not exclusive to genetic podocytopathies.

Other causes of resistance to treatment
(e.g. lack of compliance, advanced kidney
damage) should be considered in the
differential diagnosis.

[43]

NSAIDs, non-steroidal anti-inflammatory drugs; IFN, interferon; mTOR, mammalian target of rapamycin; TNF, tumour necrosis factor; HIV, human immunodeficiency
virus; HCV, hepatitis C virus; HBV, hepatitis B virus; CMV, citomegalovirus; EBV, Ebstein–Barr virus; ANCAs, anti-neutrophil cytoplasmic autoantibodies; PAN, polyarteri-
tis nodosa; TMA, thrombotic microangiopathy; TIN, tubulo-interstitial nephritis; MM, multiple myeloma; MPGN, membrano-prolipherative glomerulonephritis; SLE,
systemic lupus erythematosus.
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FIGURE 2: Approach to patients with suspected podocytopathies. Schematic representation of the clinical approach to patients with proteinuria, according to age
(children above, adults below) and severity of proteinuria (from left to right). After exclusion of false positive/false negative proteinuria, a proper assessment should
include the assessment of specific causes of podocytopathies.Alternative (i.e. other glomerulopathies) diagnoses should be taken into account at this stage (see Table 1).
FUP, follow-up.

therapy, defining steroid-sensitive nephrotic syndrome (SSNS).
SRNS imposes genetic testing, kidney biopsy and gradual steroid
tapering [14].

INNOVATIONS IN THE DIAGNOSIS OF
PODOCYTOPATHIES

The lack of serum or urinary biomarkers with specific fea-
tures (i.e. safety, non-invasivity, ease-to-measure, accuracy,
consistency between different ethnic groups and genders,
etc.) has recently opened up a research quest in the field of
podocytopathies. Many hopes to develop innovative diagnostic
tools lie in new high-throughput technologies (i.e. ‘omics’)
[44]. Proteomic studies in patients with podocytopathies pro-
posed alpha-1 antitrypsin, transferrin, histatin-3, 39S ribosomal
protein L17 and calretinin as new potential urinary markers
[45]. Recently, measuring non-coding RNA (e.g. micro-RNA) and
single-cell RNA sequencing (scRNAseq) in serum and urine were
proposed as innovative non-invasive diagnostic essays [46, 47].
If confirmed in larger cohorts, then these studies can provide
other possible sources of knowledge, fostering the capability
to differentiate underlying aetiologies and possibly to detect

new specific therapeutic targets [48]. In the future, these essays
could serve as ‘liquid biopsies’, potentially preventing invasive
investigations as well as bringing forward integration with
clinical information and kidney biopsy findings.

THE ROLE OF KIDNEY BIOPSY

Podocytopathies are associatedwithMC,DMS,FSGS andCGfind-
ings at kidney biopsy. They all share the absence of immune
deposits by immunofluorescence and electron microscopy (EM)
and can be collectively viewed as a spectrum of glomerular pat-
terns in which progression from normality to global glomeru-
losclerosis is related to the amount of podocyte loss and the
type of parietal epithelial cells (PECs) response. Several lines of
evidence support the podocyte depletion hypothesis, showing
the histological consequences of precise degrees of podocyte
loss, from mesangial expansion to focal and ultimately global
glomerulosclerosis [49, 50]. On the other hand, the amount of
podocyte replacement driven by PECs that act as podocyte pro-
genitors, together with the efficient or inadequate differenti-
ation into podocytes, is the other determinant of a success-
ful repair strategy, resulting in maintaining normal glomerular
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appearance or in the development of glomerular hyperplastic le-
sions in the Bowman space [51].

