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>98% of the human genome is composed of noncoding regions and >93% of these noncoding regions are
actively transcribed, suggesting their criticality in the human genome. Yet <1% of these regions have been
functionally characterized, leaving most of the human genomes in the dark. Here, this study processes
petabyte level data and systematically decodes endogenous lncRNAs located in unannotated regions of
the human genome and deciphers a distinctive functional regime of lncRNAs hidden in massive
RNAseq data. LncRNAs divergently distribute across chromosomes, independent of protein-coding
regions. Their transcriptions rarely initiate on promoters through polymerase II, but rather partially on
enhancers. Yet conventional enhancer markers (e.g. H3K4me1) only account for a small proportion of
lncRNA transcriptions, suggesting alternatively unknown mechanisms initiating the majority of
lncRNAs. Furthermore, lncRNA-self regulation also notably contributes to lncRNA activation. LncRNAs
regulate broad bioprocesses, including transcription and RNA processing, cell cycle, respiration, response
to stress, chromatin organization, post-translational modification, and development. Therefore, lncRNAs
functionally govern their own regime distinctive from protein coding genes. This finding establishes a
clear framework to comprehend human genome-wide lncRNA-lncRNA and lncRNA-protein coding gene
regulations.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
Key points.

1) lncRNA genome locations are independent from protein-
coding regions.

2) lncRNAs have their own initiation system. lncRNA transcrip-
tions rarely initiate on promoters through polymerase II, but
partially on enhancers. Conventional enhancer activators
(e.g. H3K4me1) only account for a small proportion of
lncRNA transcriptions.

3) lncRNAs are primarily regulated by lncRNAs, instead of pro-
teins, contrary to existing notion.

1. Introduction

Human cells consume enormous energy to transcribe over 93%
of their genome [1], which consists of 98% noncoding regions [2].
These noncoding regions were once thought as desert, but increas-
ing evidence demonstrates that they are crucial in human biology
[3–5]. Long noncoding RNAs (lncRNAs, usually >200 bp) [6] pre-
dominate the transcripts from noncoding regions [7]. Understand-
ing the abundant lncRNA functions helps appreciate the
fundamental functions of the human genome.

The general strategy for characterizing protein-coding mRNAs
has been conventionally applied to understand lncRNAs [6,8]. For
example, lncRNA identification has been derived from the concept
of protein identification, such as promoter, start codon, poly-A tail
and RNA polymerase II (Pol II), and DNA conservation [6,8]. Com-
bining mRNA concept and sequencing approaches, the GENCODE
project V35 [7] has collected 16,899 lncRNAs, in which long inter-
genic noncoding RNAs (lincRNAs) and antisense RNAs have been
merged into a lncRNA category. The FANTOM project has also iden-
tified 19,175 lncRNAs from 50s strategy capturing 50 mRNA caps [9].
However, these current experimental approaches are biased to
experimental conditions like specific cell types and thus they have
only identified a limited number of lncRNAs. Bioinformatics and
computational tools can help to identify lncRNAs [10,11], but their
development has been slow to systematically identify novel
lncRNAs in the human genome, leaving most genome regions in
the dark.

On the other hand, most lncRNAs identified to date in humans
are tissue-specific [12]. However, a certain number of lncRNAs
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are evolutionary or functionally conserved. For example, zebrafish
carry conserved lncRNAs crucial for embryonic development and
these lncRNAs are functionally conserved across species [6]. Mouse
genome contains >1,000 lncRNAs with substantial evolutionary
conservation (>95%) cross-mammalian [13]. The human genome
displays>90% of conserved synteny in the corresponding regions
with the mouse genome [14]. Over 71% of human genes possess
zebrafish orthologues [15,16]. In addition, the number of identified
lncRNA transcripts increases from zebrafish, mouse to human
respectively with 4,852, 131,697 to 172,216 [17]. We hypothesize
that the human genome holds a large number of lncRNAs endoge-
nous across all cell-types and tissues and conditions.

