BMC Microbiology Research article Open Access # Presence and expression of hydrogenase specific C-terminal endopeptidases in cyanobacteria Röbbe Wünschiers*1, Mehtap Batur² and Peter Lindblad² Address: ¹Institute for Genetics, University of Cologne, Weyertal 121, D-50931 Köln, Germany and ²Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, Villavägen 6, SE-75236 Uppsala, Sweden Email: Röbbe Wünschiers* - rw@biowasserstoff.de; Mehtap Batur - mehtap90@hotmail.com; Peter Lindblad - peter.lindblad@ebc.uu.se * Corresponding author Published: 7 May 2003 BMC Microbiology 2003, 3:8 Received: 6 March 2003 Accepted: 7 May 2003 This article is available from: http://www.biomedcentral.com/1471-2180/3/8 © 2003 Wünschiers et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. #### **Abstract** **Background:** Hydrogenases catalyze the simplest of all chemical reactions: the reduction of protons to molecular hydrogen or vice versa. Cyanobacteria can express an uptake, a bidirectional or both NiFe-hydrogenases. Maturation of those depends on accessory proteins encoded by hypgenes. The last maturation step involves the cleavage of a ca. 30 amino acid long peptide from the large subunit by a C-terminal endopeptidase. Until know, nothing is known about the maturation of cyanobacterial NiFe-hydrogenases. The availability of three complete cyanobacterial genome sequences from strains with either only the uptake (Nostoc punctiforme ATCC 29133/PCC 73102), only the bidirectional (Synechocystis PCC 6803) or both NiFe-hydrogenases (Anabaena PCC 7120) prompted us to mine these genomes for hydrogenase maturation related genes. In this communication we focus on the presence and the expression of the NiFe-hydrogenases and the corresponding C-terminal endopeptidases, in the three strains mentioned above. **Results:** We identified genes encoding putative cyanobacterial hydrogenase specific C-terminal endopeptidases in all analyzed cyanobacterial genomes. The genes are not part of any known hydrogenase related gene cluster. The derived amino acid sequences show only low similarity (28–41%) to the well-analyzed hydrogenase specific C-terminal endopeptidase HybD from *Escherichia coli*, the crystal structure of which is known. However, computational secondary and tertiary structure modeling revealed the presence of conserved structural patterns around the highly conserved active site. Gene expression analysis shows that the endopeptidase encoding genes are expressed under both nitrogen-fixing and non-nitrogen-fixing conditions. **Conclusion:** Anabaena PCC 7120 possesses two NiFe-hydrogenases and two hydrogenase specific C-terminal endopeptidases but only one set of *hyp*-genes. Thus, in contrast to the Hyp-proteins, the C-terminal endopeptidases are the only known hydrogenase maturation factors that are specific. Therefore, in accordance with previous nomenclature, we propose the gene names *hoxW* and *hupW* for the bidirectional and uptake hydrogenase processing endopeptidases, respectively. Due to their constitutive expression we expect that, at least in cyanobacteria, the endopeptidases take over multiple functions. ## **Background** Hydrogenases catalyze the simplest of all chemical reac- tions: the reduction of protons to molecular hydrogen or *vice versa*. Depending on the metal content of the active site hydrogenases are classified into Fe-, NiFe-, and metalfree hydrogenases [1]. Independent from the metal content, the enzymes are characterized as hydrogen uptake, bidirectional and hydrogen evolving hydrogenases, indicating their actual in vivo activity. A prominent and evolutionary old group of organisms possessing NiFehydrogenases are phototrophic cyanobacteria (formerly blue-green algae) [2]. All cyanobacteria investigated so far, express an uptake, a bidirectional or both NiFe-hydrogenases [2–6]. The uptake hydrogenase is a dimeric enzyme consisting of a large subunit (HupL) containing the active site and a small subunit (HupS) with several FeS-clusters. The physiological role of the uptake hydrogenase appears to be coupled to nitrogen fixation [7–9]: the hydrogen evolved as a by-product from nitrogenase activity can be recycled by the action of the uptake hydrogenase [2]. Consequently, the uptake hydrogenase is found in nitrogenfixing cyanobacteria only [2,10]. The bidirectional hydrogenase consists of an electron transmitting and anchoring diaphorase part (HoxFU), an active site containing large subunit (HoxH) and a FeS-cluster harboring small subunit (HoxY) [3,11]. The presence of a third diaphorase subunit (HoxE) has been demonstrated for Anacystis nidulans (Synechococcus PCC 6301) and Synechocystis PCC 6803 [12]. Neither is the bidirectional hydrogenase universally distributed among cyanobacteria nor is its function clearly understood, yet [2]. The maturation of nickel-containing enzymes, e.g. hydrogenases, ureases, and carbonmonoxide dehydrogenases, is a complex process requiring accessory proteins [13–19]. For hydrogenases, the first experimental results were obtained from *Escherichia coli*. A number of mutations in the 58–59 min region of the *E. coli* chromosome (location 2848670–2852287 in *E. coli* strain K12 genome [20]) affect the biosynthesis of all NiFe-hydrogenases of this organism [21]. Sequencing of this region revealed 5 ORFs, which were designated *hypABCDE*, indicating that these genes affect hydrogenases pleiotropically [22] and which were to be the first identified genes associated with hydrogenase maturation. Later on, *hyp* homologous genes were also identified in cyanobacteria (see [2] and references therein). One distinct step in NiFe-hydrogenases maturation is the endoproteolytic cleavage of a C-terminal peptide (ca. 30 amino acids) of the large subunit precursor [19]. *E. coli* is able to synthesize at least three NiFe-hydrogenases (operons *hya*, *hyb* and *hyc*, encoding hydrogenase 1, 2 and 3, respectively). In addition, the operon for a fourth hydrogenases (operon *hyf*, encoding hydrogenase 4) has been identified but its functional expression has not been proven yet [23]. Hydrogenases 1 and 2 have been shown to be involved in anaerobic hydrogen oxidation for energy production [24–27], whereas hydrogenase 3 is part of the formate-hydrogen-lyase complex and catalyzes the evolution of hydrogen from formate [28]. Each hydrogenase isoenzyme large subunit is proteolytically processed by a corresponding specific C-terminal endopeptidase (i.e. HyaB by HyaD, HybC by HybD and HycE by HycI). There has been no peptidase identified for HyfG yet. The peptidases cleave the hydrogenase large subunit precursor proteins after a histidine or arginine residue in the C-terminal consensus motif DPCxxCxx(H/R) liberating a short polypeptide (Table 1) [29-32]. The first crystal structure from a NiFe-hydrogenase of the sulfate reducing bacterium Desulfovibrio gigas [33] revealed that those conserved cysteines are ligands to the NiFe-active site of hydrogenases. The endopeptidase HybD, responsible for proteolytic maturation of the precursor of the large subunit from hydrogenase 2 of E. coli, has been overexpressed and crystallized [34]. X-ray analysis of the crystal structure revealed the presence of three amino acid residues, which are involved in metal binding (Glu₁₆, Asp₆₂, and His₉₃). Recognition of the hydrogenase by the peptidase does not depend on the cleavage site consensus sequence but is mediated by the overall 3-dimensional hydrogenase and peptidase protein structures [35,36]. Until now, nothing is known about the maturation of cyanobacterial NiFe-hydrogenases. Previously, we cloned, sequenced and characterized a hyp-operon from the heterocystous nitrogenfixing cyanobacterium Nostoc punctiforme ATCC 29133/ PCC 73102 [37]. The availability of three completed cyanobacterial genomes from organisms with either only the uptake (Nostoc punctiforme ATCC 29133/PCC 73102 [38]), only the bidirectional (Synechocystis PCC 6803 [39,40]) or both NiFe-hydrogenases (Anabaena PCC 7120 [41]) prompted us to mine these genomes for hydrogenase-related genes. In this communication we focus on the presence and the expression of the NiFe-hydrogenases and the corresponding putative hydrogenase specific Cterminal endopeptidases in these three strains. # Results and Discussion Genome Search and Sequence Analysis Initially, we investigated the C-terminal parts of all available cyanobacterial hydrogenase large subunit sequences for the presence of the characteristic cutting site motif: DPCxxCxx(H/R) [1,19]. This motif was found in all deduced amino acid sequences (Table 1). In contrary to all other analyzed sequences, in the uptake hydrogenase (HupL) cutting site motif the neutral proline (P) at position 2 is exchanged by an uncharged polar serine (S) (Table 1). In order to search for putative hydrogenase specific C-terminal endopeptidases (hydrogenase maturating peptidases) in the cyanobacterial genomes, the protein sequences of HyaD, HybD, and HycI from *E. coli* were used in BLAST searches. The *E. coli* sequences are 22 to 41% similar to Table 1: The C-terminal part of deduced cyanobacterial hydrogenase large subunit amino acid sequences. Cyanobacterial sequences in the focus of this study are shown in bold. The accession number and the C-terminal protein sequence follow the gene name. The putative cutting site is represented by a gap. As reference, the cutting sites of Escherichia coli hydrogenase large subunits are shown. Corresponding GenBank accession numbers are indicated. The consensus sequence D(P/S)CxxCxx(H/R) is shown in italic letters. | Synechocystis PCC 6803 | | | | | |---------------------------|------------|----------------------|----------------------------------|--| | HoxH | CAA66212.1 |
-NRVEAGIRCYDPCLSCSTH | AAGQMPLMIDLVNPQGELIKSIQRD | | | Nostoc ATCC 29133 | | | | | | HupL | AAC16277.1 | -VEVGHVARSFDSCLVCTVH | AHDAKTGEELARFRTA | | | Anabaena PCC 7120 | | | | | | HupL | AAC79878.1 | -VEVGHVARSFDSCLVCTVH | AHDAKTGEELARFRTA | | | HoxH | NP_484809 | -NRVEAGIRAFDPCLSCSTH | AAGQMPLHIQLVAADGNIVNQVWRE | | | Anabaena variabilis | | | | | | HupL | CAA73659.2 | -VEVGHVARSFDSCLVCTVH | AHDAKTGEELARFRTA | | | HoxH | CAA55878.1 | -NRVEAGIRAFDPCLSCSTH | AAGQMPLHIQLVAANGNIVNQVWREKLGV | | | Synechococcus PCC 6301 | | | | | | HoxH | CAA66383.1 | -NRVEAGIRCFDPCLSCSTH | TAGQMPLKIEIFDSRGELYQCLCRDL | | | Prochlorothrix hollandica | | | | | | HoxH | AAB53705.1 | -NRVEAGIPCYDPCLSCSTH | AAAKCPSMWNWWVPTA- | | | | | | PLSRKRCGLGQRVPRF | | | Escherichia coli | | | | | | НуаВ | AAA23998.1 | -LEILRTLHSFDPCLACSTH | VLGDDGSELISVQVR | | | НуЬС | AAA21591.1 | -LEVVRTIHSFDPCMACAVH | VVDADGNEVVSVKVL | | | HycE | CAA35550.1 | -SDAPLIIGSLDPCYSCTDR | MTVVDVRKKKSKVVPYKELERYSIERKNSPLK | | each other (Table 2). Analysis of the positive hits revealed overall low similarities between both the E. coli and the putative cyanobacterial hydrogenase maturating peptidases, and among the cyanobacterial proteins, respectively (Table 2). The average similarity is 42%. Interestingly, only in the Anabaena PCC 7120 genome two putative cyanobacterial hydrogenase maturating peptidases were found. The deduced amino acid sequences show 27 and 89% similarity to the putative cyanobacterial hydrogenase maturating peptidase from the closely related Nostoc punctiforme ATCC 29133/PCC 73102. In addition to the putative peptidase genes, sequences of flanking genes with the same reading frame orientation were retrieved (Fig. 1AB). Analysis of these genes gave no indication of functional relations (Fig. 1B). None of the open reading frames oriented in the same direction showed any homology to any known protein involved in either hydrogenase maturation or hydrogen metabolism. This finding is not surprising in the case of Synechocystis PCC 6803. In this strain all hydrogenase maturation related genes were found to be scattered over the entire genome [2]. However, in the case of Anabaena PCC 7120 [42] and Nostoc punctiforme ATCC 29133/PCC 73102 [37] the hyp-genes were found to be clustered in one operon. Figure 2 shows an alignment of the retrieved putative cyanobacterial hydrogenase maturating peptidases and the known enzymes from *E. coli*. In