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Abstract 
Nasopharyngeal carcinoma (NPC) is a popular malignant tumor of the head and neck which is endemic in the world, more 
than 75% of the NPC patients suffer from locoregionally advanced nasopharyngeal carcinoma (LA-NPC). The survival 
quality of these patients depends on the reliable prediction of NPC stages III and IVa. In this paper, we propose a two-stage 
framework to produce the classification probabilities for predicting NPC stages III and IVa. The preprocessing of MR images 
enhance the quality of images for further analysis. In stage one transfer learning is used to improve the classification effec-
tiveness and the efficiency of CNN models training with limited images. Then in stage two the output of these models are 
aggregates using soft voting to boost the final prediction. The experimental results show the preprocessing is quite effective, 
the performance of transfer learning models perform better than the basic CNN model, and our ensemble model outperforms 
the single model as well as traditional methods, including the TNM staging system and the Radiomics method. Finally, the 
prediction accuracy boosted by the framework is, respectively, 0.81, indicating that our method achieves the SOTA effec-
tiveness for LA-NPC stage prediction. In addition, the heatmaps generated with Class Activation Map technique illustrate 
the interpretability of the CNN models, and show their capability of assisting clinicians in medical diagnosis and follow-up 
treatment by producing discriminative regions related to NPC in the MR images.
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1  Introduction

Nasopharyngeal carcinoma (NPC) is a popular malig-
nant tumor in the world. Stage describes the growth and 
spread of the NPC. There is a significant difference in 
the survival rate of NPC patients in the early stages (I, 
II) and late stages (III, IV). Different treatment options 
need to be selected for the patients in different stages. 
Radiotherapy is the key treatment for early-stage NPC 
[1], while the combination of radiotherapy and chemo-
therapy is the main treatment strategy for advanced NPC. 
Over 75% of patients suffer from locoregionally advanced 
Nasopharyngeal Carcinoma (LA-NPC) in stage III or IVa 
at the first diagnosis, where concurrent chemoradiotherapy 
(CCRT) and induction chemotherapy (IC) are suggested. 
However, aiming at improving the survival quality of the 
patients with advanced NPC, aggressive treatment options 
are not recommended for any patients in stage III/IVa [2]. 
The study declares that CCRT is sufficient for low-risk 
patients of LA-NPC (stage III), while additionally IC is 
required for high-risk patients (stage IVa). Therefore, an 
accurate treatment plan depends on effective LA-NPC 
stage prediction.

The LA-NPC stage prediction is a critical function 
of computer-assisted diagnosis (CAD) systems for NPC 
patients. CAD system is used to analyze different medi-
cal data to assist clinicians in diagnosis. It can reduce the 
burden on clinicians and accelerate the diagnosis process, 
but not replace the role of professional doctors. Nowadays, 
various medical images are widely analyzed by different 
machine learning methods including computer vision 
methods.

Techniques for NPC stage prediction have been devel-
oped over decades. The most popular method of NPC stage 
prediction used in hospitals is the tumor-node-metastasis 
(TNM) staging system. The system requires experienced 
clinicians to collect and analyze various data to deter-
mine the stage of each patient very carefully. Radiomics 
is another technique that achieves automatic NPC stage 
prediction using medical images and clinical data. This 
technique typically needs to perform tumor segmentation 
on the original image as preprocessing, extracts features 
from its output, and achieves classification for stage pre-
diction. Recently, deep learning techniques have been used 
for cancer classification. The data set of medical images is 
used to train the classification model, and then the medi-
cal images of patients are fed into the model to generate 
classification probabilities for different cancer stages. The 
LA-NPC are classified into two different stages (III, IVa). 
The study [2] achieves the LA-NPC stage prediction using 
the deep learning model, while ensemble learning is used 
to improve the prediction performance. Besides, CAM [4] 

takes advantage of the class-specific gradient of CNN to 
produce discriminative regions related to specific cancers 
in MR images, and these highlighted regions can assist 
clinicians in diagnosis and follow-up treatment.

Most MR images of NPC patients available in the hospital 
are 2D axial slices in the positions of neck and nose, and the 
slices are not that dense (intervals between 2 and 7mm) to 
preserve enough 3D features across slices. In MR images of 
NPC patients, organs and tissues around the tumors are of 
great diagnosis significance for predicting stages of cancer 
by radiologists [3]. However, segmentation removes the sur-
rounding tissues that are indispensable for stage prediction. 
Besides, there are usually not enough MR images to train a 
deep learning model from scratch. In addition, deep learning 
is still considered a black-box technique that should be inter-
pretable for critical applications, such as cancer diagnosis 
and prognostic prediction.