This study employed our new software FINET [18] to systemat-
ically identify the unannotated lncRNAs (ulncRNAs) endogenous in
dark regions of human genome via exhaustively searching a
ulncRNA regulatory network hidden in massive data, including
all human RNAseq data from SRA database. We then generated
quantitative patterns from this network to uncover distinctive
mechanisms of ulncRNA activation, regulation, and function.
2. Materials and methods

2.1. RNAseq data resource and download

We downloaded all human RNAseq data from Sequence Read
Archive (SRA) as we previously described [19]. Briefly, this study
searched Homo sapiens and RNA_seq from the SRA database and
got a total of 265,361 SRA sample IDs containing various experi-
mental conditions such as tissues and cell lines (Table_S1). All
detailed info is available on our project website [20]. LncRNA
endogenous in this data set should be endogenous in the human
genome. The SRR number (SRR#) for each sample extracted from
these IDs was used to prefetch its sra format files via sratoolkit.2.8
[21]. The sra file was converted to fastq file via fastq-dump 2.8
from the same package of sratoolkit.

2.2. Alignment

The fastq files were aligned to GRCh38.p10.v27 by using STAR-
2.5 [22] with the following settings: runThreadN 30 --genomeDir
GRCh38.p10.v27 --outSAMtype BAM Unsorted SortedByCoordinate
--outFilterMultimapNmax 20 --outFilterType BySJout --
chimSegmentMin 20 --alignSJoverhangMin 8 --
alignSJDBoverhangMin 1 --quantMode TranscriptomeSAM Gene-
Counts --outFilterIntronMotifs RemoveNoncanonical --
twopassMode Basic.

All 63,925 unique genes annotated by GRCh38.p10.v27 were
used to count gene read depth by STAR as running above. The
aligned BAM files were used to count read depth for ulncRNAs, in
which unannotated regions (�10 bp distance from annotated
regions) were split into 300 bp fragments as putative pre-
ulncRNAs to count reads (see main text and Fig. 1A). This 300 bp
was used as the basic unit because lncRNA length is normally
defined as longer than 200 bp [6].

Read counting was performed by htseq-count in HTSeq 0.12.3
[23] with no strand-specific.

2.3. Sample filtering

We focused on high-quality samples with the whole transcrip-
tome, and automatically filtered out any abnormal samples. We
first filtered out any abnormal samples from downloaded and
aligned steps, such as unauthorized, unpublic, undownloadable,
unaligned to the whole transcriptome, and uncountable for the
whole whole transcriptome. The last two represented non-whole
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transcriptomes. These filtered steps generated 65,314 samples
from 265,361.

Many genes have a zero read count in RNAseq. We further fil-
tered out samples with zero counts in most annotated genes and
filtered out samples containing >50,000 genes with zero count as
done in our paralleled study [19]. This 50,000 zero count cut-off
was based on zero distribution in control RNAseq of The Cancer
Genome Atlas (TCGA) data [24], which was a large set (>11000
samples) of high quality data with whole transcriptome generated
by unified standard protocol [19]. Finally we got 26,896 high qual-
ity samples for the rest of the analysis (Table_S2).
2.4. Calculating TPM and filtering genes

To ensure gene expression comparable for each sample, we nor-
malized RNAseq data by calculating transcripts per million (TPM)
for each sample as following:

TPM = ratio / sum(ratio) * 1,000,000
ratio = read counts /gene lengths

The gene length of annotated genes was defined by GENCODE
project [7], and the ulncRNA length was the range of a ulncRNA
coordinate.

After TPM calculating, we performed gene filtering and counted
zero TPM for each annotated gene throughout all samples. Genes
with zero counts across all samples were removed and only genes
with nonzero counts >3 were kept for downstream analysis. Final
58,871 annotated genes were kept in 26,896 SRA samples.

Normally, ulncRNAs express low and carry more zero counts.
Thus, we filtered ulncRNAs with zero TPM >5000 based on zero dis-
tribution of ulncRNAs and finally got 116,678 pre_ulncRNAs to
build a regulatory network as described below.
2.5. Construction of the lncRNA endogenous regulatory network