all sequences the nickelbinding site, as assigned from the *E. coli* HybD crystal structure [34], could be identified at conserved positions. It consists of an N-terminal aspartic or glutamic acid residue, a second aspartic acid residue and a histidine residue (Fig. 2). The amino acid conservation around these active site metal-binding amino acids was found to be low. Thus, the identity of the cyanobacterial hydrogenase maturating peptidases can not be unambiguously concluded from the primary sequence information alone. In order to corroborate the identity and to collect further evidence for the participation of the three highly conserved amino acids in metal binding, secondary and tertiary protein structures were computed. Figure 3 shows an alignment of alpha helices and beta sheets, which were calculated by the program NNPREDICT [43]. The alignment clearly shows that the putative cyanobacterial hydrogenase maturating peptidases are structurally related to the hydrogenase maturating peptidases from E. coli (67-77% structural identity). This allowed performing a 3-dimensional alignment against HybD from *E. coli*. Except for the sequence from *Synechocystis* PCC 6803 all putative cyanobacterial hydrogenase maturating peptidases could be aligned with and fitted to the 3-dimensional structure of HybD (Fig. 4). From Table 2 it can be seen that of all analyzed putative cyanobacterial hydrogenase maturating peptidase sequences the *Synechocystis* PCC 6803 sequence shows the lowest similarity (28%) and identity (14%) to HybD from *E. coli*. Most probably, this accounts for the computational inability to perform a 3-dimensional alignment to *E. coli* HybD. For the putative cyanobacterial hydrogenase | Organism | Gene | Size
(bp) | Genome Annotation | Proposed Annotation | |------------------------|-----------------------------|--------------|---|---------------------| | 4 : Pag 3100 | 1.07// | 1450 | | • | | Anabaena PCC 7120 | alr0766 | 1452 | hydrogenase large subunit, HoxH (hoxH) | | | | a1107 67 | 558 | hypothetical protein | | | | a1107 68
a1107 69 | 888 | hypothetical protein | | | | all0770 | 2751
462 | acetyl -CoA synthetase
hypothetical protein | hoxW | | | all0770 | | , , , , , , , , , , , , , , , , , , , | NO XVV | | | ашо771
a110772 | 1035 | 4-hydroxyphenylpyruvate dioxygenase
hypothetical protein | | | | ашо <i>7 7 2</i>
asr0773 | 615
288 | | | | | a si u / / 5 | 200 | hypothetical protein | | | | asl1421 | 213 | putative transcriptional regulator | | | | alr1422 | 413 | unknown protein | | | | alr1423 | 462 | hydrogenase maturation protease | hupW | | | all 14 24 | 375 | unknown protein | | | Synechocystis PCC 6803 | ss13379 | 294 | hypothetical protein | | | , | slr1876 | 471 | hypothetical protein | hoxW | | | s111 7 6 7 | 339 | 30S ribosomal protein S6 (rps6) | | | Nostoc punctiforme | c509/f45 | 2693 | unknown | | | ATCC 29133/PCC 73102 | c509/r317 | 246 | hypothetical protein | | | A100 29133/100 73102 | c509/r318 | 400 | hypothetical protein | | | | c509/r319 | 423 | not annotated | | | | c509/r320 | 474 | HupD hydrogenase related function | hupW | | | c509/f44 | 374 | ORF7: unknown protein in Anabaena PCC 7120 | | Figure I Cyanobacterial hydrogenase specific endopeptidases. A) The hydrogenase specific endopeptidase genes (colored in yellow) and flanking regions are shown. The size of the flanking region was chosen so that all open reading frames having the same direction are included (putative operons; colored in gray). B) Annotation of the above genes according to genome database entries. In addition, the proposed annotation of the cyanobacterial hydrogenase maturating endopeptidases is shown. Table 2: Protein cross-comparison Deduced amino acid sequence relationship among the putative cyanobacterial and known Escherichia coli hydrogenase specific C-terminal endopeptidases. Similarities are shown in bold. | identical/similar [%] | Synechocystis | Nostoc | Anabaena | | Escherichia coli | | | | |----------------------------|---------------|--------|----------|---------------|------------------|---------------|----------------|---------------| | | | HoxW | HupW | HupW | HoxW | HyaD | HybD | Hycl | | Synechocystis ^a | HoxW | | 21/33 | 21/ 35 | 35/ 52 | 09/21 | 14/28 | 15/ 30 | | Nostoc ^b | HupW | | | 82/ 89 | 17/ 27 | 22/33 | 22/39 | 16/ 36 | | Anabaena ^c | HupW | | | | 18/ 31 | 23/ 34 | 22/ 42 | 17/38 | | Anabaena | HoxW | | | | | 09/22 | 20/30 | 09/25 | | E. coli | HyaD | | | | | | 26/ 4 I | 15/ 30 | | E. coli | HybD | | | | | | | 14/36 | | E. coli | Hycl | | | | | | | | ^aSynechocystis PCC 6803, ^bNostoc punctiforme ATCC 29133/PCC 73102, ^cAnabaena PCC 7120 maturating peptidases from Nostoc punctiforme ATCC 29133/PCC 73102 and Anbaena PCC 7120 the 3-dimensional structural alignment result in an almost perfect match (Fig. 4). Most importantly, the active site metalbinding amino acid residues fit into the same sterical conformation as in the HybD template. Taken all data of the sequence analysis together, the sequences all0770 and alr1423 from Anabaena PCC 7120 and the sequence c509/ r320 from Nostoc punctiforme ATCC 29133/PCC 73102 can clearly be assigned as hydrogenase maturating peptidases. The good secondary structure alignment between sequence slr1876 from Synechocystis PCC 6803 and HybD from E. coli, especially with respect to the active site metalbinding amino acid residues, identifies this gene as encoding a hydrogenase maturating peptidase, too. In the future, we hope to obtain physiological and biochemical evidence to corroborate these identifications. It should be noted that, according to the structural classification of proteins (SCOP; [44]), HybD (1CFZ) belongs to the superfamily of HybD-like structures in the class of alpha/beta proteins. The only other known structural member of this superfamily is a germination protease from *Bacillus megaterium* (1C8B, [45]), which contains a phosphorylase/hydrolase-like fold. Although sequencewise very different, germination proteases match structurally very good to hydrogenase maturating peptidases. The only