
Dereplication and De Novo Sequencing of Nonribosomal 
Peptides

Julio Ng1,8, Nuno Bandeira2,8, Wei-Ting Liu3, Majid Ghassemian3, Thomas L. Simmons4, 
William Gerwick4,5, Roger Linington6, Pieter Dorrestein3,5, and Pavel Pevzner2,7

1Bioinformatics Program, University of California San Diego, La Jolla, California 92093

2Department of Computer Science and Engineering, University of California San Diego, La Jolla, 
California 92093

3Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, 
California 92093

4Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 
92037

5Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 
La Jolla, California 92092

6Department of Chemistry, University of California Santa Cruz, Santa Cruz, California 95064

Abstract

Nonribosomal peptides (NRPs) are of great pharmacological importance, but there is currently no 

technology for high-throughput NRP dereplication and sequencing. We employ multi-stage mass 

spectrometry followed by spectral alignment algorithms for sequencing of cyclic NRPs. We also 

present an algorithm for comparative NRP dereplication that establishes similarities between 

newly isolated and previously identified similar but non-identical NRPs, substantially reducing 

dereplication efforts..

The classical protein synthesis pathway (translation of template mRNA) is not the only 

mechanism for cells to assemble amino acids into proteins/peptides. Nonribosomal peptide 

synthesis is performed by Nonribosomal Peptide Synthetases (NRPS) that represent both the 

mRNA-free template and building machinery for the peptide biosynthesis1. NRPS produce 

nonribosomal peptides (NRP) that are not directly inscribed in genomes and thus cannot be 

inferred with traditional DNA sequencing. NRPs are of great pharmacological importance 

since they were optimized by evolution for chemical defense and communication. Starting 

from penicillin, NRPs and other natural products have an unparalleled track record in 

pharmacology: most anti-cancer and anti-microbial agents are natural products or their 
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derivatives2. NRPs include antibiotics, antiviral and antitumor agents, immunosuppressors, 

and toxins.

Most NRPs contain non-standard amino acids, increasing the number of possible building 

blocks from 20 (in standard ribosomal peptides) to several hundred. Previous methods for 

NRP characterization are based on Nuclear Magnetic Resonance (NMR) and are time 

consuming and error prone3,4,5. Therefore, there is a need for the efficient structure 

elucidation of NRPs. Furthermore, significant efforts in activity screening can be saved if 

newly isolated compounds can be rapidly associated to a known compound by 

‘dereplication’6.

In a pioneering study7, a cyclic algal peptide was linearized and manually sequenced using 

tandem mass spectrometry (MS2). This approach, while successful, did not result in a robust 

NRP sequencing technique since most NRPs evade linearization attempts. Hormothamnin A 

represents another example of MS-based NRP sequencing8. Barber et al.,9 analyzed spectra 

of an antimicrobial agent tyrothricin, a mixture of different NRPs, and used previously 

identified components of tyrothricin to manually derive other variants. Hitzeroth et al., 

200510 resequenced new variations of streptocidins using a similar strategy but commented 

that it is limited to peptides with standard amino acids.

We show how to compare spectra of similar but non-identical NRPs, enabling ‘comparative 

dereplication’ that establishes the similarity between a newly isolated and a previously 

identified similar (rather than identical) compound. Since many NRPs are produced as 

related analogs (e.g., 61 out of 90 cyanopeptides recently identified in drinking water 

represented variants of known peptides11), comparative dereplication can reduce NRP 

characterization efforts from weeks to minutes. For example, cyanopeptide X represented an 

unknown bioactive compound (currently known as desmethoxymajusculamide C) when this 

project started in 2007 but was sequenced using NMR in 2008. The effort invested in 

analyzing this NRP in 2007 would have been saved if our algorithm NRP-Dereplication 

were available. Indeed, NRP-Dereplication revealed that it is related to majusculamide C. 

Another example is compound 879 that was assumed to be novel but was found to be known 

during the patent application. NRP-Dereplication revealed that it is neoviridogrisen. NRP-

Dereplication derives a sequence of an unknown compound given a database of known 

cyclic peptides (provided a related peptide is known). In the cases when no related NRPs are 

known, we performed de novo sequencing with NRP-Sequencing algorithms (a self-

alignment based algorithm) and NRP-Tagging (an approach that uses frequently occurring 

amino acid tags for peptide reconstruction). We further illustrate reconstruction of 

cyanopeptide X, the first report of automated de novo reconstruction of a cyclic peptide by 

mass spectrometry.