MC and FSGS represent a continuum of the same progres-
sive disease [52, 53]. In MC, glomerular appearance by light
microscopy is normal and podocyte injury detectable by EM
as widespread foot processes effacement, without glomerular
basement membrane (GBM) denudation [54]. In the setting of
chronic noxae not extinguishing over time (e.g. genetic muta-
tions, maladaptive conditions, etc.) [4, 55, 56], and/or an inad-
equate capacity of PECs to replace lost podocytes usually due
to inefficient differentiation [51], podocyte loss exceeds 20% and
segmental denudation of GBM initiates the injury cascade lead-
ing to scar formation [49]. Glomerulosclerosis can be limited in
settings of high regenerative potential as in DMS, a pattern of
injury found in children younger than 5 years old with NS pro-
gressing to end-stage kidney disease (ESKD) [57]. This particu-
lar age span is characterized by a high capacity to generate new
podocytes from PECs to support glomerular size growth [4, 58].
In this setting, severe podocyte loss, mainly driven by major ge-
netic alterations, is associated with diffuse accumulation of ex-
tracellular matrix protein in the mesangium and signs of a mas-
sive podocyte turnover, highlighted by a halo of hypertrophic
podocytes surrounding capillary loops [59]. A fast and massive
podocyte loss constitutes a particular setting of abrupt capillary
collapse, as in CG.This scenario triggers a rapid and catastrophic
response of PECs acting as podocyte progenitors in order to re-
place lost cells. Despite retaining the ability to proliferate, differ-
entiation of PECs into mature podocytes is prevented, thus re-
sulting in the formation of pseudocrescent, a non-inflammatory
lesion constituted by a crowd of hyperplastic epithelial cells fill-
ing the urinary space [13, 60]. This lesion is encountered in con-
ditions of direct,massive podocyte injury (e.g. drug exposure, vi-
ral infections, etc.) [2].

Interestingly, detection of podocyte injury is limited with
standard techniques of renal pathology. Principal limitations are
due to the focal nature of the injury, which reduces the sensi-
bility of sampling [52], and the scarce evidence of early stages
of podocyte damage. Bearing this in mind, the approach to kid-
ney biopsy in podocytopathies needs technical facilities capable
of providing not only structural and ultrastructural analysis but
also the possibility of ad hoc supplementary essays integration
and close collaboration with specialists of different fields to in-
clude the histologic pattern of injury in a comprehensive evalu-
ation of patient’s data.

INNOVATIONS IN RENAL PATHOLOGY

As patient stratification based only on histological classifi-
cation has proven to provide little help in defining patient
prognosis, therapeutic targets and response to treatment, new
approaches are trying to overcome the limits of standard renal
pathology and assess risk features of disease progression. An
example is represented by the application of super-resolution
microscopy (SRM) techniques on tissue sections obtained from
the diagnostic routine. SRM has the advantage of allowing 3D
visualization of the slit diaphragm, giving direct evidence of
structural changes or podocyte loss [61, 62]. In addition, these
techniques have the potential to provide panoramic views of
the entire tissue samples, thus enabling a more reliable eval-
uation of prognostic relevant lesions. Apart from morphology,
kidney biopsy offers direct access to kidney tissue for high-
throughput analysis (including scRNAseq) [63], improving the
characterization of mechanisms involved in the pathological
processes [64]. The combination of these techniques with digital

pathology and bioinformatic analysis offers new perspectives to
capture the complex structural changes in kidney biopsies and
molecular heterogeneity of these diseases. This integration has
the potential to cluster into clinically and biologically relevant
subgroups, thus uncovering histologic parameters associated
with clinical outcomes and molecular signatures not included
in current classification systems [65].

As non-immune-mediated nephropathies, podocytopathies
do not show significant immune-complexes deposition by im-
munofluorescence or EM and occasional low-intensity positive
staining for IgM and C3 are considered macromolecular trap-
ping rather than specific deposition.Nevertheless, the recent de-
tection of anti-nephrin autoantibodies in adults and children
with biopsy-proven MC provides support for an autoimmune
aetiology in a subset of patients [66]. Interestingly, these pa-
tients showed podocyte-associated punctate IgG staining at im-
munofluorescence, together with an increased serum titer of
anti-nephrin autoantibodies, suggesting a pathogenic role for a
long-searched circulating factor [66]. Considering the paradigm
shift induced by the identification of several autoantigens in MN
[67], these findingsmay lay the groundwork to distinguish a sub-
set of patients susceptible to specific treatments.