In this paper, we believe that 2D-CNN is a reasonable 
classification model to analyze MR images for LA-NPC 
stage prediction. Due to the lack of images, transfer learn-
ing is to improve the model training efficiency and predic-
tion effectiveness. The intuition is that various tumors can 
be classified or detected through their shapes and texture 
features, that are similar to the features of nature images 
in data sets, such as ImageNet. The pretrained models are 
well trained to capture low level features so that they are to 
achieve stage prediction using minor fine-tuning with limited 
images. Furthermore, ensemble learning is to boosting the 
classification performance with different weak classifiers. 
Classification probabilities produced by different 2D-CNN 
models can be ensembled using a voting method to boost the 
final NPC stage prediction.

1.1 � Contributions

The main contributions of this paper are listed as below: 

1.	 A novel image preprocessing method is proposed to 
enhance the quality of MR images for NPC stage pre-
diction. According to the quality, complexity and lim-
ited size of MR images of NPC patients, we use several 
images operations to reduce the negative effect of data 
set for model training.

2.	 Transfer learning is used to improve the effectiveness of 
prediction, as well as the efficiency of model training. 
The pretrained models are well trained to capture vari-
ous low level features, which is of significant benefit to 
the training of CNN models for stage prediction.

3.	 We build a two-stage classification framework to 
improve NPC stage prediction. All prediction results 
of different advanced CNN models are then ensembled 
using soft voting to boost the final classification per-
formance. As far as we know, there is no such research 
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using ensemble framework based on CNN models for 
NPC stage prediction.

The rest of this paper is organized as follows. In Sect. 2, 
we give the recent studies related to NPC stage prediction. 
Sect. 3 describes our stage prediction method. The experi-
mental results and comparisons are discussed in Sect. 4. 
Conclusions and future work are given in Sect. 5. We will 
make code and part data publicly available from our projects 
webpage, https://​github.​com/​hj0320/​NPC-​stage-​predi​ction.

2 � Related Work

2.1 � NPC Stage Prediction

The stage prediction is a critical diagnostic method for 
selecting follow-up treatment options. TNM staging system 
[5] is one of the most popular methods to predict the NPC 
stages. Experienced clinicians predict the stages for patients 
using various types of data including clinic information and 
features of medical images.

Radiomics [6] is another popular technique to predict the 
stages in oncology. In recent years, more and more machine 
learning-based studies on NPC diagnosis have been reported 
[7–10]. A data analysis framework with prognostic factors 
[7] including radiomics features of multi-parametric MR 
images and clinical data is built to improve prognostic ability 
in LA-NPC. The study shows that Radiomics features from 
medical images could be effective prognostic factors for NPC 
diagnosis. The research [8] explores the quantitative features 
of multi-modalities MR images and evaluates the feasibil-
ity of radiomics in classifying NPC into survival subgroups. 
The clustering technique is to generate a baseline model as 
a classification reference, while the support vector machine 
(SVM) model is trained as a classifier to predict survival sub-
groups. The study [9] establishes a radiomics nomogram to 
predict induction chemotherapy (IC) response and survival. 
The radiomics nomogram is built by fusing the clinical data 
and Radiomics features of multi-parametric MR images with a 
SVM. Recently, the research [10] predicts the NPC prognostic 
value with radiomics features generated by deep learning tech-
nique. Taking advantage of the radiomics features and clinical 
prognostic information, a Radiomic nomogram is constructed 
for pretreatment prognostic prediction. However, the existing 
methods for NPC stage prediction require the step of tumor 
segmentation as the preprocessing step, which make the diag-
nosis more time-consuming and error-prone. Moreover, the 
segmentation removes the valuable information from medi-
cal images. It is doubtful that such related tissues and organs 
around the tumors are removed insouciantly.

Deep learning based classification methods are also used 
to predict cancer stages [2, 11, 12]. To achieves the LA-NPC 
stage prediction with MR image stacks, the study [2] has 
trained a classifier based on 3D-CNN model using a large data 
set of MRI stacks. However, in most hospital there is a few 
2D MR image taken for each NPC patient, unfortunately there 
is few research on using 2D-CNN models to analyze the 2D 
images for stage prediction. Besides, due to the lack of large 
labeled data set, a weakly supervised method [11] is devel-
oped to predict the T stage with few labels. Even though the 
staging of penile cancer is achieved through the TNM staging 
system by clinicians, deep-learning using medical images is 
an automatic end-to-end solution for stage prediction [12].

2.2 � Ensemble Learning

Ensemble learning methods including boosting [13], stacking  
[14] and voting [15] are effective machine learning techniques 
to improve the performance of medical image classification.