The filtered data for both annotated genes and pre_ulncRNAs
constructed a TPM matrix, in which rows and columns were
respectively corresponding to samples and genes. This TPM matrix
was used to build a regulatory network by using our software
dubbed FINET [18]. FINET treats each gene as a target (Y) in the
matrix containing 58,871 annotated genes and 116,678 pre_ulncR-
NAs and searches its regulators from the rest of genes (X) to build a
direct network via elastic-net. This elastic-net-based search could
contain 90% of false positive interactions [18]. To reduce this type
of error, FINET introduces stability-selection [25] and randomly
splits the samples into m sub-groups (m = 8 in this study, 3362
samples in each subgroup) and then searches target-regulator
interactions from each sub-group. If an interaction consistently
occurs in m sub-groups, the type I error is very low [18,25] and this
error dramatically reduces when m value becomes large in com-
plex biological data [18]. This stability-selection repeats n times
(n = 50 in this study). A frequency score (frequency in m*n trials)
was calculated for each target-regulator interaction. A perfect fre-
quency score (frequency score = 1) represents that an interaction
always occurs (100%) in m*n random trials. This study used fre-
quency score 0.95 (p = 0.95 as shown in a running command line
below) as cutoff to filter out interactions. A large number of regu-
latory interactions with low frequency scores were normally speci-
fic for certain conditions like a given experimental cell type and
these interactions were filtered out at this step. The leftover inter-
actions occurred >380 times out of 400 trials and were treated as
endogenous target-regulator interactions independent of condi-
tions. These endogenous interactions constructed a lncRNA
endogenous regulatory network in the human genome.
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We run FINET as: julia finet.jl -c 120 -k 5 -n 50 -m 8 -a 0.5 -p
0.95 -i TPM_matrix -o mynetwork

The output network was deposited in our server [20].
We concatenate conjunctions of pre-ulncRNAs if they are close

neighbors with distance of 1 bp (e.g. concatenate 0–299 to 300–
599 to 0–599).

2.6. Network centrality

Network centrality was calculated by using NetworkX2.5
implemented in python3.8 [26]. To avoid biases, we calculated
two types of centrality, degree and eigenvector. Genes with degree
and eigenvector centrality were ranked on the basis of ranking
score as approached for network node ranking [27]. The final rank-
ing was generated on the basis of the sum of two ranking scores as
practiced in gene ranking in a regulatory network [27]. The highest
ranked nodes were treated as network hubs.

The degree (frequency count) of a network node was counted
by its total interactions.

2.7. Module identification and category

To understand ulncRNA functions, we searched ulncRNA target
modules in which ulncRNAs as regulators and protein coding genes
as targets. We filtered the entire network with ulncRNAs as regu-
lators and protein coding genes as targets and got a sub-network
of ulncRNA targeting protein coding genes. The modules of this
sub-network were searched by spectral partitioning algorithm
via using MODULAR Alfa 0.21 under Linux terminal [28,29]. MOD-
ULAR was designed to facilitate module identifications from nature
networks through maximization of the degree of modularity.
Implemented by C language, MODULAR computes fast and auton-
omously when detecting modules. We run MODULAR by inputting
a unipartite network in UCINET edgelist format and then optimiz-
ing by spectral partitioning.

2.8. ulncRNA transcription initiation

Human transcription marker binding data were downloaded in
both bed and bam files from ENCODE [2]. All files aligned to
GRCh38 were selected or converted to GRCh38 by LiftOver [30].
A total of 780 peak bed samples containing top 9 abundant mea-
surements of transcription initiation were downloaded, including
104, 102, 51, 182, 14, 110, 111, and 95 of Chip-seq peak bed files
respectively for H3K4me1, H3K27ac, H3K9ac, H3K4me3, POLR2A,
H3K36me3, H3K27me3, H3K9me3, and 11 ATAC_seq bed files
(Table_S3).

We examined the transcription marker binding abundance in
the ulncRNA putative promoter region, which was defined as
5000 bp upstream from ulncRNA transcription start site (TSS) that
is the first base pair of either 50 or 30 in the genome coordinate of a
ulncRNA. We counted the binding peaks of either 50 or 30 of a
lncRNA but only count one peak even if more binding peaks might
Fig. 1. Functionally endogenous ulncRNAs identified in the human genome. A, A wor
represent three genetic fragments, and 1, 2, 3 and 4 denote four 300 bp spit fragment lab
was named as chromosome plus coordinate. Node label color denotes the gene cate
represents significance (p-value), from low (yellow) to dark blue (high, low p-value) infer
FINET software, thicker, more confident. C, Overlap of lncRNAs from FANTOM and total 1
size distribution of total 16,594 ulncRNAs. E, Distribution of minimum distance from uln
of RNAs/chromosome length (Fig. S2 for detail). G, an example profiling of ulncRNA, chr19
profiling of two typical histone markers was plotted, H3K4me1(ENCODE ID: ENCFF730
ZNF837, RIPS5, MIR4754 were marked at the bottom. H, gene category proportion o
p_pseudogene as processed_pseudogene. I, top 10 highest connected nodes in ulncRNA n
references to color in this figure legend, the reader is referred to the web version of thi
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present at either end (50 or 30) for a given marker and a given
sample.