exception is the absence of helices 4 and 5 in the former enzymes (Fig. 3). # **Expression Analysis** From previous studies, the expression of hydrogenase structural genes is well known (see [2] for a review). The bidirectional hydrogenase is continuously expressed, though strongly induced by e.g. anaerobic conditions, as shown for Nostoc muscorum [46]. The uptake hydrogenase is only expressed under nitrogen-fixing conditions in Anabaena PCC 7120 and Nostoc punctiforme ATCC 29133/PCC 73102. In order to analyze the expression pat- tern of the cyanobacterial hydrogenase maturating peptidase genes and the hydrogenase large subunit structural genes, we performed RT-PCR based transcription studies (Fig. 5, Table 3). A transcript corresponding to the hydrogenase maturating peptidases could be detected under all conditions examined. This means that the transcript is present when the corresponding hydrogenase large subunit transcript is absent. Thus, the expression of the putative hydrogenase maturating peptidases seems to be differently regulated than the expression of both the hydrogenase structural and accessory genes in cyanobacteria. For Anabaena PCC 7120 it was shown that the accessory genes hypFCDEAB (initially identified as hup-genes) are expressed in heterocyst-induced (nitrogen-fixing) but
not in non-nitrogen-fixing cultures [2,42]. The same situation was described for Nostoc punctiforme ATCC 29133/PCC 73102 [37]. These findings point to either a post-transcriptional regulation of the peptidase transcript or to an additional function of the protein. Since proteolytic processing of the large hydrogenase subunit is considered to be the last step during hydrogenase maturation, the former mechanism would allow a rapid maturation of the pre-processed, but immature, hydrogenase [19]. Our observation is supported by the finding that in the unicellular cyanobacterium Synechococcus PCC 7942 (Anacystis nidulans R2) hoxW is co-transcribed as part of the polycistronic message hoxUYHW [47,48]. Thus, similar expression levels were anticipated for these genes. However, hoxU and hoxW transcription was found to be ca. 4-times higher than hoxY and hoxH transcription [48]. Furthermore, hoxW was found to have its own promoter element. Thus, although part of a polycistronic transcript with structural hydrogenase genes, transcription of hoxW can be independently regulated in Synechococcus PCC 7942. In the cyanobacteria analyzed in the present study, the independence of hoxW and hupW is pronounced by their operon distribution in the respective genomes (Fig. 1) and is further reflected in their transcription being independent of the structural hydrogenase genes (Fig. 5, Table 3). | | SSSSSS H | ННННННННННН | SSSSSS HHHHHHH | |---|--|--|---| | HoxW PCC6803 | MPGQSTKSTLIIGYGNTLRGI | | | | HoxW PCC7120 | MVIGYGNDLRSI | | | | HupW PCC7120 | MLTIIGCGNLNRSI | | | | HupW PCC73102 | MLTIIGCGNLNRSI | | | | HoxW PCC6301 | MCLVIGYGNALRSI | | | | HoxW PCC7002 | | O <mark>d</mark> gagqkvaeaffdqe | | | HyaD Ecoli | MSEQRVVVMGLGNLLWAI | | | | HybD Ecoli | MRILVLGVGNILLTI | | | | HycI Ecoli | MTDVLLCVGNSMMGI | | | | nyci_bcoii | ITID VIIIC V GIVOFILIGI | oponor bilantiko | NWW V I DOODAL BIYD I VAI | | | SSSSSSS | sssss нннннн | ННННННННННННН—— H | | HoxW PCC6803 | AAVDRVIFI <mark>D</mark> AQLQESANE | EPSVEVVALKTLEPNELSGDI | LG <mark>H</mark> RGNPRELLTLAKILY | | HoxW PCC7120 | ASVDLAIFI <mark>D</mark> ACLPVHG | | | | HupW PCC7120 | RGSKQLVII <mark>d</mark> ASSTG-SER | | | | HupW PCC73102 | RGSQQLIII D ASSTG-SE | | | | HoxW PCC6301 | ATVPTVIFVDAYPAADCT- | | | | HoxW PCC7002 | VQVEQVYFI D AAPIETVT- | | | | HyaD Ecoli | ESASHLLIL <mark>D</mark> AIDYG-LE | | | | HybD Ecoli | ANRDHLIIA <mark>D</mark> AIVSKKNAH | | | | | | | TO TOTAL VENEZUE TO THE TOTAL | | | | | | | HycI_Ecoli | RELRPTRLL IV <mark>D</mark> ATDMG-LNE | | | | | | | T <mark>H</mark> NMPLNYLIDQLKEDI | | HycI_Ecoli | RELRPTRLLIV <mark>D</mark> ATDMG-LNE
SSSSSSS | PGEIRIID PDDIAEMFMMT
НННН НННННННН | T <mark>H</mark> NMPLNYLIDQLKEDI | | HycI_Ecoli HoxW_PCC6803 | RELRPTRLLIV <mark>D</mark> ATDMG-LNE
SSSSSSS
GVEVKAWWVLIPAFTFD | PGEIRIID PDDIAEMFMMT
HHHH HHHHHHHH
YGEKLS PLTARAQAEALAQIF | T <mark>H</mark> NMPLNYLIDQLKEDI
HHHHH HHH
RPLVLGER | | HycI_Ecoli HoxW_PCC6803 HoxW_PCC7120 | RELRPTRLLIV <mark>D</mark> ATDMG-LNE SSSSSSS GVEVKAWWVLIPAFTFDY GNCPTAWWVTIPGANFE | PGEIRIID PDDIAEMFMMT
HHHH HHHHHHHH
YGEKLS PLTARAQAEALAQIF
IGDRFSRTAETGKAIALVKII | T <mark>H</mark> NMPLNYLIDQLKEDI
HHHHH HHH
RPLVLGER
IQILDKVNNLWFEVGAVA | | HycI_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 | RELRPTRLLIV <mark>D</mark> ATDMG-LNE SSSSSSS GVEVKAWWVLIPAFTFDY GNCPTAWWVTIPGANFEI PDDFPQDVTVYLIEAANLD-E | PGEIRIID PDDIAEMFMMT
HHHH HHHHHHHH
YGEKLS PLTARAQAEALAQIF
IGDRFSRTAETGKAIALVKII
FGLELS PVVQQSADLVVEKIV | T <mark>H</mark> NMPLNYLIDQLKEDI
HHHHH HHH
RPLVLGER
IQILDKVNNLWFEVGAVA
VEIIRN | | HycI_Ecoli HoxW_PCC6803 HoxW_PCC7120 | RELRPTRLLIV <mark>D</mark> ATDMG-LNE SSSSSSS GVEVKAWWVLIPAFTFDY GNCPTAWWVTIPGANFED PDDFPQDVTVYLIEAANLD-E QNDFPDDVTVYLIEAANLG-I | PGEIRIID PDDIAEMFMMT
HHHH HHHHHHHH
YGEKLS PL TARAQAEALAQIF
IGDRFSRTAETGKAIALVKII
FGLELS PVVQQSADLVVEKIV
LGLELS PIVKHSADLVFEEVA | T <mark>H</mark> NMPLNYLIDQLKEDI
HHHHH HHH
RPLVLGER
IQILDKVNNLWFEVGAVA
VEIIRN
AALISQNINF | | Hycl_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 HupW_PCC73102 HoxW_PCC6301 | SSSSSSS GVEVKAWWVLIPAFTFDY GNCPTAWWVTIPGANFED PDDFPQDVTVYLIEAANLD-B QNDFPDDVTVYLIEAANLG-I GHCPTAYWVLIPGHDWHE | PGEIRIID PDDIAEMFMMT HHHH HHHHHHHH YGEKLS PLTARAQAEALAQIF IGDRFSRTAETGKAIALVKII FGLELS PVVQQSADLVVEKIV LGLELS PIVKHSADLVFEEVA FSEQLS PATQSGVQQALWLIF | T <mark>H</mark> NMPLNYLIDQLKEDI
HHHHH HHH
RPLVLGER
IQILDKVNNLWFEVGAVA
VEIIRN
AALISQNINF
RHWNDQEVLCTN | | HycI_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 HupW_PCC73102 HoxW_PCC6301 HoxW_PCC7002 | SSSSSSS GVEVKAWWVLIPAFTFDY GNCPTAWWVTIPGANFED PDDFPQDVTVYLIEAANLD-E QNDFPDDVTVYLIEAANLG-I GHCPTAYWVLIPGHDWHE HYAPDAYLVLIPAQDFKI | PGEIRIID PDDIAEMFMMT HHHH HHHHHHHH YGEKLS PLTARAQAEALAQIF IGDRESRTAETGKAIALVKII FGLELS PVVQQSADLVVEKIV LGLELS PIVKHSADLVFEEVA FSEQLS PATQSGVQQALWLIF LGENYSEITQKAIETAIHLL | T <mark>H</mark> NMPLNYLIDQLKEDI