2D-DWT [16] is utilized to extract features in medical 
images for detecting abnormality in brain. An automatic clas-
sifier is proposed with AdaBoost and random forests. The 
study [17] extracts texture-based features from MR images 
with GLCM technique and achieves brain tumor classifica-
tion with Adaboost, while the Adaboost classifier achieves the 
accuracy of 89.90%. Boosting-based technique [18] is able to 
predict or classify from non-image clinical data, including 9 
different types of disease such as breast cancer, mental health 
survey, cleveland heart et al.

In recently years, [19, 20] review advances in deep mul-
timodal learning, as well as the application of stacking tech-
nique in this research field. Deep multimodal learning meth-
ods are reviewed and deep fusion methods for multimodal 
representations are discussed. Liu [21] presents a multimodal 
classification algorithm based on the stacked CNNs to pre-
dict Alzheimers Disease (AD) and mild cognitive impairment 
(MCI) from normal control (NC) with MR and PET images. 
The study [22] proposes a multi-modality VGG-based model 
and stacking technique using the hippocampal area of no seg-
mentation as the input. The work [23] investigates the suitabil-
ity of a modified residual neural network (ResNet) and stacked 
model for studying brain MR and PET images for predicting 
progression from MCI to AD. The study [24] achieves the 
MediaEval Medico task through an ensemble learning method 
with multiple classifiers, including traditional machine learn-
ing methods and CNN-based classifiers.

2.3 � Deep Learning

Recently, deep learning techniques have been widely used 
to classify various medical images, such as X-ray, CT and 
MRI. Nowaday, various convolutional neural network mod-
els such as VGG [25], ResNet [26], and InceptionResnetV2 

https://github.com/hj0320/NPC-stage-prediction
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[27] are widely used to improve performance of different 
computer vision tasks, including image classification [28], 
object detection [29], Biomedical image segmentation [30] 
and image enhancement [31]  in low-light environment. 
Meanwhile, more and more researches attempt to use CNN 
models to improve the accuracy of diagnosis with medi-
cal images [32], help reconstruction of CT and MR images 
[33], as well as GTV (Gross Tumor Volume) Delineation 
for radiologists [34].

Besides, due to the lack of data annotations in the target 
domain, transfer learning is to optimized machine learning 
models by taking advantage of data set in the source domain 
[35]. Transfer learning is widely used for medical image 
analysis [36] due to the unavailability of such large labeled 
data set. Recent researches on COVID-19 prediction [37, 
38] analyze the lung images using transfer learning based 
on deep learning.

Finally, a series of class activation map (CAM) tech-
niques [39–42] has been developed to highlight the region of 
high response for the specific class to explain the results of 
a classifier. In medical image analysis, this technique helps 
clinicians quickly locate the region of interest, as well as 
interpret the effectiveness of the methods [43, 44].

3 � Materials and Methodology

3.1 � Data Set

This research was approved by the Ethics Committee of the 
Renmin Hospital of Wuhan University, and the informed 
consent from patients has been exempted. The data set for 
this study is collected from the patients with NPC diagnosed 
for treatment in Renmin Hospital of Wuhan University from 
2012 to 2018. According to the statistics for these patients, 
about 75% of them suffer from LA-NPC, and they are classi-
fied into a low-risk group and a high-risk group labeled with 
different stages (III, IVa). Finally, More than 200 patients 
including males and females are selected. Their medical 
records include gender, age, clinical data, MR images, TNM 
staging, and survival data. The stage of each patient has been 

checked by at least two experienced clinicians according to 
his/her medical records.

More than 20,000 patches of tumors and lymph nodes 
are cropped out of the full-field MR images by clinicians, 
and the examples are shown in Fig. 1. Since clinicians need 
the images on the nasopharyngeal and neck positions, about 
only 20 slices of each patient are kept for the medical diag-
nosis. The Axial MRIs of enhanced T1 and WATER T2 are 
selected for further processing. Rectangular regions of inter-
est (ROI) in each MRI are cropped with the appropriate reso-
lutions from 50 × 50 to 300 × 300 . In addition to tumors and 
lymph nodes, the area around them is also preserved, so that 
the tissue surrounding them is also kept in the patches for 
stage prediction. The resolutions of the patches can be differ-
ent, since the sizes of tumors are different from each other.

The whole data set is split into the training set and test-
ing set with the ratio of 4:1, as listed in Table 1. Train_III is 
the training set for the LA-NPC of stage III, while Test_III 
is the testing set for stage III. Train_IVa is the training set 
for stage IVa, while Test_IVa is the testing set for stage IVa. 
The patches of both tumors and lymph nodes are collected 
into the data set. Finally, the patch numbers of all subsets 
are given in the last column, and the sizes of data sets for 
the two stages are similar. If the researchers need the whole 
data set, please contact the Renmin Hospital of Wuhan Uni-
versity through the email bamboo0723@126.com for more 
information.