In addition, a total of 1918 and 2694 bam files respectively for
H3K4m1 and H3K4me3 were also downloaded to compute the
promoter matrix (Table_S3).

Transcription marker measurements varied with tissues and
cell lines in the ENCODE project. For unbiased results, we did not
filter out any tissues and cell types and included all measurements
conducted by ENCODE.

2.9. Statistics

All statistics analysis and presentation were performed by R 3.6
libraries including ggplot2, ggVennDiagram and GenomicRanges.
All labeled p-values were derived from t test unless specifically
noted in this study. Network was visualized by cytoscape 3.7 [31].
3. Results

3.1. Endogenous ulncRNA regulatory network

The data from our previous study revealed that only 22% of
lncRNAs annotated by the GENCODE project are functionally
endogenous (Fig. S1) [19], indicating that most annotated lncRNAs
are tissue-specific. The number of endogenous ulncRNAs in dark
regions of the human genome remains unknown.

To identify endogenous ulncRNAs, we used TPM as expression
value (materials and methods) and developed an algorithm strat-
egy to systematically capture all functional ulncRNAs endogenous
across all human tissues and conditions (Fig. 1A). This strategy
includes the following 4 key steps. (1) split unannotated dark
regions (�10 bp distance from annotated regions) into 300 bp
RNA fragments as preliminary ulncRNAs (Fig. 1A, materials and
methods). (2) identify interactions of ulncRNAs endogenous in
human genome from massive data (all RNAseq data deposited in
SRA) by using our FINET software that infers endogenous regula-
tory interactions from massive data with high accuracy [18] via
integrating algorithms with stability-selection, elastic-net, and
parameter optimization (materials and methods), and simultane-
ously remove nonfunctional ulncRNAs with no regulatory interac-
tions (e.g. removing the blue color ulncRNA in Fig. 1A). (3)
concatenate conjunctions (e.g. concatenate ulncRNA1 and
ulncRNA2 into ulncRNA12 in Fig. 1A). (4) assemble all interactions
into a ulncRNA regulatory network, in which an individual
ulncRNA possesses at least one functionally regulatory interaction.
This strategy generated an endogenous ulncRNA regulatory net-
work, which includes a final set of 16,594 active unique ulncRNAs
with 62,586 edges and 29,794 nodes (Fig. 1A–B). This whole net-
work was deposited and searchable from the project website [20].

Among 16,594 ulncRNAs, only 4.5% (758/16594) overlapped
with lncRNAs identified by FANTOM project (Fig. 1C), which used
experiments to identify lncRNAs. Biological experiments are usu-
ally performed by using specific conditions like specific cell types
kflow of ulncRNA regulatory network identification. Green, orange and blue bars
els. B, a sample network of an ulncRNA (ID: chr3.36642256.36642555). ulncRNA ID
gory, red:protein, green:ulncRNA, purple:annotated noncoding RNAs. Edge color
red by FINET. Edge thickness denotes confidence measured by frequency score in our
6,594 unique ulncRNAs identified by this present study via using FINET software. D,
cRNAs to proteins. F, ulncRNA density along chromosomes measured by total length
:58381218.58384517. Its log2 expression level in TPMwas shown in brown, and the
CTY.bigWig) and H3K4me3 (ENCODE ID: ENCFF881MFX.bigWig). Annotated genes
f top 1000 centrality in ulncRNA network. P_ denotes processed. For example,
etwork. Frequency count represents interactions (degree). (For interpretation of the
s article.)
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and results derived from these experiments could be biased to
experimental conditions. In contrast, our results come from big
data from various conditions and results are unbiased. This 4.5%
overlap indicated that most of lncRNAs identified by both the FAN-
TOM and GENCODE projects are cell type specific.