When analyzing a cyclic peptide using mass spectrometry, the MS2 stage amounts to 

breaking (linearizing) the cyclic peptide into linear peptides with the same parent mass 

(Figure 1a–e). The mixture of these peptides is further subjected to the next stage of mass 

spectrometry (MS3) resulting in the difficult problem of interpreting a MS3 spectrum of 

different (but related) peptides. The theoretical MS3 spectrum Spectrum(P) of the cyclic 
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peptide P = p1…pn is thus the superposition of the theoretical spectra Spectrum(Pi) of n 

linear peptides Pi = pi…pnp1…pi−1 (Figure 1a–e and Supplementary Figure 1).

Comparative dereplication can be formulated as the Cyclic Peptide Dereplication Problem 

(CPDP): Given an experimental spectrum S, a cyclic peptide P, and a parameter k 

(maximum number of mutations/modifications), find a cyclic peptide P' with at most k 

mutations/modifications from P that maximizes the number of shared masses between S and 

the theoretical spectrum of P'.

We address the CPDP for the most relevant case k ≤ 1. Given the MS3 spectrum of an 

unknown peptide P', and the sequence of a known peptide P that differs from P' by a single 

mutation at an unknown position x, NRP-Dereplication derives P'. NRP-Dereplication is 

based on the observation that most peaks shared between the experimental spectrum of P' 

and theoretical spectrum P correspond to subpeptides that do not contain position x (δ-

correlated subpeptides). Conversely, most peaks in the experimental spectrum P' that differ 

from the peaks in the theoretical spectrum of P by δ= Mass(P') − Mass(P) correspond to 

subpeptides that contain position x (δ-correlated subpeptides). The coverage of a position x 

is defined as the number of 0-correlated subpeptides containing that position, plus the 

number of δ-correlated subpeptides not containing that position. Thus, correlated 

subpeptides (both 0-correlated and δ-correlated) have a potential to reveal the differing 

amino acid as the amino acid with the minimum coverage. For example, the drop in 

coverage at ornithine (Supplementary Figure 2) allows one to dereplicate the experimental 

spectrum of tyrocidine C1 using sequence of tyrocidine C (data acquisition methods are 

detailed in the Online Methods).

Since the peptide P to be used for dereplication is not known in advance, every NRP 

spectrum needs to be compared against a database of known cyclic peptides such as 

NORINE12. NRP-Dereplication is able to localize the single mutation using the top scoring 

peptide in NORINE (Supplementary Table 1).

The tyrocidine family presents an ideal test for NRP-Dereplication since tyrocidine A, B and 

C are in NORINE, while tyrocidines A1, B1 and C1 are not. NRP-Dereplication shows that 

spectra from tyrocidine A, B and C have top hits corresponding to NORINE peptides, while 

their A1, B1 and C1 counterparts are mapped to high-scoring matches with one mutation 

(Supplementary Table 1). NRP-Dereplication also localizes the position with minimum 

coverage as the mutated position (which was correctly identified for all compounds we 

analyzed). NRP-Dereplication generated only two high-scoring false hits representing very 

short peptides (H8495 and BQ123), but closer examination reveals that the matches are 

correlated to the query peptides.

In the case when no related peptide is known (and thus NRP-Dereplication is not 

applicable), we address the following Cyclic Peptide Sequencing Problem (CPSP): Given an 

experimental spectrum S, find a cyclic peptide P maximizing the number of shared masses 

between S and the theoretical spectrum of P.

Reconstructing the cyclic peptide P from its theoretical spectrum Spectrum(P) amounts to 

the cyclic version of the Partial Digest Problem (PDP)13. However, it is not clear how to 
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extend the algorithms for the PDP13,14 to a cyclic setup. Furthermore, reconstructing P 

from its experimental MS3 spectrum S is a difficult problem since the contributions of 

different linear versions of P to the experimental spectrum are non-uniform.

Pevzner et al., 200015 introduced spectral convolution and spectral alignment for revealing 

similarities between related but different spectra. Since an MS3 spectrum of a cyclic peptide 

is a superposition of spectra of related linearized peptides, spectral auto-convolution and 

auto-alignment reveal key features of the cyclic peptide.