3.2 � Framework

We present our two-stage classification framework based 
on the advanced CNN models for the stages prediction, as 

Fig. 1   MRI examples of LA-
NPC including tumors and 
lymph nodes. A1  Full-field 
MRI of tumor, A2  tumor with 
its mask, A3  MRI patch of 
tumor; B1  full-field MRI of 
lymph node, B2  lymph node 
with its mask, B3  MRI patch of 
lymph node

A1 A2

A3

B1 B2

B3

Table 1   LA-NPC MR image data set

Data set Tumors Lymph nodes Total

Train_III 5969 2185 8154
Train_IVa 6820 2217 9037
Test_III 1492 546 2038
Test_IVa 1705 554 2259
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shown in Fig. 2. Before the training of the models, the MR 
images are preprocessed in three steps. First, the original 
MR images are enhanced with Contrast Limited Adap-
tive Histogram Equalization (CLAHE) to optimized their 
contrast. Then the patches of tumors and lymph nodes are 
cropped manually by experienced clinicians from these 
images. Finally, these patches are augmented to increase 
the size and diversity of the existing data set, then resized 
as inputs of following classifiers.

This unified framework mainly consists of a single model 
stage and a ensemble model stage. During model training, 
we load the pretrained weight of each CNN model and fine-
tune the model with preprocessed MRI patches as input in 
the first stage, which is a typical transfer learning method of 
training the medical machine learning models taking advan-
tage of general models. During the process of prediction, 
in the first stage each MR image patch is fed into different 
CNN models separately to output stage probabilities which 
is the classification probabilities of being two different 
NPC stages. Then, in the second stage, these probabilities 
are ensembled with a voting method to produce the final 
stage probability for each MRI patch. In this stage, ensemble 
learning are crucial machine learning techniques to improve 
the performance of training and prediction. In addition, the 
heatmaps of MR images are generated with the CAM tech-
nique by taking advantage of specific layer of CNN models.

3.3 � Preprocessing

Brain MR images show the internal structure of the brain 
with contrast variation in gray scale. Since the image 
acquisition is performed with different equipment or under 
different conditions, the contrast of the MR images may 
not be ideal, which will have a negative impact on the 
prediction result. Image normalization enhances image 
quality to improve the robustness of the CAD system. 
More precisely, normalization can be used to reduce the 

potential noise in the data set to avoid overfitting for build-
ing a robust classification method. CLAHE is one of the 
histogram equalization methods especially designed for 
MR image enhancement. With the help of CLAHE, the 
MR images are enhanced significantly for further analy-
sis. Some MRI examples of NPC are shown in Fig. 3. The 
images in the first row are original ones, and in the second 
row have been preprocessed with CLAHE, which enhances 
the contrast and the texture of various organs and tissues 
in MR images.

Due to the complexity of MR images for NPC, it is dif-
ficult to predict stages using the original full-field images. 
Unlike MR images for a brain tumor or knee disease, there 
are much more organs of complex structures in the positions 
of the human nose and neck. One solution is to intercept 
the ROIs in the images to improve the classification per-
formance, so the patches of tumors and lymph nodes are 
cropped from full-field images by 2 experienced clinicians 
and checked by another one. In addition, the tissues sur-
rounding the tumors and lymph nodes are useful for NPC 
stage prediction. To preserve the related tissues, the resolu-
tion of each patch is larger than that of the tumor or lymph 
node. Finally, there may be several tumors or lymph nodes 
in one MR image, so the total number of patches is several 
times the MR images.

Data augmentation is one of the best strategies to avoid 
overfitting. When the size of the data set is small, it is 
required to increase its size and variety. There is the limited 
size of medical data, such as MR images, since the con-
firmed cases are rare and the data acquisition is difficult. 
Data augmentation generates more images from the original 
data set with various image operations including rotation, 
shifting, shearing, zooming, and flipping. These operations 
are reasonable, since the positions of patients may be a little 
different during acquisition, also, tumors and lymph nodes 
are different by size and shape. A data set of large size and 
high variety is critical for improving model generalization 

Fig. 2   Pipeline of our two-stage 
classification framework. All 
MR images of NPC patients 
are reprocessed to produces 
MRI patches for the following 
model training and prediction. 
During training, CNN models 
are fine-tuned through transfer 
learning. During prediction, in 
the first stage MRI patches are 
fed into CNN models to output 
stage probabilities, while in the 
second stage these probabilities 
are ensembled to produce final 
stage probability for each MRI 
patch
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and building a robust classification model for medical 
applications.