HHHHH HHH
RPLVLGER
IQILDKVNNLWFEVGAVA
VEIIRN
AALISQNINF
RHWNDQEVLCTN
QERLTPCMK | | HycI_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 HupW_PCC73102 HoxW_PCC6301 HoxW_PCC7002 HyaD_Ecoli | SSSSSSS GVEVKAWWVLIPAFTFDS GNCPTAWWVTIPGANFES PDDFPQDVTVYLIEAANLD-E QNDFPDDVTVYLIEAANLG-I GHCPTAYWVLIPGHDWHE HYAPDAYLVLIPAQDFKI RGHLPAHIALVGLQPAMLDDS | PGEIRIID PDDIAEMFMMT HHHH HHHHHHHH YGEKLS PLTARAQAEALAQIF IGDRFSRTAETGKAIALVKII FGLELS PVVQQSADLVVEKIV LGLELS PIVKHSADLVFEEVA FSEQLS PATQSGVQQALWLIF LGENYSEITQKAIETAIHLL YGGSLSELAREQLPAAEQAAI | T <mark>H</mark> NMPLNYLIDQLKEDI
HHHHH HHH
RPLVLGER
IQILDKVNNLWFEVGAVA
VEIIRN
AALISQNINF
RHWNDQEVLCTN
QERLTPCMK
LAQLAAWGIVPQPANESRCL | | Hycl_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 HupW_PCC73102 HoxW_PCC6301 HoxW_PCC7002 Hyal_Ecoli Hybl_Ecoli | SSSSSS GVEVKAWWVLIPAFTFDY GNCPTAWWVTIPGANFED PDDFPQDVTVYLIEAANLD-E QNDFPDDVTVYLIEAANLG-I GHCPTAYWVLIPGHDWHE HYAPDAYLVLIPAQDFKI RGHLPAHIALVGLQPAMLDDY TGEFPKKLTLVGVIPESLEPE | PGEIRIID PDDIAEMFMMT HHHH HHHHHHHH YGEKLS PLTARAQAEALAQIF IGDRF SRTAETGKAIALVKII FGLELS PVVQQSADLVVEKIV LGLELS PIVKHSADLVFEEVF FSEQLS PATQSGVQQALWLIF LGENYSEITQKAIETAIHLLG YGGSLSELAREQLPAAEQAAI HIG-LTPTVEAMIE PALEQVI | T <mark>H</mark> NMPLNYLIDQLKEDI HHHHH HHH RPLVLGER IQILDKVNNLWFEVGAVA VEIIRN AALISQNINF RHWNDQEVLCTN QERLTPCMK LAQLAAWGIVPQPANESRCL LAALRESGVEAIPRSDS | | HycI_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 HupW_PCC73102 HoxW_PCC6301 HoxW_PCC7002 HyaD_Ecoli | SSSSSSS GVEVKAWWVLIPAFTFDS GNCPTAWWVTIPGANFES PDDFPQDVTVYLIEAANLD-E QNDFPDDVTVYLIEAANLG-I GHCPTAYWVLIPGHDWHE HYAPDAYLVLIPAQDFKI RGHLPAHIALVGLQPAMLDDS | PGEIRIID PDDIAEMFMMT HHHH HHHHHHHH YGEKLS PLTARAQAEALAQIF IGDRF SRTAETGKAIALVKII FGLELS PVVQQSADLVVEKIV LGLELS PIVKHSADLVFEEVF FSEQLS PATQSGVQQALWLIF LGENYSEITQKAIETAIHLLG YGGSLSELAREQLPAAEQAAI HIG-LTPTVEAMIE PALEQVI | T <mark>H</mark> NMPLNYLIDQLKEDI HHHHH HHH RPLVLGER IQILDKVNNLWFEVGAVA VEIIRN AALISQNINF RHWNDQEVLCTN QERLTPCMK LAQLAAWGIVPQPANESRCL LAALRESGVEAIPRSDS | | Hycl_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 HupW_PCC73102 HoxW_PCC6301 HoxW_PCC7002 Hyal_Ecoli Hybl_Ecoli | SSSSSS GVEVKAWWVLIPAFTFDY GNCPTAWWVTIPGANFED PDDFPQDVTVYLIEAANLD-E QNDFPDDVTVYLIEAANLG-I GHCPTAYWVLIPGHDWHE HYAPDAYLVLIPAQDFKI RGHLPAHIALVGLQPAMLDDY TGEFPKKLTLVGVIPESLEPE | PGEIRIID PDDIAEMFMMT HHHH HHHHHHHH YGEKLS PLTARAQAEALAQIF IGDRF SRTAETGKAIALVKII FGLELS PVVQQSADLVVEKIV
LGLELS PIVKHSADLVFEEVF FSEQLS PATQSGVQQALWLIF LGENYSEITQKAIETAIHLLG YGGSLSELAREQLPAAEQAAI HIG-LTPTVEAMIE PALEQVI | T <mark>H</mark> NMPLNYLIDQLKEDI HHHHH HHH RPLVLGER IQILDKVNNLWFEVGAVA VEIIRN AALISQNINF RHWNDQEVLCTN QERLTPCMK LAQLAAWGIVPQPANESRCL LAALRESGVEAIPRSDS | | Hycl_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 HupW_PCC73102 HoxW_PCC6301 HoxW_PCC7002 HyaD_Ecoli HybD_Ecoli Hycl_Ecoli | SSSSSS GVEVKAWWVLIPAFTFDY GNCPTAWWVTIPGANFED PDDFPQDVTVYLIEAANLD-E QNDFPDDVTVYLIEAANLG-I GHCPTAYWVLIPGHDWHE HYAPDAYLVLIPAQDFKI RGHLPAHIALVGLQPAMLDDY TGEFPKKLTLVGVIPESLEPE | PGEIRIID PDDIAEMFMMT HHHH HHHHHHHH YGEKLS PLTARAQAEALAQIF IGDRF SRTAETGKAIALVKII FGLELS PVVQQSADLVVEKIV LGLELS PIVKHSADLVFEEVF FSEQLS PATQSGVQQALWLIF LGENYSEITQKAIETAIHLLG YGGSLSELAREQLPAAEQAAI HIG-LTPTVEAMIE PALEQVI | T <mark>H</mark> NMPLNYLIDQLKEDI HHHHH HHH RPLVLGER IQILDKVNNLWFEVGAVA VEIIRN AALISQNINF RHWNDQEVLCTN QERLTPCMK LAQLAAWGIVPQPANESRCL LAALRESGVEAIPRSDS | | HycI_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 HupW_PCC73102 HoxW_PCC6301 HoxW_PCC7002 HyaD_Ecoli HybD_Ecoli HycI_Ecoli HycI_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 | SSSSSS GVEVKAWWVLIPAFTFDY GNCPTAWWVTIPGANFED PDDFPQDVTVYLIEAANLD-E QNDFPDDVTVYLIEAANLG-I GHCPTAYWVLIPGHDWHE HYAPDAYLVLIPAQDFKI RGHLPAHIALVGLQPAMLDDY TGEFPKKLTLVGVIPESLEPE | PGEIRIID PDDIAEMFMMT HHHH HHHHHHHH YGEKLS PLTARAQAEALAQIF IGDRF SRTAETGKAIALVKII FGLELS PVVQQSADLVVEKIV LGLELS PIVKHSADLVFEEVF FSEQLS PATQSGVQQALWLIF LGENYSEITQKAIETAIHLLG YGGSLSELAREQLPAAEQAAI HIG-LTPTVEAMIE PALEQVI | T <mark>H</mark> NMPLNYLIDQLKEDI HHHHH HHH RPLVLGER IQILDKVNNLWFEVGAVA VEIIRN AALISQNINF RHWNDQEVLCTN QERLTPCMK LAQLAAWGIVPQPANESRCL LAALRESGVEAIPRSDS | | HycI_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 HupW_PCC73102 HoxW_PCC6301 HoxW_PCC7002 HyaD_Ecoli HybD_Ecoli HycI_Ecoli HoxW_PCC6803 HoxW_PCC6803 HoxW_PCC7120 | SSSSSS GVEVKAWWVLIPAFTFDY GNCPTAWWVTIPGANFED PDDFPQDVTVYLIEAANLD-E QNDFPDDVTVYLIEAANLG-I GHCPTAYWVLIPGHDWHE HYAPDAYLVLIPAQDFKI RGHLPAHIALVGLQPAMLDDY TGEFPKKLTLVGVIPESLEPE | PGEIRIID PDDIAEMFMMT HHHH HHHHHHHH YGEKLS PLTARAQAEALAQIF IGDRF SRTAETGKAIALVKII FGLELS PVVQQSADLVVEKIV LGLELS PIVKHSADLVFEEVF FSEQLS PATQSGVQQALWLIF LGENYSEITQKAIETAIHLLG YGGSLSELAREQLPAAEQAAI HIG-LTPTVEAMIE PALEQVI | T <mark>H</mark> NMPLNYLIDQLKEDI HHHHH HHH RPLVLGER IQILDKVNNLWFEVGAVA VEIIRN AALISQNINF RHWNDQEVLCTN QERLTPCMK LAQLAAWGIVPQPANESRCL LAALRESGVEAIPRSDS | | HycI_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 HupW_PCC73102 HoxW_PCC6301 HoxW_PCC7002 HyaD_Ecoli HybD_Ecoli HycI_Ecoli HycI_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 | SSSSSS GVEVKAWWVLIPAFTFDY GNCPTAWWVTIPGANFED PDDFPQDVTVYLIEAANLD-E QNDFPDDVTVYLIEAANLG-I GHCPTAYWVLIPGHDWHE HYAPDAYLVLIPAQDFKI RGHLPAHIALVGLQPAMLDDY TGEFPKKLTLVGVIPESLEPE | PGEIRIID PDDIAEMFMMT HHHH HHHHHHHH YGEKLS PLTARAQAEALAQIF IGDRF SRTAETGKAIALVKII FGLELS PVVQQSADLVVEKIV LGLELS PIVKHSADLVFEEVF FSEQLS PATQSGVQQALWLIF LGENYSEITQKAIETAIHLLG YGGSLSELAREQLPAAEQAAI HIG-LTPTVEAMIE PALEQVI | T <mark>H</mark> NMPLNYLIDQLKEDI HHHHH HHH RPLVLGER IQILDKVNNLWFEVGAVA VEIIRN AALISQNINF RHWNDQEVLCTN QERLTPCMK LAQLAAWGIVPQPANESRCL LAALRESGVEAIPRSDS | | HycI_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 HupW_PCC73102 HoxW_PCC6301 HoxW_PCC7002 HyaD_Ecoli HybD_Ecoli HycI_Ecoli HycI_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 HupW_PCC73102 | SSSSSS GVEVKAWWVLIPAFTFDY GNCPTAWWVTIPGANFED PDDFPQDVTVYLIEAANLD-E QNDFPDDVTVYLIEAANLG-I GHCPTAYWVLIPGHDWHE HYAPDAYLVLIPAQDFKI RGHLPAHIALVGLQPAMLDDY TGEFPKKLTLVGVIPESLEPE | PGEIRIID PDDIAEMFMMT HHHH HHHHHHHH YGEKLS PLTARAQAEALAQIF IGDRF SRTAETGKAIALVKII FGLELS PVVQQSADLVVEKIV LGLELS PIVKHSADLVFEEVF