PRINCIPLES OF TREATMENT

As for all glomerular disorders, the ideal goal of treatment in
podocytopathies is complete remission of the disease (i.e. pro-
teinuria disappearance and normalization of kidney function)
[14, 21] that prevents CKD progression and ensures favourable
long-term kidney and global outcomes [68–70]. Treatment must
target the cause of podocyte injury whenever possible, claim-
ing an aetiologic classification of podocytopathies as funda-
mental. Unfortunately, in most cases, the primary cause is
putative or unknown.This has long led to non-specific therapeu-
tic approaches based on steroids and immunosuppressive drugs
(e.g. calcineurin inhibitors, mycophenolate mofetil, rituximab,
etc.) as the cornerstones of treatment. Steroids are straightfor-
wardly recommended in routine clinical practice as first-line
therapeutic agents, especially in MC and FSGS [14]. Their effec-
tiveness is claimed as a proof-of-concept of the pathogenic role
of the circulating factor/s, although experimental evidence of
their exact mechanisms of action is still lacking. Of note, resis-
tance to steroids defines the subsequent disease management
(Fig. 2) and has prognostic value [68–70]. However, the lack of a
consistent definition of steroid resistance represents an impor-
tant source of bias [1]. Immunosuppressive drugs and plasma-
pheresis conceptually follow the line traced by steroids in the
treatment of podocytopathies. In addition, they can be used as
steroid-sparing drugs when repeated steroid cycles are needed
or to avoid adverse effects, or as second-line therapies in the
case of steroid resistance when a genetic cause is not confirmed
or still pending [14].

Besides favouring lexical chaos (i.e. using primary or id-
iopathic FSGS/MC as synonyms of circulating factor/s-related
disease), this approach prevented clinical trials from being cor-
rectly designed to address the unmet medical need of provid-
ing patients with targeted, effective, non-toxic and tailored (i.e.
personalized) therapies. Consequently, in the last few decades,
there has been a paucity of novel treatments in the field of
podocytopathies [1].

For all these reasons, focusing on slowing the progression
towards ESKD does represent the primary goal of the treatment
in the majority of patients, especially when interventions
aimed at targeting the specific cause are limited or inefficient,
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or CKD is already established. Until recently, renin-angiotensin
system inhibitors (RASi) have represented the main, if not only,
therapeutic options for patients with podocytopathies, together
with supportive care (e.g. low-sodium diet, weight control,
avoidance of additional insults, etc.). RASi act on the podocyte
shear stress driven by hyperfiltration by reducing the trans-
glomerular hydraulic pressure gradient, irrespective of the
primary cause of the disease. Very recently, sodium-glucose
cotransporter 2 inhibitors (SGLT2i) emerged as extraordinarily
promising tools in the nephrologist’s armamentarium [71].
Although the exact mechanisms of action are still under in-
vestigation, experimental and clinical evidence suggest that
SGLT2i are effective in reducing glomerular hyperfiltration
and in ensuring nephroprotection in the long run in different
types of nephropathies, including FSGS [72]. A dedicated trial is
ongoing (EMPA-KIDNEY trial) [73, 74]. Following this principle,
the endothelin type A antagonists sparsentan and atrasentan
recently proved to be effective in preventing disruption of the
actin cytoskeleton in experimental FSGS [75]. Phase II and III
trials enrolling FSGS patients are currently ongoing [76, 77].

INNOVATIONS IN THERAPEUTIC STRATEGIES

Increasing efforts to define the aetiological basis of clinical phe-
notypes will likely improve the potential success of clinical tri-
als. Starting from the observation that a putative circulating fac-
tor could bind to the podocytes glycocalyx, galactose was tested
in nephrotic patients because of its potential competitive bind-
ing action [78]. The GBM and podocytes themselves are consid-
ered as novel potential targets for molecules acting on mito-
chondrial function and actin–myosin contractile structure [79].
In this regard, a role in stabilizing the podocyte actin cytoskele-
ton has been proposed also for steroids, CNIs, ACTH and ritux-
imab [80, 81]. New strategies targeting the short transient recep-
tor potential channels [82], the soluble FMS-like tyrosine kinase
1 [83], soluble urokinase plasminogen activator surface receptor
[84] and substrate intermediates for coenzyme Q10 are under
investigation [85]. Some efforts have also been directed to block-
ing the progression of scarring and fibrosis following podocyte
damage in patients affected by FSGS targeting the inhibition of
C-C chemokine receptor type 2 [86, 87], the nuclear factor-κB
transcription [88] and Slit-2 [89]. Finally, genetic discoveries will
play a major role towards personalized medicine, thus tailoring
therapies with the best chance of response in carefully selected
patients. Novel experimental molecules under investigation in-
clude the inhibitors of apolipoprotein L1 (APOL1), such as VX-
147, that are currently under investigation in a phase II trial in
adults with FSGS and APOL1 high-risk genotypes [90]. However,
the results of these studies still need confirmation to be trans-
lated into clinical practice.