3.4 � Single Model

Deep CNN model allows to learn low-level features, such as 
edges, corners, and intensity from images using bottom lay-
ers, these features can be shared across different tasks. Taking 
advantage of the bottom layers, knowledge transfer is enabled 
among tasks. The high-level features such as shapes and objects 
are extracted by the following pooling layers and convolutional 
layers. With the help of top layers including fully connected 
layers, the deep learning model can finally produce classifica-
tion result. The performance of models highly depends on the 
data set available. The advanced CNN models (VGG16, Incep-
tionV3, ResNet50, InceptionResNetV2, and DenseNet121) 
are well trained with large data sets,such as ImageNet. We can 
freeze the convolutional layers and fine-tune the top layers to 
classify new classes using data of small size in a few epochs, 
since the low-level features of new classes are similar to that of 
the existing class in ImageNet, and the bottom layers are able 
to extract the low-level features efficiently without any training. 
Even though the medical image data set is of small size, the low-
level features are similar so that transfer learning can achieve 
ideal classification performance using pretrained models.

We take the fine-tuning of the VGG16 model as an example 
to illustrate the transfer learning process, as shown in Fig. 4. 
We create a VGG16 model without top layers and load its pre-
trained weights trained with ImageNet. Then we add the top 
layers for binary classification, since our task is to predict two 
classes. We freeze the model except for the top layers and train 

the model using our MRI data set. After several epochs the 
training is stopped and the model weights are saved for model 
testing and prediction. The transfer learning processes of the 
other 4 advanced models are similar to VGG16 and achieved 
independently.

3.5 � Ensemble Model

Ensemble learning is used, while different classification models 
exist and produces a better a result than single model in most 
cases. In the ensemble model stage of our framework, voting is 
used to ensemble the output of five advanced CNN models to 
improve the final classification performance, as shown in Fig. 4. 
During prediction, each patch is classified with the advanced 
CNN models, then their outputs are ensembled to get the final 
classification result for the stage prediction.

Soft voting is used to build a classifier with a majority vote 
of m basic classifiers, while m = 5 in this study, since five 
advanced CNN models are used. The number of class types 
k = 2 , since the task is a binary classification. We choose soft 
voting as our voting method. For soft voting, the class probabil-
ity of MR images is given by Eq. (1), where pk

i
 is the class prob-

ability vector for basic classifier i(1 ≤ i ≤ m) , pk is the class 
probability vector of all k classes. Finally, the class assignment 
with soft voting classifier is given by Eq. (2), where argmax 
returns an index c(1 ≤ c ≤ k) of the maximum value in given 
probability vector pk.

(1)pk =
1

m

m
∑

i=1

pk
i
,

A1

A2

B1 C1 D1

B2 C2 D2

Fig. 3   MRI examples before and after preprocessing. The images in the first row are original ones, while the images in the second row are pro-
cessed using CLAHE
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4 � Evaluations and Comparisons

In this section, we first introduce the settings of our experi-
ments. Then we give experimental analysis to explain the 
advantage of the advanced CNN models comparing with 
the basic CNN model. We also compare our ensemble 
model with the advanced CNN models. Finally, the heat-
maps of MR images are presented and discussed.

(2)c = argmax pk.

4.1 � Experimental Setup

All the experiments are achieved using NVIDIA GPU 
and Ubuntu, and the configures of the experimental 
platform are listed in Table 2. Keras is used to achieve 
training and testing with five pre-trained models down-
loaded from keras official website. The resolutions of the 
patches are different, so we resize them to the fixed reso-
lutions. Before fine-tuning, the model weights are loaded, 
binary_crossentropy is chosen as loss function, the opti-
mizer is set to Adam, and the initial learning rates of these 
models are set to 0.0001. The learning rate is updated by a 
scheduler. During the fine-tuning, LearningRateScheduler 
module of Keras is used to update the learning rate gradu-
ally with the increase of epoch number. The batch size for 
training is 32.

For the performance evaluation of the classification models, 
we use various metrics including accuracy (ACC), precision 
(PRE), sensitivity (SEN) and F1-score (F1). We calculate the 
metrics for both classes, and in this section we give all results 
of LA-NPC stages III and IVa. Sklearn modules are used to 
calculate the valuation metrics for both classes, and the formu-
las for calculating the metrics are listed below:

(3)ACC =
TP + TN

TP + TN + FP + FN
,

Fig. 4   Model for transfer learning and ensemble learning

Table 2   Experimental platform configurations

Items Configurations

CPU Xeon E5 2620v3
GPU Nvidia P5000
Memory 128G
Operating system Ubuntu 16.04.5 LTS
CUDA CUDA 9.0
Language Python 3.6
Library Keras 2.2, tensorflow-gpu 1.13
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4.2 � Evaluation Results