Overall, we revealed a novel ulncRNA regulatory network
endogenous across human genomes and conditions deposited in
the SRA database, with no cell type specificity.
3.2. Key characteristics of endogenous ulncRNAs

To understand the primary characteristics of these 16,594
ulncRNAs, we examined the distribution of their length, closest
distance to protein-coding sequences, chromosome distribution,
and key hubs in the network. Most of ulncRNAs (65%) were
<600 bp length (43% of 600 bp + 22% 300 bp) (Fig. 1D), and long
ulncRNAs (>1500 bp) occupied 12%. Surprisingly, most of these
ulncRNAs distribute far away from protein-coding regions, with
>62% located >5 kb from protein-coding regions (Fig. 1E). We also
calculated the ulncRNA density across chromosome (total ulncR-
NAs length/chromosome length) and found that chr19 possessed
the most density of ulncRNAs, with >1 bp ulncRNAs in every
100 bp DNA length (Fig. 1F, Fig. S2). An example in chr19 (id:
chr19.58381218.58384517) was shown in Fig. 1G.

To understand the crucial hubs in the ulncRNA network, we
examined both the centrality of the entire network and the highest
connected nodes. ulncRNAs worked as the key hubs in this net-
work and they occupied >50% of top 1000 centrality and 90% of
top 50 as ulncRNA centrality (Fig. 1H, materials and methods). In
addition, 8 out of top 10 highest connected nodes were ulncRNAs
(Fig. 1I). The top 1 of these ulncRNAs, chr13.109423936.
109424535, connected with total 5511 components in the entire
network. This indicated that ulncRNAs, rather than protein-
coding genes, predominate the network hubs and degrees, suggest-
ing ulncRNAs govern the entire ulncRNA network and ulncRNA
regime, instead of protein coding genes.

Together, these above results suggested that the ulncRNA
regime is overall distinctive from that of protein-coding genes, in
which ulncRNAs are short, far away from coding regions, varied
in chromosome distribution, and controlled by ulncRNA
themselves.
3.3. Systematic mechanisms of ulncRNA transcription initiation

The mechanisms of lncRNA initiation have been intensely
debated [6]. Protein-based mechanisms such as enhancers and
RNA polymerase II have been thought as the primary factors for
lncRNA activation [6]. To understand whether the protein-based
mechanisms can be applied to ulncRNA initiation, we systemati-
cally compared the binding distributions of transcription markers
of ulncRNAs and protein-coding genes (materials and methods).
To make binding profiles comparable between protein-coding
genes and ulncRNAs, we used the same number of ulncRNAs and
protein-coding genes. From our previous study, we learned that
14,122 protein coding genes were active in normal conditions
[19], thus we randomly selected 14,122 ulncRNAs out of 16,594
to match the protein number. Total 9 factors that are abundantly
measured by ENCODE were examined, including ATAC_seq
[32,33], 3 markers for enhancer (H3K4me1, H3K27ac, H3K9ac)
[34–36], 3 for promoter (H3K4me3, POLR2A, H3K36me3) [37,38],
and 2 for silence and tissue specificity (H3K27me3 and
H3K9me3) [6,39].
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We counted the binding peak frequency of each factor across
promoter regions of these 14,122 ulncRNAs (materials and meth-
ods). Surprisingly, POLR2A barely bound to lncRNA promoter
regions and it bound only 1668 (median) out of 14,122 ulncRNAs
(Fig. 2A), indicating that >88% of ulncRNAs were not associated
with POLR2A during their initiations. This suggested that poly-
merase II plays much less role than previously thought in activat-
ing ulncRNA transcription.

In contrast, all three enhancer biomarkers, H3K4me1, H3K27ac,
and H3K9ac, exhibited significantly higher binding sites than
POLR2A (Kruskal–Wallis, p < 2.2e � 16, Fig. 2A). Furthermore,
H3K4m1 bindings were significantly higher than H3K4me3, a mar-
ker for active promoters near TSS, (Fig. 2B-C, Fig. 1G), while
H3K4me3 bindings were higher in protein coding genes (Fig. 2C).
This indicates that enhancers play a much greater role than poly-
merase II in activation of ulncRNAs.