FSEQLS PATQSGVQQALWLIF LGENYSEITQKAIETAIHLLG YGGSLSELAREQLPAAEQAAI HIG-LTPTVEAMIE PALEQVI | T <mark>H</mark> NMPLNYLIDQLKEDI HHHHH HHH RPLVLGER IQILDKVNNLWFEVGAVA VEIIRN AALISQNINF RHWNDQEVLCTN QERLTPCMK LAQLAAWGIVPQPANESRCL LAALRESGVEAIPRSDS | | Hycl_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 HupW_PCC73102 HoxW_PCC6301 HoxW_PCC7002 HyaD_Ecoli HybD_Ecoli Hycl_Ecoli Hycl_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 HupW_PCC73102 HoxW_PCC6301 | SSSSSS GVEVKAWWVLIPAFTFDY GNCPTAWWVTIPGANFED PDDFPQDVTVYLIEAANLD-EQNDFPDDVTVYLIEAANLG-IGHCPTAYWVLIPGHDWHEHYAPDAYLVLIPAQDFKIRGHLPAHIALVGLQPAMLDDY TGEFPKKLTLVGVIPESLEPEGEVIFLGIQPDIVG-E | HHHH HHHHHHHHH YGEKLSPLTARAQAEALAQIF IGDRFSRTAETGKAIALVKII FGLELSPVVQQSADLVVEKIV LGLELSPIVKHSADLVFEEVA FSEQLSPATQSGVQQALWLIF LGENYSEITQKAIETAIHLLG YGGSLSELAREQLPAAEQAAI HIG-LTPTVEAMIEPALEQVI FYYPMTQPIKDAVETVYQRLE | T <mark>H</mark> NMPLNYLIDQLKEDI HHHHH HHH RPLVLGER IQILDKVNNLWFEVGAVA VEIIRN AALISQNINF RHWNDQEVLCTN QERLTPCMK LAQLAAWGIVPQPANESRCL LAALRESGVEAIPRSDS | | Hycl_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 HupW_PCC73102 HoxW_PCC6301 HoxW_PCC7002 HyaD_Ecoli HybD_Ecoli Hycl_Ecoli HoxW_PCC6803 HoxW_PCC7120 HupW_PCC7120 HupW_PCC73102 HoxW_PCC6301 HoxW_PCC6301 HoxW_PCC7002 | SSSSSS GVEVKAWWVLIPAFTFDY GNCPTAWWVTIPGANFED PDDFPQDVTVYLIEAANLD-E QNDFPDDVTVYLIEAANLG-I GHCPTAYWVLIPGHDWHE HYAPDAYLVLIPAQDFKI RGHLPAHIALVGLQPAMLDDY TGEFPKKLTLVGVIPESLEPE | HHHH HHHHHHHHH YGEKLSPLTARAQAEALAQIF IGDRFSRTAETGKAIALVKII FGLELSPVVQQSADLVVEKIV LGLELSPIVKHSADLVFEEVA FSEQLSPATQSGVQQALWLIF LGENYSEITQKAIETAIHLLG YGGSLSELAREQLPAAEQAAI HIG-LTPTVEAMIEPALEQVI FYYPMTQPIKDAVETVYQRLE | T <mark>H</mark> NMPLNYLIDQLKEDI HHHHH HHH RPLVLGER IQILDKVNNLWFEVGAVA VEIIRN AALISQNINF RHWNDQEVLCTN QERLTPCMK LAQLAAWGIVPQPANESRCL LAALRESGVEAIPRSDS | # Figure 2 **Primary structure alignments.** Deduced amino acid sequence alignment of the putative cyanobacterial (green letters) and the *E. coli* (black letters) hydrogenase maturating endopeptidases. The top row indicates secondary structure features (H: alpha helix, S: beta sheet), which were extracted from the crystal structure of *E. coli* HydD [34] using the software tool DSSP [56]. The conserved nickel coordinating amino acid residues are shaded yellow. The sequences are annotated with the (suggested) protein name plus the organism identification: PCC6803: *Synechocystis* PCC 6803, PCC7120: *Anabaena* PCC 7120, PCC73102: *Nostoc punctiforme* ATCC 29133/PCC 73102, PCC6301: *Synechococcus* PCC 6301, PCC7002: *Synechococcus* PCC 7002, Ecoli: *Escherichia coli*. **Secondary structure alignments.** Alignment of the secondary structures of cyanobacterial (green letters) and known *E. coli* (black letters) hydrogenase maturating endopeptidases. The secondary structures, except for the top sequence ICFZ (bold letters), were determined from the deduced amino acid sequences using NNPREDICT [43]. The secondary structure features from the crystal structure of *E. coli* HydD (ICFZ) [34] were extracted using DSSP and used as reference (top sequence). Boxes are drawn and named according to the nomenclature used by Fritsche et *al.* [34]. The stars mark the position of nickel ligating amino acid residues. The right column indicates amino acid counting. H: alpha helix, S: beta sheet, x6803: HoxW from *Syne-chocystis* PCC 6803, x7120: HoxW from *Anabaena* PCC 7120, p7120: HupW from *Anabaena* PCC 7120, p73102: HupW from *Nostoc punctiforme* ATCC 29133/PCC 73102, HyaD, HybD, and Hycl: sequences from *Escherichia coli.* – Note that the same amino acid sequence underlies ICFZ and HybD. Thus, their secondary structure comparison reflects the accuracy of NNPREDICT. Figure 4 Tertiary structure alignments. The upper left image sketches the 3-dimensional structure of Escherichia coli hydrogenase maturating endopeptidase HybD; [34]. A yellow ball represents the bound nickel ion. The deduced amino acid sequences of the putative cyanobacterial endopeptidases were aligned to this structure using SWISS-MODEL [53–55]. The nickel binding amino acid residues are explicitly drawn as sticks. Alpha helices and beta sheets are sketched as rods and flat arrows, respectively. E. coli HybD: Escherichia coli HybD [34], p73102: Nostoc punctiforme ATCC 29133/PCC 73102 HupW, p7120: Anabaena PCC 7120 HupW, x7120: Anabaena PCC 7120 HoxW # **Conclusions** Hydrogenase specific C-terminal endopeptidases share only low sequence similarity. Thus, the present study gives an example for the necessity to apply secondary and tertiary protein sequence information in order to facilitate unambiguous gene identification. *Anabaena* PCC 7120 possesses two NiFe-hydrogenases and two hydrogenase specific C-terminal endopeptidases but only one set of *hyp*-genes. Thus, in contrast to the universal Hyp-proteins, the C-terminal endopeptidases are the only known hydrogenase maturation factors that are specific. In order to keep in line with previous nomenclature we name the bidirectional hydrogenase (encoded by *hox*-genes) processing endopeptidases HoxW and propose to name the hydrogenase uptake (encoded by *hup*-genes) processing endopeptidases HupW. Phylogenetic analysis of NiFe-hydrogenases revealed a close relationship between cyanobacterial uptake hydrogenases (HupSL) and bacterial hydrogen sensing hydrogenases (HoxBC, HupUV) [1]. These hydrogen sensors lack the C-terminal extension, which is cleaved off after nickel insertion, but nevertheless contain the bimetallic NiFecenter [49-51]. This indicates that the final endopeptidase mediated hydrogenase maturation step is not absolutely necessary in order to obtain the fully assembled active site. From a phylogenetic point of view it seems that the last common ancestor of cyanobacterial uptake hydrogenases and hydrogen sensing hydrogenases possessed the C-terminal extension and the cutting site motive. Thus, it will be interesting to elucidate the advantage or necessity to loose that extension in the case of hydrogen sensing hydrogenases. Furthermore, it raises the question why the C-terminal extension was kept in all other known NiFe-hydrogenase. The fact, that cyanobacterial hydrogenase specific endopeptidase are constitutively expressed might point to multiple functions of these enzymes. # **Methods** # Genome data analysis The genomes of *Nostoc punctiforme* ATCC 29133/PCC 73102 <a href="http://spider.jgi-psf.org/IGI microbial/html/nostoc/nostoc