4.2.1 � Effect of MR Image Preprocessing

We compare the NPC stage IVa prediction results of differ-
ent CNN models with and without MR image preprocessing, 
all scores are listed in Table 3. With the preprocessing, the 
VGG16 model achieves a higher precision of 0.78, a higher 
sensitivity of 0.75,a higher F1-score of 0.76, and a higher 
accuracy of 0.75. With the preprocessing, the InceptionV3 

(4)PRE =
TP

TP + FP
,

(5)SEN =
TP

TP + FN
,

(6)F1 =
2

1∕PRE + 1∕SEN
.

model achieves a higher precision of 0.75, a higher sensi-
tivity of 0.75,a higher F1-score of 0.75, and a higher accu-
racy of 0.74. With the preprocessing, the ResNet50 model 
achieves a higher precision of 0.77, a higher sensitivity of 
0.73,a higher F1-score of 0.75, and a higher accuracy of 
0.73. With the preprocessing, the InceptionResNetV2 model 
achieves a higher precision of 0.82, a higher sensitivity of 
0.76,a higher F1-score of 0.79, and a higher accuracy of 
0.78. With the preprocessing, the DenseNet121 model 
achieves a higher precision of 0.76, a higher sensitivity of 
0.81,a higher F1-score of 0.79, and a higher accuracy of 
0.77. According to the comparison results, with the preproc-
essing step all models achieve better scores. Therefore, we 
strongly suggest the MR image preprocessing before further 
image analysis.

4.2.2 � Effect of Transfer Learning

We give the results of basic CNN model and five advanced 
CNN models, then tell the difference between basic CNN 

Table 3   Different models 
with or without MR image 
preprocessing, and prediction 
results for NPC stage IVa 
prediction

Bold values indicate the better scores with and without preprocessing for each model

Models Preprocess Precision Sensitivity F1-score Accuracy

VGG16 – 0.72 0.74 0.72 0.73
✓ 0.78 0.75 0.76 0.75

InceptionV3 – 0.70 0.73 0.72 0.73
✓ 0.75 0.75 0.75 0.74

ResNet50 – 0.72 0.70 0.71 0.69
✓ 0.77 0.73 0.75 0.73

InceptionResNetV2 – 0.77 0.74 0.72 0.74
✓ 0.82 0.76 0.79 0.78

DenseNet121 – 0.74 0.73 0.75 0.71
✓ 0.76 0.81 0.79 0.77

Table 4   Different models for 
prediction NPC stages III/IVa, 
and all prediction results

Bold values indicate the best scores using different methods for stage III and IVa

NPC stages Methods Precision Sensitivity F1-score Accuracy

Stage III Basic CNN 0.68 0.71 0.69 0.69
VGG16 0.73 0.76 0.75 0.75
InceptionV3 0.72 0.72 0.72 0.74
ResNet50 0.72 0.76 0.74 0.74
InceptionResNetV2 0.75 0.81 0.78 0.78
DenseNet121 0.77 0.72 0.75 0.77
Ours 0.79 0.83 0.81 0.81

Stage IVa Basic CNN 0.73 0.71 0.72 0.71
VGG16 0.78 0.75 0.76 0.75
InceptionV3 0.75 0.75 0.75 0.74
ResNet50 0.77 0.73 0.75 0.73
InceptionResNetV2 0.82 0.76 0.79 0.78
DenseNet121 0.76 0.81 0.79 0.77
Ours 0.84 0.80 0.82 0.81



International Journal of Computational Intelligence Systems (2021) 14:184	

1 3

Page 191 of 196 ﻿

model and the advanced CNN models. Since there is few 
research on stage prediction using 2D-CNN model, we build 
a basic CNN model as baseline for comparison. The basic 
CNN model has 3 convolutional layers, each layer is fol-
lowed by a max-pooling layer, then 2 densely connected 
layers are added as top layers to produce classification result. 
All the testing results of basic CNN model and advanced 
CNN models are listed in Table 4.

Precision is a fundamental metric to evaluate the per-
formance of classification. It tells the fraction of instances 
of a class among all instances predicted as the same class. 
A perfect classifier has precision equal to 1. For predicting 
stage III of LA-NPC, the precision of basic CNN model is 
only 0.68, the precisions of 5 advanced CNN models are 
all higher than 0.72. For predicting stage IVa, the preci-
sion of basic CNN model is only 0.73, the precisions of the 
advanced CNN models are all higher than 0.75. The result 
show that the precisions of the outlined advanced CNN mod-
els in this study are better than the basic CNN model.