GENETICS OF PODOCYTOPATHIES

Solid evidence about the role of genetic abnormalities in causing
podocytopathies is currently available, in both children and in
adults. Although the first insights into the pathogenic role of
genetic defects date to the end of the 1990s [91], next-generation
sequencing (NGS) technologies revolutionized our understand-
ing of the geneticmakeup of podocytopathies.Nowadays,we are
able to assign a causal relationship between genetic variants and
phenotype (namely SRNS, nephrotic-range proteinuria, patho-
logic patterns of FSGS,MC or DMS) to>50 genes [3, 92, 43].Histor-
ically, the majority of them were classified as ‘podocyte genes’
since they encode proteins with critical roles in maintaining the

integrity of the culprit cells of the GFB [93–96]. The correspond-
ing diseases are referred to asmonogenic podocytopathies, with
precise indications for treatment and medical management [2,
97, 98]. These conditions encompass a wide spectrum of isolated
as well as syndromic kidney phenotypes, all respecting clas-
sical Mendelian patterns of inheritance as listed in the Online
Mendelian Inheritance in Man (OMIM) database [99]. Syndromic
disorders result from the expression of causative genes in extra-
kidney organs, such as the inner ear, eyes or central nervous
system, and are usually recognized with appropriate clinical di-
agnostic work-up [43]. Overall, monogenic podocytopathies ac-
count for ∼30% of cases undergoing genetic testing [95, 100]. In-
terestingly, the frequency is comparable in familial and sporadic
cases, and remained stable over time even after the spreading of
NGS in diagnostics [43, 95]. As a matter of fact, until recently, the
majority of patients presenting with clinical features of podocy-
topathies finally turned out to be negative to standard genetic
investigations, namely NGS targeted sequencing for podocyte
genes. An unacceptable proportion of these patients anyway
progressed to ESKD, requiring an improvement in understanding
of the pathophysiology of these diseases. Indeed, increasing the
number of genes tested did not improve the diagnostic rate even
with thewide use ofwhole-exome sequencing (WES) [92, 101].As
in other disorders, a forward approach to genetic investigations
risks limiting diagnostic efficacy in podocytopathies. Increasing
evidence suggests that phenocopies can represent a proportion
of patients presenting with clinical features of podocytopathies
as high as that represented by genetically proven monogenic
podocytopathies [97, 98]. Indeed, a strictly phenotype-centered
in silico filtration of variants identified by massive sequencing
would miss variants associated with syndromic disorders in pa-
tients presentingwith either apparently isolated kidney involve-
ment or no familial history [97]. Strategies for the identification
of these cases currently rest on a comprehensive genetic screen-
ing withWES (i.e. genetic testing including all genes responsible
for CKD) and efforts to detect overlooked signs of the disease in
the patients or in family members (i.e. reverse phenotyping) in
order to confidentially confirm the genetic diagnosis [98, 101–
103]. Interestingly, a huge amount of data support mutations in
COL4A genes as themost frequent cause of familial and sporadic
FSGS without overt signs of extra-renal involvement [104, 105].
The demonstration of possible overlapping phenotypes induced
by COL4A and podocyte genes suggests a conceptual revision of
disease boundaries and ontology. As in many other disorders,
although few genes are responsible for the majority of cases,
singletons are frequently reported as involved in a significant
fraction of the remaining cases [98, 106, 107]. Since there is no
possibility to a priori exclude mutation in one out of the >250
genes, WES applies as the first-choice approach for genetic
testing in patients with podocytopathies. Interestingly, recent
evidence supports cost-effectiveness of this strategy [108].

