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ABSTRACT Stenotrophomonas maltophilia is associated with an increasing incidence
of nosocomial infections. Here, we describe the isolation and genome annotation of S.
maltophilia siphophage Siara. Its 61,427-bp genome is currently related only to one
phage in the NCBI database, namely, S. maltophilia phage Salva, and is not related to
any prophages.

The increasing incidence of nosocomial infection caused by Stenotrophomonas mal-
tophilia is concerning due to some strains being multidrug resistant and the signifi-

cant infection fatality-to-case ratio (1). The isolation and genome annotation of phage
Siara, a potential therapeutic agent for controlling multidrug-resistant S. maltophilia
are described here.

Phage Siara was isolated in 2019 from an influent water sample collected from a waste-
water treatment plant in Beaumont, TX (Global Positioning System [GPS] coordinates of
30.20078, 294.10807), using S. maltophilia (ATCC 17807) as the host. The host strain was
propagated aerobically at 30°C in tryptone nutrient (0.5% tryptone, 0.25% yeast extract,
0.1% glucose, and 0.85% NaC [wt/vol]) broth or agar. Phage isolation and propagation
were done using the soft agar overlay method (2). Phage DNA was purified from polyethyl-
ene glycol (PEG)-precipitated phage particles from ;8 mL phage lysate (.109 PFU/mL)
using a Promega Wizard DNA cleanup system following the manufacturer’s protocol (3).
The purified DNA was prepared as 300-bp inserts using a Swift 2S Turbo library preparation
kit and sequenced on an Illumina MiSeq instrument with paired-end 150-bp reads using V2
300-cycle chemistry. A total of 174,160 raw sequence reads were quality controlled with
FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and trimmed using the
FASTX-Toolkit v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/) to generate a total of
125,775 trimmed reads, from which a single contig with 129-fold coverage was assembled
with SPAdes v3.5.0 (4). Contig end sequences were verified by PCR and Sanger sequencing
the resulting product using primers 59-TGCTGCCGTTCACAAAACAG-39 and 59-TCCTGACTC
TACCCACCCTG-39. The phage termini were predicted using PhageTerm (5). The structural
annotation was done using GLIMMER v3 (6) and MetaGeneAnnotator v1.0 (7), and tRNAs
were detected with ARAGORN v2.38 (8) and tRNAScan-SE v2.0 (9). The gene functions were
predicted using InterProScan v5.48 (10), TMHMM v2.0 (11), HHpred (12), LipoP v1.0 (13),
and SignalP v5.0 (14), as well as BLAST (15) searches against the following databases: NCBI
nonredundant and SwissProt (16). Rho-independent termination sites were annotated
using TransTermHP v2.09 (17). progressiveMauve v2.4 (18) was used to calculate the ge-
nome-wide similarity. Analysis tools were accessed through the Center for Phage
Technology (CPT) Galaxy-Apollo platform (https://cpt.tamu.edu/galaxy-pub) (19–21), and all
software were used at their default settings. The morphology of phage Siara was deter-
mined by transmission electron microscopy (TEM) and viewing samples stained negatively
with 2% (wt/vol) uranyl acetate at the Texas A&MMicroscopy and Imaging Center.
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Phage Siara is determined to have a siphophage morphology (Fig. 1). Siara has a
complete genome length of 61,427 bp, a coding density of 93.9%, and a G1C content
of 56.5%. A total of 100 protein-coding genes and 3 tRNA genes were identified in the
Siara genome. At the time of writing of this manuscript, phage Siara is closely related
to only one phage deposited in GenBank, namely, phage Salva (GenBank accession
number MW393850) (22), sharing 86.7% nucleotide identity over 73% Siara genome
coverage as determined by BLASTn. Similar to the long terminal repeat region
(3,973 bp) identified in phage Salva, PhageTerm analysis identified a putative 2,528-bp
terminal repeat region in the Siara genome. Phage Siara and Salva are currently unclas-
sified members within the Siphoviridae family. Based on BLASTn at an overall nucleo-
tide similarity cut off 30% (calculated by using the percent identity times the percent
aligned length, as determined by BLASTn), Siara is not closely related to any prophage
elements in NCBI bacterial genomes.

Data availability. Siara was deposited in GenBank with accession number MZ326859.
The associated BioProject, SRA, and BioSample accession numbers are PRJNA222858,
SRR14095253, and SAMN18509351, respectively.
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