homepage.html">http://spider.jgi-psf.org/IGI microbial/html/nostoc/nostoc homepage.html, *Anabaena* PCC 7120 http://www.kazusa.or.jp/cyanobase/Synechocystis PCC 6803 http://www.kazusa.or.jp/cyanobase/Synechocystis/index.html were analyzed using the online program BLAST (Basic Local Alignment Search Tool) [52] provided by the respective genome initiative. For *Nostoc punctiforme* ATCC 29133/PCC 73102, preliminary sequence data was obtained from "The DOE Joint Genome Institute (JGI)". ## Computational structure modeling The derived protein sequences from the putative cyanobacterial hydrogenase maturation peptidase genes were structurally aligned using the online program SWISS MODEL http://www.expasy.ch/swissmod/SWISS-MOD-EL.html [53–55]. As reference the crystal structure from the hydrogenase specific C-terminal endopeptidase HybD from *E. coli* [34] was chosen. # Secondary structure prediction The secondary structure was predicted using NNPREDICT http://www.cmpharm.ucsf.edu/~nomi/nnpre- dict.html[43]. No special parameters were set. The secondary structure from the crystal structure data file of the hydrogenase maturating endopeptidase HybD from *E. coli* [34] (ProteinDataBank accession number: 1CFZ.pdb) was extracted by DSSP http://www.cmbi.kun.nl/swift/dssp/ [56]. These data were used as a template for secondary structure identity calculations. The calculations were performed with a homemade PERL script employing a # nitrogen-fixing # non-nitrogen-fixing Figure 5 **Gene expression analysis** RT-PCR results are shown for nitrogen-fixing and non-nitrogen-fixing conditions. The PCR generated DNA products were visualized by agarose gel electrophoresis. From the left to the right the four individual lanes on each agarose gel represent: 1) RT-PCR product demonstrating the transcription of the hydrogenase maturating peptidases (hoxW/hupW) and their respective hydrogenase large subunits (hoxH/hupL). 2) Control, where DNA instead of the cDNA sample from the RT reaction from the respective strain were used in the PCR reaction. 3) Control, with no reverse transcriptase enzyme added to the RT reaction. 4) Control, where dH₂O instead of the cDNA sample from the RT reaction was added to the PCR reaction tube. Product sizes are shown in Table 4. Diffuse bands originate from primer-dimers artifacts. Nostoc punctiforme: Nostoc punctiforme ATCC 29133/PCC 73102. weight matrix. Identities were weighted one, all other combinations zero. # **Primer Design** Using the genomic sequences as templates PCR and reverse transcription PCR (RT-PCR) oligo-nucleotide primers were designed using the online program Primer3 (S. Rozen and H. J. Skaletsky, 1996,1997,1998; code available at http://www-genome.wi.mit.edu/genome_software/other/primer3.html). The expected product size was set to be around 300 bp. All used primers are shown in Table 4. # Cell growth and harvesting Nitrogen-fixing cultures of *Nostoc punctiforme* ATCC 29133/PCC 73102 and *Anabaena* PCC 7120 were grown in BG110 [57] as previously described [37]. Non-nitrogen-fixing cultures of *Nostoc punctiforme* ATCC 29133/PCC 73102, *Anabaena* PCC 7120 and *Synechocystis* PCC 6803 were grown in BG110 supplemented with 5 mM ammonium chloride and 10 mM HEPES (pH 7.5) (*Nostoc* and *Anabaena*) or BG110 supplemented with 1.5 g/l (17.7 mM) sodium nitrate (*Synechocystis*). All cultures were sparked with air. Cells were harvested by centrifugation at Table 3: Summary of the gene expression studies Note that Synechocystis PCC 6803 does not survive under nitrogen deprivation, i.e. nitrogen-fixing conditions. | Cyanobacterium | Gene | nitrogen-fixing ^a | non-nitrogen-fixing ^a | |------------------------|------|------------------------------|----------------------------------| | Synechocystis PCC 6803 | hoxH | lethal | + | | | hoxW | lethal | + | | Nostoc punctiforme | hupL | + | - | | ATCC 29133/PCC 7120 | hupW | + | + | | Anabaena PCC 7120 | hupL | + | - | | | hupW | + | + | | | hoxH | + | + | | | hoxW | + | + | a +: expressed, -: not expressed Table 4: Primers used in PCR and RT-PCR experiments performed in this study Primer sequences are shown 5' to 3'. "L" annotates sense, "R" antisense primers. In addition, the proposed gene names, as depicted in Fig. 1, and PCR product sizes are shown (see also Fig. 5). | Synechocystis PCC 6803 | Primer Sequence | Gene Name | Product Size [bp] | |---|---------------------------------|-----------|-------------------| | Bidirectional hydrogenase | | | | | hoxH6803/L | AAT CCC ACG CCC TAA GTT TT | | | | | | hoxH | 200 | | hoxH6803/R | CAC TGA CCA AGC AGA GTG GA | | | | hoxW6803/L | TCA TCG GTT ACG GCA ATA CC | | | | | | hoxW | 198 | | hoxW6803/R | ATG GTT CGT TTG CTG ATT CC | | | | Nostoc punctiforme ATCC 29133/PCC 73102 | | | | | Uptake hydrogenase | | | | | hupL-L | CTG TTG GGC GGA CAA TGG CCT CA | | | | · | | hupL | 383 | | hupL-R | CCA CTT TTC ATA ATC AT | | | | hybD73102/L | CGC AGG GAT GGA AGT AAT GT | | | | | | hupW | 218 | | hybD73102/R | TCA CAT CAT CGG GAA AGT CA | | | | Anabaena PCC 7120 | | | | | Uptake hydrogenase | | | | | hupL7120/L2 | TAT ATC ACC CGT CGG TAG AG | | | | · | | hupL | 205 | | hupL7120/R2 | CCA TGA TGC AGA GGT TAA GT | | | | hybD7120/L | CGC AGG GAT GGA AGT TAT GT | | | | | | hupW | 209 | | hybD7120/R | GCG GAA AAT CAT CTG GAA A | | | | Bidirectional hydrogenase | | | | | hoxHF | CCA CTA TGC TCG TTT AAT TGA AAT | | | | | | hoxH | 355 | | hoxHR | GGA ACA ACT TAA ACA GGG GTC AAA | | | | hoxW7I20/L2 | ATC TCT TGC AGT CCA TCA AC | | | | | | hoxW | 200 | | hoxW7120/R2 | CGT AGA TGG CTT TGG TTA AG | | | 4°C for 5 min in 50 ml Falcon tubes (Falcon#2070). Subsequently, the supernatant was removed, the cell pellet immediately frozen in liquid nitrogen, and the cells stored at -20°C. # DNA and RNA purification Genomic DNA from all investigated cyanobacterial strains was isolated as described earlier [58]. Total RNA was isolated from all strains as described by Axelsson *et al.