INNOVATIONS IN GENETICS OF
PODOCYTOPATHIES

Despite the huge amount of information that it can eventually
provide, WES has some limitations that must be taken into
account in interpreting the results of genetic testing. Increasing
evidence suggests that genetic variants in intronic and regula-
tory regions of DNA can be relevant in determining phenotypic
consequences, mainly affecting splicing and gene expression.
Whole-genome sequencing (WGS) could be of help in over-
coming this obstacle. Preliminary results including rare kidney
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FIGURE 3:An ideal approach to patients with suspected podocytopathy. Patients presentingwith proteinuria are suspected to suffer frompodocytopathies. Ideally, non-
invasive diagnostic tools and biomarkers should help in stratifying patients by distinguishing those at low risk of podocytopathy from those at high risk of this group

of disorders. Among them, diagnostic first-line tools should address the medical need to identify the underlying cause and pathomechanisms driving podocyte injury.
In case of inconclusive or unclear results, additional diagnostic tools, including invasive ones, should be taken into account in the clinical work-up. This additional
step should result in the complete classification of disease-causing drivers of podocytopathies and the exclusion of alternative, clinically overlapping, diagnoses.
Irrespective of the step when the aetiologic diagnosis is reached, the final step of the ideal clinical management is the assessment of risk factors and biomarkers

predictive of response to treatment and disease prognosis, which could eventually result in tailoring treatment by balancing benefits with potential risks and side
effects.

diseases have already been published [106]. Although still in its
infancy, the clinical utility of WGS could improve the diagnostic
efficacy of genetic investigations in the field of podocytopathies.
Other technical issues (i.e. analysis of uncovered regions, copy
number variations) should also be assessed in a case-by-case
setting.

As for many other diseases, we currently classify the re-
sults of genetic testing according to strict pathogenicity criteria
based on a classical Mendelian concept of genotype–phenotype
correlation [109]. However, the genetic make-up of podocy-
topathies is probably more complex than previously thought.
High-frequency and low effect-size variants in podocyte genes
(e.g. G1/G2 risk alleles in APOL1) already proved relevant in con-
tributing to disease onset and progression when coupled with
additional ‘hits’. Interestingly, in an experimental model, the
equivalent of the human p.R229Q polymorphism in NPHS2 was
associated with the development of proteinuria and ultrastruc-
tural glomerular alterations only in ageing mice or when cou-
pled with exposure to nephrotic agents, suggesting a complex
pathogenic mechanism [110]. Of note, the second hit could be
either genetic or environmental, suggesting a complex patho-
physiology of podocyte damage.

PODOCYTOPATHIES IN KIDNEY TRANSPLANT

Post-transplant recurrence of glomerular diseases represents
a relevant contributor to graft failure, together with acute and

chronic allograft rejection [111, 112]. Most of the literature about
disease recurrence in podocytopathies refers to FSGS. Of note,
this term is used as a synonym for disease entity in the majority
of studies. Bearing in mind this limitation, the evidence of FSGS
relapse immediately after kidney transplantation improving
with plasma exchange or immunoadsorption [112, 113], the
report of a case of relapsing FSGS resolving after explantation
and retransplantation in another recipient with no history
of FSGS [114] and experimental models of glomerular lesions
induction after treatment with serum from patients with
relapsing FSGS [115] strongly support the role of the immune
system and/or permeability factor/s in the pathogenesis of a
subset of cases of FSGS. The risk of FSGS recurrence is as high
as 60% in the first graft and up to 100% in the second, with a
risk of graft loss of 40%–60% [111, 112]. Risk factors include re-
currence in a previous graft, age at starting kidney replacement
therapy >12 years, White and Asian recipients and rapid course
to ESKD (<3 years). Notably, the strongest predictor of FSGS
recurrence is initial steroid sensitivity [111, 116]. Conversely,
protective factors include age at starting kidney replacement
therapy <6 years, African–American recipients, genetic and
syndromic NS [111].

Disease recurrence after kidney transplant affects threemain
areas of interest in the field of podocytopathies: (i) clinical, since
the course of disease after kidney transplantation correlates
to its specific underlying pathogenetic mechanisms; (ii) aetio-
logical, since the occurrence of disease relapse claims against
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Table 2. Summary of innovations and advances in podocytopathies pathophysiology, diagnosis, management and treatment

Fields of innovation Cutting-edge features and relevant issues

Improving podocytopathy
classification and diagnosis

- High-throughput technologies, like proteomics, may provide innovative diagnostic tools.
- Non-coding RNA (e.g. micro-RNA) and single-cell RNA sequencing in serum and urine can
represent innovative non-invasive diagnostic essays.