Sensitivity(Recall) is another fundamental metric to 
evaluate the performance of classification. It tells the frac-
tion of instances correctly classified among all instances of 
that class. A perfect classifier has a sensitivity equal to 1. 
For predicting stage III, the sensitivity of basic CNN model 
is only 0.71, the sensitivities of the advanced CNN mod-
els are all higher than 0.72. For predicting stage IVa, the 

sensitivity of basic CNN model is only 0.71, the sensitivi-
ties of these advanced CNN models are all higher than 0.73, 
and the DenseNet121 model gets the highest sensitivity of 
0.81. The result shows that the sensitivities of the outlined 
advanced CNN models are better than the basic CNN model.

F1-Score is a statics metric to evaluate the performance of 
binary classification. The formula of the F1-score tells that 
its best score is 1 but its worst score is 0. For predicting stage 
III, the score of basic CNN model is only 0.69, the F1-scores 
of these advanced CNN models are all higher than 0.72. For 
predicting stage IVa, the F1-score of basic CNN model is 
only 0.72, the recalls of these advanced CNN models are all 
higher than 0.75.

Accuracy is a critical metric corresponding to the propor-
tion of instances that have been correctly classified. Its best 
score is 1 and its worst score is 0. For predicting stage III, 
the accuracy of basic CNN model is only 0.69, the accura-
cies of these advanced CNN models are all higher than 0.74. 
For predicting stage IVa, the accuracy of basic CNN model 
is only 0.71, the accuracies of these advanced CNN models 
are all higher than 0.73.

The curves of accuracy and loss for training and valida-
tion of the five advanced CNN models are shown in Fig. 5. 
According to these accuracy curves, it is observed that 
both training and validation accuracies increase as training 
proceeds, and the training accuracy is slightly higher than 

Fig. 5   Accuracy and loss curves of the five advanced CNN models. A1, A2  Curves of VGG16; B1, B2  curves of InceptionV3; C1, C2  curves 
of ResNet50; D1, D2  curves of InceptionResNetV2; E1, E2  curves of DenseNet; F1, F2  curves of basic CNN
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the validation accuracy. All accuracies are over 0.7 after 
2 epochs, indicating that transfer learning using pretrained 
models are quite effective for the classifying MR images. 
After a few epochs, most training accuracies are over 0.8. 
Moreover, the training losses decrease as the training pro-
ceeds. Even though the validation losses do not decrease 
as expected, the values of the losses are still quite small. 
However, observing the curves for the basic CNN model, 
the accuracies for training and validation increase much slow 
than advanced CNN models, since the accuracies achieve the 
highest scores after 60 epoches. In addition, the losses for 
training and validation decrease much slow than advanced 
CNN models.

According to the experiment results and curves of accu-
racy and loss, transfer learning is a technique to improve 
effectiveness and efficiency for NPC stage prediction. Most 
metrics scores of the advanced CNN models using pre-
trained models are better than the basic CNN model. The 
advanced CNN models achieve high accuracies much faster 
than the basic CNN model, since the models only require 
less than 10 epoches. These models with pretrained weights 
are able to capture the low-level features in MR images of 
LA-NPC, and the fine-tuning is effective to optimize models 
for binary classification.

4.2.3 � Effect of Ensemble Model

We give the results of 5 single models and the ensemble 
model, then tell the difference between these two models. 

All the testing results of advanced CNN models and our 
ensemble model are listed in Table 4.

For precision, the ensemble model gets the highest pre-
cision of 0.84 to predict stage III of LA-NPC, while the 
model also gets the highest precision of 0.84 for predicting 
stage IVa. The result show that the ensemble model achieves 
the highest precision. Considering sensitivity, the ensemble 
model gets the highest sensitivity of 0.83 to predict stage III, 
but the DenseNet121 model gets the highest sensitivity of 
0.81 to predict stage IVa and the ensemble model achieves 
the second highest sensitivity. For F1-score, the ensemble 
model gets the highest score of 0.81 to predict stage III, and 
the model gets the highest score of 0.82 to predict stage IVa. 
For accuracy, the ensemble model gets the highest accuracy 
of 0.81 to predict stage III, the model gets the highest accu-
racy of 0.81 to predict stage IVa.

According to the experimental results, the proposed 
ensemble method achieves the highest accuracy of 0.81. 
The classification accuracies of advanced CNN models are 
higher than basic CNN model, while the accuracies of the 
advanced CNN models are similar to each other. The ensem-
ble model gets the highest accuracies. In addition, the clas-
sification precisions for samples of stage IVa are higher than 
stage III. In general, the ensemble method achieves better 
scores of evaluation metrics than basic CNN model and most 
advanced CNN methods.