To better understand the whole picture of these factor bindings,
we box-plotted all the binding sites for ulncRNAs and protein cod-
ing genes. ulncRNAs contained significantly lower bindings than
protein coding genes (Fig. 2D–E), at median of 1990 and 10,321
for ulncRNAs and protein coding genes respectively (Fig. 2D), indi-
cating that only 14% (1990/14122) of ulncRNAs possessed one bio-
marker to bind while 73% (10321/14122) of proteins have at least
one biomarker to bind. Actually, all these histone marker bindings
to ulncRNAs were significantly lower than to protein coding genes
(Fig. 2E, Fig. S3). For example, H3K4me3, H3K4me1 and POLR2A
densely bound to protein coding genes with 85% (12035/14122),
83% (11666/14122) and 67% (9446/14122) respectively (Fig. S3).
Moreover, protein coding genes simultaneously possessed multiple
factors for enhancers (e.g. ACTA and H3K4me1) and promoters
(H3K4me3) to densely bind (Fig. 2E), but ulncRNAs possessed
much fewer factors to bind. This might partially interpret the
low expression level of ulncRNAs. Moreover, the overall low bind-
ings and the low H3K4m1 bindings were obviously not sufficient to
activate the widespread ulncRNAs, suggesting that the key mecha-
nism accounting for the majority of ulncRNAs activation remains
to be investigated.

To appreciate the binding distance to ulncRNA TSS, we calcu-
lated the minimum distance from factor bindings to TSS. The min-
imum distance median ranged from 240pb (ATAC) to 336 bp
(H3K36me3) (Fig. 2F). Factors with most binding sites (Fig. 2A),
including ATAC, H3K4me1, H3K27ac, H3K9ac, and H3K4me3, were
bound to ulncRNAs with short distance to TSS (Fig. 2F). However,
these short distances for ulncRNAs were significantly longer than
protein coding genes, in which factors bound much closer to pro-
tein coding gene TSS (Fig. 2G, Fig. S4, Fig. S5). Furthermore, four
markers (ATAC, H3K9me3, H3K4me3, POLR2A) were bound to pro-
tein coding gene TSS within 50 bp (median) while the rest within
120 bp (median) (Fig. S4). In contrast, the median for all ulncRNAs
was close to 280 bp (Fig. S5). This was another line of evidence for
ulncRNA initiation regions distinctive from protein coding genes.
Altogether, these above suggested that ulncRNA activation mecha-
nism is different from protein coding genes and that the alternative
mechanism for ulncRNA activation remains dark.
3.4. ulncRNA regulators

Our network was a direct regulatory network (materials and
methods), in which a regulator was defined as a node that directly
points to a targeting node (gene). To find regulators for a ulncRNA,
we treated this ulncRNA as a target and found all regulators
pointed to this ulncRNA. We searched all regulators of 16,594
lncRNAs in the entire ulncRNA regulatory network and found a



Fig. 2. Contributions of histone and transcription marker to the ulncRNA activation. A, the frequency (total number of binding sites) of 9 measurements (8 markers and
ATAC_seq) that bind to ulncRNA promoter regions (within 1000 bp from TSS, transcription start site). The black line represents the median of POLR2A binding sites (1668).
These 9 measurement data were extracted from ENCODE database (https://combai.org/static/ids/ulncRNA_encodesamples.zip). Significance level, **,**** denotes p value
<0.0034 and 3.4e-06 respectively. B, binding heatmap of H3K4me1 and H3K4me3. The heatmap was plotted by using the median of 1918 and 2694 samples respectively for
H3K4me1 and H3K4me3 measured by the ENCODE project (H3K4me1bam and H3K4me3bam). C, Comparison H3K4me1 and H3K4me3 binding sites of ulncRNAs and protein
coding genes. Labeled number represents p value derived from t test in this study. D, Comparison of total binding sites of 9 measurements between ulncRNAs and proteins. E,
Binding comparison of each measurement between ulncRNAs and proteins. F, minimum distance (bp) from factor binding to TSS. **,***,**** denote p < 0.0055, 0.00053, and
5.7e-08 respectively. G, minimum distance (bp) comparison of each factor between ulncRNAs and proteins.

A. Wang Computational and Structural Biotechnology Journal 20 (2022) 2381–2390
total of 31,051 genes regulating ulncRNAs. We examined the gen-
ome coordinates of all these regulators and found that the most
abundant regulators (>31%) were located outside their own chro-
mosomes (Fig. 3A), suggesting that almost a third of ulncRNAs
are trans-regulated. In addition, 65% of these 31,051 regulators
were ulncRNAs (Fig. 3B), suggesting that ulncRNAs primarily regu-
late themselves, consistent with our previous studies showing that
noncoding genes tend to trans-regulate themselves in the same
category [19].