The auto-convolution of a spectrum S with offset x is defined as the number of masses s in S 

such that s − x is also a mass in S; the cyclic auto-convolution Conv(S,x) is defined as the 

number of masses s in S such that either (s − x) or (s − x) + PrecursorMass(S) is also a mass 

in S. For example, high scoring positions of the auto-convolution of seglitide reveal masses 

of amino acids of the NRP (Figure 1e). Furthermore, the largest peak Conv(S,85) = 14 

corresponds to the mass of the methylated alanine (A+14). The other five amino acids in 

seglitide also correspond to prominent peaks at positions 99, 128, 147, 163, and 186 with 

Conv(S,x) ≥ 8. Spectral auto-convolution (Figure 1e) represents a computational approach to 

deriving residue masses of cyclic peptides.

The auto-alignment of a spectrum S with offset x is defined as the set of peaks Sx = {s : s ∈ S 

and (s − x) ∈ S}. We view auto-alignment as a virtual spectrum with parent mass 

PrecursorMass(S) − x (Supplementary Figure 5). For Seglitide, S85 (x=85 maximizes 

Conv(S,x) for seglitide) corresponds to the alignment between A+14YWKVF and 

YWKVFA+14.

Using the concepts of auto-convolution and auto-alignment, we present NRP-Sequencing, 

an algorithm to solve the CPSP that does not require prior knowledge of the amino acid 

masses in the compound. NRP-Sequencing first uses the MS3 auto-convolution to derive the 

set of possible amino acid masses and then uses the MS3 auto-alignment using the top k 

possible offset masses, x, to construct a consensus spectrum Sx for each x. NRP-Sequencing 

further generates all possible reconstructions for each Sx and reranks all generated cyclic 

peptides according to their matches to the MSn spectra (for n = 3, 4, 5). More details on 

NRP-Sequencing are given in the online methods, Supplementary figures 3–5, 

Supplementary Note, [Correct? or please cite appropriate figures]. In default mode, NRP-

Sequencing selects the masses of the top 20 auto-convolution masses in the interval [57, 

200] Da and combines them with the masses of standard amino acids. It turns out that NRP-

sequencing is able to generate the correct sequence (among the set of generated 

reconstructions) in all cases when the resulting set of masses contains all amino acid masses 

in the NRP (11 out of 18 compounds). Moreover, in almost all cases the correct sequences 

were ranked as the top-scoring reconstruction (Supplementary Table 2). However, the 

success of NRP-Sequencing is constrained by the ability to determine all amino acid masses 

by auto-convolution. Below we describe NRP-Tagging that addresses this limitation.

Because some positions are less prone to breakage than others, reconstruction of all amino 

acids masses in NRP using auto-convolution may be an unattainable goal. NRP-Tagging 

attempts to reconstruct gapped peptides from MS3 spectra of cyclic peptides (Figure 1g).
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Spectra of cyclic peptides are superpositions of related (cyclically shifted) linear peptides 

that tend to have the same tags repeated in the spectrum. Given an MS3 spectrum, we find 

all 2-amino-acid tags XY (defined by triplets of peaks s, s+X, s+X+Y in the spectrum) and 

select all frequent tags (e.g., tags repeated 3 or more times). For example, if a tag XY starts 

at positions s, s+A and s+A+B, then masses A and B may represent two other (adjacent) 

amino acids in the cyclic peptide (Figure 1g). NRP-Tagging first constructs a gapped 

peptide (e.g., [85,163,186,128,246] for Seglitide) and further attempts to extend it into full-

length de novo reconstructions (e.g., [85,163,186,128,99,147]). Since gapped peptides often 

contain masses representing combined masses of adjacent amino acids (e.g., 246 = 99 + 

147), NRP-Tagging attempts to partition each mass in the gapped peptide into smaller 

masses (the algorithm is detailed in the online methods). Similar to algorithms for 

sequencing linear peptides, NRP-Tagging typically brings the correct peptide close to the 

top of the list of the high-scoring peptides (Table 1). This feature facilitates further analysis 

of NRPs, e.g., it allows one to correlate high-scoring reconstructions with NMR data. 

Moreover, the top-scoring peptide returned by NRP-Tagging typically have minor 

differences as compared to the correct peptide, e.g., combining masses of adjacent amino 

acids or choosing a mass of isotopic amino acid.