The confusion matrices of 5 advanced CNN models 
and our ensemble model are given in Fig. 6. It is used to 
tell the performance of classifying LA-NPC as stage III 
(0/False) and stage IVa (1/True). Each confusion matrix 

A B C

D E F

Fig. 6   Confusion matrices of the five advanced CNN models and the 
ensemble model. A Confusion matrix of VGG16. B Confusion matrix 
of InceptionV3. C Confusion matrix of ResNet. D Confusion matrix 

of InceptionResNetV2. E Confusion matrix of DenseNet. F Confu-
sion matrix of the ensemble model
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is composed of 4 parts. The TP represents the correctly 
classified stage III samples, FP represents the stage IVa 
samples that are misclassified as stage III, TN represents 
correctly classified stage IVa samples, FN represents stage 
III samples that are misclassified as stage IVa. For a clas-
sification model, the more the TP and TN samples are, the 
better the performance of the model is. In addition, FP 
samples are expected to be as few as possible, since stage 
IVa is the more serious stage which is not expected to be 
misclassified as stage III for patients. We can see from the 
confusion matrices that our model gets the most TP and 
TN samples, while the FP samples are less than most of 
the other models.

According to the experimental results, ensemble learn-
ing is another effective technique in this work to boost the 
classification performance for stage prediction. Although 
all the accuracies of advanced CNN models are less than 
0.79, the ensemble method using soft voting achieve a 
higher accuracy of 0.81. Using the same data set, even 
though these models are all based on convolutional neural 
network, they are build with different architectures and be 
able to extract different features from images. The ensem-
ble method benefits from these models and achieves better 
performance than using single model.

4.2.4 � Comparisons

Finally, we compare the proposed method with popular ones 
including TNM staging system and Radiomics method, and 
the comparison results are listed in Table 5. The evaluation 
results of TNM staging system and Radiomics are given by 
experienced clinicians from Renmin hospital. The results tell 
that the accuracies calculated with TNM staging and Radi-
omics are only 0.71 and 0.73, while we achieve the accuracy 
of 0.81 for predicting both stage III and stage IVa, indicating 
that our method outperforms two classical methods for LA-
NPC stages prediction.

Table 5   Comparison results

Bold values indicate the highest accuracies using 3 methods for stage 
III and IVa

Classes Methods Accuracy

Stage III TNM staging 0.71
Radiomics 0.73
Ours 0.81

Stage IVa TNM staging 0.69
Radiomics 0.71
Ours 0.81

A2

B1 D1

B2 C2 D2

C1A1

Fig. 7   CAM examples for various MR images using InceptionResNetV2. A1 and A2 Tumor T2 MRIs of stage III and IVa, B1 and B2 lymph 
node T2 MRI of stage III and IVa, C1 and C2 Tumor T1 MRI of stage III and IVa, D1 and D2: lymph node T1 MRI of stage III and IVa
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4.3 � Model Interpretability

CAM is a technique to produce visual explanations for the 
decision made using advanced CNN models, making them 
more interpretable. This technique takes advantage of the 
gradients of any target object such as tumor and lymph node 
in this study. The gradients flow into the last CNN layer 
to produce a heatmap, highlighting the regions of specific 
classes in the image with different colors. In a heatmap, we 
may observe four typical colors (red, yellow, green, and 
blue). The red and yellow regions are strongly related to 
the prediction result, while the green and blue regions are 
weekly related. CAM technique can produce heatmaps for all 
advanced CNN models, and we take the InceptionResNetV2 
model as an example to show the heatmaps for various MR 
images. As shown in Fig. 7, we give heatmaps for tumor of 
stage III, lymph node of stage III, tumor of stage IVa, and 
lymph node of stage IVa. According to the observation and 
analysis by experienced clinicians, it is concluded that the 
correlations between the tumor/lymph node areas and the 
red/yellow regions are quite strong, and heatmaps can assist 
clinicians in LA-NPC diagnosis.

5 � Conclusion and Future Work

In this paper, we collect a new data set including MR images 
of LA-NPC patients and introduce a two-stage classification 
framework base on 2D-CNN models to achieve the LA-NPC 
stage prediction. Transfer learning is used to improve the 
classification performance of a single advanced model, an 
ensemble method is used to further boost the classification 
performance. We give the detailed steps for data preproc-
essing, fine-tuning of a single deep learning model, mod-
els ensembling, and heatmaps generation. The experiment 
results show that our method outperforms the TNM staging 
system and the Radiomics method, as well as the interpret-
ability of our method. In future work, more types of data 
such as clinical data will be used, and detection methods will 
be considered to automatically obtain patches of tumors and 
lymph nodes in full-field MR images.
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