In contrast to the conventional notion that proteins serve as pri-
mary regulators for lncRNAs, proteins actually work as secondary
regulators (22%) for ulncRNAs (Fig. 3B). Among protein regulators,
a mitochondrial protein MT-CO1 connected to most ulncRNAs,
with 400 interactions (Fig. 3C left panel). Another mitochondrial
protein MT-ND4 was also ranked as top 8 highest connected regu-
lators (Fig. 3C left panel). Moreover, two annotated noncoding
RNAs, MT-TD and MT-TL1, were also in top 10 noncoding regula-
tors for ulncRNAs (Fig. 3C right). This suggested that mitochondrial
components play a critical role in regulating ulncRNAs.

3.5. ulncRNA targets

Whether lncRNAs target their neighbor genes is debated [6,12].
We plotted gene expression regression of ulncRNAs and their clos-
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est proteins within distance of 300 bp and 1000 bp respectively,
and found that ulncRNAs did not regulate their neighbor protein
coding genes (Fig. 4A, Fig. S6). Instead ulncRNAs regulate their tar-
gets in a trans-regulatory manner, with the majority of ulncRNAs
(57%) across chromosomes (Fig. 4B). This parallels with a recent
observation showing that the majority of lncRNAs are located in
cytoplasm as trans-regulators [40]. This is also consistent with
our study on annotated lncRNA trans-regulation mechanisms [19].

The majority of ulncRNAs target protein coding genes (55%,
Fig. 4C), indicating their broad regulatory role. However, their tar-
gets were thinly scattered. The top 1 protein coding gene target
(ARF6) ranked by network degree only carries 12 interactions and
the top noncoding RNAs and ulncRNAs have <10 interactions
(Fig. 4D). Comparing hundreds of protein coding gene targets
[19], ulncRNAs regulate their targets in a fine way. Together, these
above suggested that ulncRNAs primarily perform broad- but fine-
regulation toward their targets.

3.6. ulncRNA primary functions

To understand the primary functions of ulncRNAs, we investi-
gated the key biological functions of ulncRNA targets. Among
ulncRNA targets, protein coding genes dominated the whole profil-
ing (>55%, Fig. 4C) and their functions should represent the pri-

https://combai.org/static/ids/ulncRNA_encodesamples.zip


Fig. 3. ulncRNA Regulators. A, distribution of distance from ulncRNA regulators to ulncRNAs (percentage of total 31,051 ulncRNA regulators). B, gene categories of ulncRNA
regulators (% of total 31,051 ulncRNA regulators). C, top 10 highest connected regulators of protein coding genes, annotated RNAs, and ulncRNAs.
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mary functions of ulncRNA targets. We searched ulncRNA target
modules by spectral partitioning algorithm [28,29]. Total 154 mod-
ules were generated, but only 4 of them were functionally
enriched. The rest were of small member size (member number < 5)
(Fig. 4E, Figs. S7–S10). Their functions were primarily relevant to
RNA processes but included 7 key categories,1) transcription and
RNA processing (RNA splicing, ncRNA metabolic and processing);
2) mitotic cell cycle and DNA replication; 3) cellular respiration;
4) cellular response to stress (DNA repair); 5) chromatin organiza-
tion; 6) translation and post- translational protein modification,
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proteasomal protein catabolic process, and protein localization;
7) nervous system development. These ulncRNA target functions
suggested that biological roles of ulncRNAs are broad.

To summarize, histone modifications on enhancers play a more
important role in activating ulncRNAs than polymerase II in pro-
moter regions, but these histone modifications only account for a
small proportion (<20%) of ulncRNA originations. The ulncRNA
self-regulation and unknownmechanism activate the large propor-
tion of ulncRNAs, resulting in an array of bioprocess activation
(Fig. 4F).