- SRM could provide the advantage of allowing 3D visualization of the slit diaphragm, giving
direct evidence of structural changes or podocyte loss and a panoramic view otherwise
not available with the current techniques.

Understanding the complex
genetic background of
podocytopathies and
interplay with environment

- Genetic variants in intronic and regulatory regions of DNA can be relevant in determining
phenotypic consequences.

- High-frequency and low effect-size variants in podocyte genes (e.g. G1/G2 risk alleles in APOL1)
can contribute to disease onset and progression when coupled with additional ‘hits’, with
the second hit being either genetic or environmental.

Coupling new
pathophysiology
discoveries with the
development of new
treatments

- The GBM and podocytes themselves are considered as novel potential targets for molecules
acting on mitochondrial function and actin–myosin contractile structure. New strategies
targeting the short transient receptor potential channels, the soluble FMS-like tyrosine kinase 1,
soluble urokinase plasminogen activator surface receptor and substrate intermediates for
coenzyme Q10 are under investigation.

- Other efforts have been directed to blocking the progression of scarring and fibrosis following
podocyte damage in patients affected by FSGS targeting the inhibition of C-C chemokine
receptor type 2, the nuclear factor-κB transcription and Slit-2.

- Genetic discoveries will probably play a major role towards personalized medicine, thus
tailoring therapies with the best chance of response in carefully selected patients.

Tackling disease recurrence
in transplant recipients

- Genetic testing before transplantation may be a potential strategy to maximize patient
characterization by detecting genetic causes of the disease.

- Serum anti-nephrin autoantibodies in patients with podocytopathy recurrence after kidney
transplantation may serve as non-invasive diagnostic marker for the pathogenesis of
disease relapse.

- Serum levels of anti-CD40 have been associated with FSGS, with good accuracy to predict
post-transplant recurrence.

- Plasma of relapsing patients induces the expression of specific genes (e.g. IL-1beta gene) in
cultured podocytes, a potential diagnostic tool to distinguish podocytopathy relapse from other
diseases.

- The use of SRM to kidney allograft biopsies, together with the implementation of laboratory
protocols for the differential diagnosis of disease recurrence to other causes of graft
failure (e.g. quantification of cell-free DNA), may serve as additional differential diagnostic tools.

some causes of disease, while supporting others; (iii) predic-
tive, since quantifying the risk of disease recurrence is piv-
otal for the post-transplant management of patients and for
properly designing clinical trials for therapeutic strategies.
Podocytopathies caused by specific aetiologies (e.g.maladaptive,
drugs, etc.) do not recur after kidney transplantation, since the
leading cause no longer exists. Genetic diseases are supposed
not to recur after a transplant. The reported risk of 4%–8% [117]
likely depends on an expired attribute of pathogenicity to ge-
netic variants (e.g. inNPHS2). Therefore, reports of disease recur-
rence in genetic podocytopathies should be reassessed accord-
ing to the current classification system of genetic variants. The
label ‘primary FSGS’ (also known as idiopathic FSGS or circulat-
ing factor disease) refers to non-genetic FSGS,whose pathogenic
mechanism is thought to be an immune system dysregulation
and/or a permeability factor [112, 116, 118]. In this view, disease
recurrence after kidney transplantation can be considered as an
ex-post clue element for the aetiological classification of the pri-
mary disorder.However, precisionmedicine has the goal of being
proactive, preventing and predicting instead ofmerely observing
[119]. This target is particularly relevant for kidney transplant
medicine due to the shortage of organs together with the in-

creasing use of marginal donors and the clinical complexity of
transplant recipients, making the need to precisely assess the
clinical risk profile of patients affected by podocytopathies un-
deniable. Despite its relevance, many factors still prevent this
issue from being properly assessed: the correct diagnosis of dis-
ease recurrence in clinical studies; the high frequency of pa-
tients with CKD of unknown origin undergoing kidney trans-
plantation, hampering the possibility to clearly distinguish dis-
ease recurrence or de novo disease; the extreme variability in
the time of disease recurrence, supporting the contribution of
different mechanisms; the availability of pre-transplant graft
biopsy and different policies for protocol biopsies [120]. Of note,
the diagnosis of podocytopathy recurrence in kidney allograft
still relies on pathologic findings at kidney biopsy. As in the na-
tive kidney, histologic lesions should be considered as patterns
of disease instead of disease-claiming clues. Indeed, pathologic
lesions belonging to the spectrum of podocytopathies can be
caused by injurious mechanisms other than disease recurrence
(e.g., long-term use of CNIs, episodes of AKI, compensatory hy-
pertrophy, etc.), especially at increasing time from graft surgery.
Consequently, defining a risk-stratifying strategy for patients,
together with advances in the accuracy of diagnostic tools, is
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worth the effort in order to personalize the clinical approach to
patients affected by podocytopathies undergoing kidney trans-
plantation.