A ‘catch-22’ situation is encountered in the use of mass spectrometry for NRP 

interpretation. On the one hand, there are no algorithms for interpretation of NRP spectra, 

thus providing little incentive for generating NRP spectra. On the other hand, shortage of 

NRP spectra slows down development of algorithms for NRP interpretation because spectral 

datasets are needed to develop such algorithms. This paper presents an attempt to break this 

unfortunate cycle that will hopefully motivate the natural product researchers to begin 

generating NRP spectra.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental and theoretical spectra of seglitide Cyclic(N-methyl-Ala, Tyr, D-Trp, Lys, 

Val, Phe (a) Cyclic diagram of seglitide. A+14 denotes a methylated alanine; the integer 

residue masses are 85, 163, 186, 128, 99 and 147. (b) MS2 fragmentation of seglitide 

generates up to 6 linear peptides representing different linearized variants of the same cyclic 

peptide. (c) The theoretical spectrum for seglitide is a superposition of the fragment masses 

from the linearized peptide. (d) Experimental spectrum of seglitide (the peaks corresponding 

to prefix masses are shown in red). (e) The auto-convolution of the spectrum in insert d has 
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prominent peaks for offsets corresponding to masses of amino acids (shown in red). The 

peak at 0 is truncated. (f) Generation of a gapped peptide from a theoretical spectrum of 

seglitide. The theoretical spectrum is colored to highlight various linear peptides. For 

illustration purposes only 3 linearized (A+14YWKV (blue), FA+14YWKV (red) and 

VFA+14YWK (green)) versions of the cyclic peptide are shown. The frequent 2-amino-acid 

tag YW is observed in 3 different locations in the spectrum. Additionally, the offsets 

between 3 consecutive locations of tag YW reveal the masses of amino acids F and V. (g) 

The gapped peptide constructed from f combines YW (derived from a frequent tag) with VF 

(derived from the inter distances between tag locations). A+14 and K are inferred from the 

flanking masses of YW and VF. The complete sequence A+14YWKVF is recovered, but 

gaps may be generated.
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Table 1

NRP-Tagging results. The reconstructed NRPs are represented as sequences of masses. For the sake of 

brevity, masses are rounded to integers. Actual sequenced masses are float point numbers. Composite masses 

(2 or more amino acids) are enclosed in square brackets. For example, [114+57] in cyanopeptide × means that 

NRP-Tagging returned 171 as the mass of an amino acid instead of the correct masses 114 and 57 (Hmp and 

Gly). Incorrect masses are enclosed in curly brackets and expressed in terms of their offsets from correct 

masses. For example,{97+1} in H3526 means that NRP-Tagging returned 98 while the correct mass is 97 

(Pro). In this case the isotopic peak (rather than a b-ion) was chosen as the best spectral interpretation. Lastly, 

cases in which the algorithm splits a mass are enclosed in angle brackets with the correct mass followed by the 

masses returned by the algorithm. A single mass 286 in cyclomarin A is split as 129, 157. A single mass 

222-18 (water loss) in compound 879 is split into 100 and 104. The reconstructions given in the table 

represent a complete reconstruction of the compound, or a reconstruction with composite masses and/or 

masses with a known offset. The “Best reconstruction" column presents the high-scoring peptide with a 

specified rank (“Rank column") that is selected from the list of all top-scoring peptides as the most similar to 

the correct peptide.

Compound Best reconstruction Rank

Tyrocidine A 99, 114, 113, 147, 97, 147, 147, 114, 128, 163 3

Tyrocidine A1 99, 128, 113, 147, 97, 147, 147, 114, 128, 163 16

Tyrocidine B 99, 114, 113, 147, 97, 186, 147, 114, 128, 163 4

Tyrocidine B1 99, 128, 113, 147, 97, 186, 147, 114, 128, 163 1

Tyrocidine C 99, 114, 113, 147, 97, 186, 186,114, 128, 163 4

Tyrocidine C1 99, 128, 113, 147, 97, 186, 186, 114, 128, 163 1

Seglitide 85, 163, 186, 128, 99, 147 1

Cyanopeptide X 57, 113, 161, 141, 71, 113, [114+57], 127 1

BQ123 113, 186, 115, 97, 99 2

Destruxin A 113, 113, 85, 71, [98+97] 2

H3526 97, 97, 163, 99, {97+1}, 113, {113−1}, 113 10

H8405 129, 71, 113, 113, 186 2

Microcystin LR {[83+71]+1}, {113−1}, {129−1}, {156+1}, 313, 129 27

Compound 879 113, 113, <222−18 : 100,104>, {147+18}, 71, 141, 71 7

Cyclomarin A 127, 139, <286 : 129,157 >, 143, 71, [177+99] 10

Dehydrocyclomarin A 127, 139, 268, 143, 71, 177, 99 27

Cyclomarin C 127, 139, 270, {143+32}, {[71+177] −32}, 99 >40

Dehydrocyclomarin C Not generated -
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