Fig. 4. ulncRNA targets. A, Gene expression correlation between ulncRNAs and their closest proteins (within 300 bp). B, Distribution of distances from ulncRNAs to their
targets (percentage of total 51,633 ulncRNA targets). C, gene categories of ulncRNA targets (% of total 51,633 ulncRNA targets). D, top 10 highest connected ulncRNA targets of
protein coding genes, annotated RNAs, and ulncRNAs. UlncRNA targets were ranked by their degree (freq count) from the entire network. E, top 4 functional modules in
ulncRNA network. The size of the module represents its member abundance. F, Functionally scheme of ulncRNA. The arrow size and line thickness represent the quantitative
weight of importance. For ulncRNA activation, the factor importance ranking is as follows: unknown factor > ulncRNA > histone > POL II.
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4. Discussion

This present study systematically decoded functionally endoge-
nous lncRNAs from unannotated regions of the human genome and
revealed a functionally distinctive regime for lncRNAs. LncRNAs
are widely expressed throughout the human genome, but only a
small proportion of lncRNAs have been identified and these anno-
tated lncRNAs are mostly tissue specific [8,9]. Little has been
known about lncRNA endogeneity in the human genome. This pre-
2388
sent study overcame the limitations of tissues and conditions by
using all RNAseq data from SRA and revealed 16,594 endogenous
lncRNAs in the human genome. These lncRNAs mostly self-
regulate independently of protein coding genes and establish their
own functional regime distinctively from proteins in terms of dis-
tribution, activation, regulation and function.

The mRNA initiation concept has been widely applied to lncRNA
study [6]. Several mechanisms have been proposed for lncRNA ini-
tiation, such as promoter and POL II and protein-based histone



A. Wang Computational and Structural Biotechnology Journal 20 (2022) 2381–2390
modifications on enhancers [6,8]. However, our data revealed that
these conventional mRNA-based mechanisms only account for
around 20% of lncRNA activation. lncRNA self-regulation generally
contributes to their activation because individual lncRNA expres-
sions are heavily regulated by other individual ulncRNAs and
lncRNA expression levels primarily result from lncRNA-self regula-
tion. In normal conditions, these regulations stay weak to save
energy, but under stimulation a certain group of lncRNAs would
be highly activated by an array of lncRNA individuals and perform
their biology functions [3,19]. The complete big picture of lncRNA
activation independent on protein-based polymerase remains to be
further investigated.

lncRNAs are expressed at much lower levels than mRNAs. The
mechanism for that remains debated [6]. The short life-span and
the low promoter transcription efficiency have been thought as
the mechanism of low lncRNA expression, but recent studies have
demonstrated that lncRNAs have a similar half-life as normal
mRNA and the bi-directional promoter working for protein coding
genes perform similarly for lncRNAs [6]. These two mechanisms
hardly interpret the low lncRNA expression. The critical mistakes
in these two mechanisms resulted from an assumption that
lncRNAs employ the same mechanisms of protein-based promot-
ers. Our data showed that ulncRNAs rarely use protein-based pro-
moter mechanisms but they partially employ enhancers far away
from normal protein coding gene promoters. This parallels recent
observations showing lncRNA initiations from enhancers [9]. How-
ever, this enhancer initiation for lncRNAs is distinctive from pro-
tein coding genes. In protein coding gene regime, histone
modifications like H3K4me2 are sufficient for transcription initia-
tion, but all these protein-based factor bindings to lncRNAs are
too low to initiate widespread lncRNAs regardless of enhancers
and promoters. These low bindings of all transcription markers at
least interpret the partial mechanism of low lncRNA expression.

lncRNAs were once thought of as junk with no functions, but
recently their functions have been recognized as regulators in sev-
eral important processes such as growth and metabolism [4,41–
43]. Our recent study also unearthed noncoding RNAs as the uni-
versal deadliest regulators for all cancers [3]. However, the primary
functions of the vast majority of human genome occupied by
lncRNAs still remain unknown. Here, we systematically reveal they
target protein coding genes functioning in an array of bioprocesses,
such as transcription and RNA processing, mitotic cell cycle and
DNA replication. These help us to understand the basic mechanism
of lncRNA biological functions.

LncRNAs pre-dominate most of the human genome and have
their own regime distinct from proteins. Applying protein coding
gene strategy and concept to understand lncRNAs may be mislead-
ing. We need to create a novel concept system to understand
lncRNAs and the human functional genome.

It is challenging for both biologists and computational scientists
to dig out the big picture from massive biological data due to
strong background noise and mixed labels in the database. This
present study employed FINET to systematically remove noise
and condition effects and revealed the endogenous human ulncR-
NAs from huge data. This established a new avenue to unearth bio-
logical meaningful patterns from increasing massive data. We
recently have applied the similar algorithm and deep learning neu-
ral networks to identify universal biomarkers for detecting cancers
[44]. Combining FINET and artificial intelligence algorithms helps
to accelerate novel discoveries in this big data era.
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