INNOVATIONS IN TACKLING DISEASE
RECURRENCE

The correct classification of a disease affects not only the possi-
bility to develop new therapies but also the clinicalmanagement
of transplant recipients. In the field of podocytopathies, this
strongly impacts the exact quantification of the risk of disease
recurrence and the burden on the overall graft survival. Many
studies have explored the association of demographic or clinical
variables with the risk of disease recurrence [121]. According
to this goal, performing genetic testing before transplanta-
tion in otherwise unexplained cases has been suggested as
a potential strategy to maximize patient characterization by
detecting genetic causes of the disease [112]. Despite the need
to be confirmed in additional studies, serum anti-nephrin
autoantibodies in patients with podocytopathy recurrence after
kidney transplantationmay represent a non-invasive diagnostic
marker of immune system mechanisms responsible for the
pathogenesis of disease relapse [66]. Serum levels of anti-CD40
have been associated with FSGS, with good accuracy to predict
post-transplant recurrence [122]. A phase II clinical trial with
the CD-40 antagonist bleselumab (blocking T cell co-stimulation
to antigen presenting cells, including B cells) enrolling kidney
transplant recipients is currently underway [123]. Moreover,
it has been observed that the plasma of relapsing patients
induces the expression of specific genes (e.g. IL-1beta gene) in
cultured podocytes. This could possibly be used as a diagnostic
tool to distinguish podocytopathy relapse from other diseases
[6, 124]. Extending the use of SRM to kidney allograft biopsies,
together with the implementation of innovative tools for the
differential diagnosis of disease recurrence to other causes of
graft failure (e.g. quantification of cell-free DNA) [125] would
represent additional strategies for personalization of kidney
transplant medicine, with relevant consequences also for the
development of appropriate therapeutic strategies for disease
recurrence. All the innovations and avdances presented in this
review are summarized in Table 2.

CONCLUSIONS

Podocytopathies represent a fascinating challenge for preci-
sion medicine. In recent years, the efforts of nephrology re-
search have prompted a revision of the classification of podocy-
topathies based on pathophysiological mechanisms responsible
for damage to the GFB. Awareness of the need to integrate in-
formation on the pathogenic mechanisms of podocyte injury
allowed disease classification to go beyond histology (Table 3)
[1, 2]. Indeed, kidney biopsy provides a ‘snapshot’ of pathologi-
cal mechanisms active at that time in the organ but frequently
misses the cause of the disease. Failure in detecting any con-
tributing component to the pathogenesis of podocyte injury po-
tentially exposes patients to unnecessary or off-target treat-
ments. Cutting-edge genetic, microscopy and high-throughput
biological techniques allow diagnostic trajectories to be increas-
ingly focused, pushing nephrologists to get out of the frame-
work of podocytopathies as pure histological entities, in favour
of a new paradigm aimed at treating the specific disease of
the patients (Table 3). Podocytopathies share an unmatched ex-
perimental advantage: translational studies aimed at improving

podocyte knowledge could potentially provide a solid founda-
tion for the discovery of disease biomarkers, improving the iden-
tification of molecular and cellular mechanisms acting in the
disease process and integrating them with the detection of the
underlying risk factors that could decompensate nephrons be-
yond the threshold of kidney reserve. Ideally, precisionmedicine
should provide tools for evaluating an individual’s risk of de-
veloping podocytopathies even before the clinical onset of the
disease, identifying disease-causing mechanisms, providing an
accurate diagnosis, estimating prognosis, predicting response to
treatment and the risk of disease recurrence, thus tailoring clin-
ical management and therapeutic strategies (Fig. 3). Even if still
far from being satisfactorily accomplished, this goal should be
pursued in any patient affected by podocytopathies to the aim
of optimizing available therapeutic strategies and maximizing
long-term prognosis.
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