* [59]. Nucleic acid quality was assessed by gel electrophoresis (1% agarose) and photospectroscopy. # Transcription analysis (RT-PCR) Transcription analysis was carried out as previously described [59]. Total RNA (0.5-1 µg) was used for reverse transcription with AMV reverse transcriptase (Promega Corporation) using antisense primers (Table 4). cDNA produced in reverse transcription reaction was used for PCR reactions with sense/antisense primer pairs given in Table 4. The following PCR program profile was applied: 1 min at 94°C followed by 40 repetitive cycles of 10 s denaturation at 94°C, 1 min annealing at 55.1°C, and 30 s elongation at 72°C and finishing with 7 min at 72°C. Products of the PCR reactions were analyzed using 1% agarose gels. Images were captured on film, scanned and edited into Photoshop 4.0. Negative controls included no reverse transcriptase in the RT reaction prior to PCR and dH₂O in the PCR, both resulting in no amplificates. For positive controls genomic DNA was used in PCR. ### **Authors' contributions** RW carried out the computational studies, participated in the gene expression analysis and drafted the manuscript. MB carried out the RT-PCR reactions. Both RW and PL conceived of the study, and participated in its design and coordination. All authors read and approved the final manuscript. # **Acknowledgements** The authors research was financially supported by Ångpanneföreningens Forskningsstiftelse (Sweden), the Swedish Energy Agency (*Statens Energimyndighet*), and the Swedish Research Council (*NFR/VR*). Preliminary sequence data was obtained from "The DOE Joint Genome Institute (JGI)". #### References - Vignais MV, Billoud B and Meyer J Classification and phylogeny of hydrogenases FEMS Microbiol Rev 2001, 25:455-501 - Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R and Lindblad P Hydrogenases and hydrogen metabolism of cyanobacteria Microbiol Mol Biol Rev 2002, 66:1-20 - Schmitz O, Boison G, Hilscher R, Hundeshagen B, Zimmer W, Lottspeich F and Bothe H Molecular biological analysis of a bidirectional hydrogenase from cyanobacteria Eur J Biochem 1995, 233:266-276 - Carrasco CD, Buettner JA and Golden JW Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts Proc Natl Acad Sci USA 1995, 92:791-795 - 5. Hansel A and Lindblad P Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hy- - drogen, a clean and renewable energy source Appl Microbiol Biotechnol 1998, **50**:153-160 - Houchins JP and Burris RH Occurrence and localization of two distinct hydrogenases in the heterocystous cyanobacterium Anabaena sp. strain 7120 | Bacteriol 1981, 146:209-214 - Troshina OY, Serebryakova LT and Lindblad P Induction of H₂-uptake and nitrogenase activities in the cyanobacterium Anabaena variabilis ATCC 29413: Effects of hydrogen and organic substrate Anabaena variabilis 1996, 33:11-15 - Oxelfelt F, Tamagnini P and Lindblad P Hydrogen uptake in Nostoc sp. strain PCC 73102. Cloning and characterization of a hupSL homologue Arch Microbiol 1998, 169:267-274 - Houchins JP The physiology and biochemistry of hydrogen metabolism in cyanobacteria Biochim Biophys Acta 1984, 768:227-255 - Tamagnini P, Costa JL, Almeida L, Oliveira MJ, Salema R and Lindblad P Diversity of cyanobacterial hydrogenases, a molecular approach Curr Microbiol 2000, 40:356-361 - Appel J and Schulz R Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 gives additional evidence for direct coupling of the enzyme to
NAD(P)H-dehydrogenase (complex I) Biochim Biophys Acta 1996, 1298:141-147 - 12. Schmitz O, Boison G, Salzmann H, Bothe H, Schütz K, Wang SH and Happe T HoxE a subunit specific for the pentameric bidirectional hydrogenase complex (HoxEFUYH) of cyanobacteria Biochim Biophys Acta 2002, 1554:66-74 - Hausinger RP Metallocenter assembly in nickel-containing enzymes | Biol Inorg Chem 1997, 2:279-286 - Maier RJ and Triplett EW Toward more productive, efficient and competitive nitrogen-fixing symbiotic cyanobacteria Crit Rev Plant Sci 1996, 15:191-234 - Masepohl B, Scholisch K, Gorlitz K, Kutzki C and Böhme H The heterocyst-specific fdxH gene product of the cyanobacterium Anabaena sp. PCC 7120 is important but not essential for nitrogen fixation Mol Gen Genet 1997, 253:770-776 - Menon NK, Robbins J, Der Vartanian M, Patil D, Peck HD Jr, Menon AL, Robson RL and Przybyla AE Carboxy-terminal processing of the large subunit of [NiFe] hydrogenases FEBS Lett 1993, 331:91-95 - Vignais PM and Toussaint B Molecular biology of membranebound H₂ uptake hydrogenases Arch Microbiol 1994, 161:1-10 - Voordouw G Evolution of hydrogenase genes Adv Inorg Chem 1992, 38:397-422 - Casalot L and Rousset M Maturation of the [NiFe] hydrogenases Trends Microbiol 2001, 9:228-237 - Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK and Mayhew GF The complete genome sequence of Escherichia coli K-12 Science 1997, 277:1453-1474 - Sawers G The hydrogenases and formate dehydrogenases of Escherichia coli Antonie Van Leeuwenhoek 1994, 66:57-88 - 22. Lutz S, Jacobi A, Schlensog V, Bohm R, Sawers G and Böck A Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli Mol Microbiol 1991, 5:123-135 - 23. Andrews SC, Berks BC, McClay J, Ambler A, Quail MA, Golby P and Guest JR A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system Microbiology 1997, 143:3633-3647 - 24. Menon NK, Robbins J, Peck HD Jr, Chatelus CY, Choi ES and Przybyla AE Cloning and sequencing of a putative Escherichia coli [NiFe] hydrogenase-1 operon containing six open reading frames J Bacteriol 1990, 172:1969-1977 - Menon NK, Chatelus CY, Dervartanian M, Wendt JC, Shanmugam KT, Peck HD Jr and Przybyla AE Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2 J Bacteriol 1994, 176:4416-4423 - Sawers RG and Boxer DH Purification and properties of membrane-bound hydrogenase isoenzyme I from anaerobically grown Escherichia coli K12 Eur J Biochem 1986, 156:265-275 - Francis K, Patel P, Wendt JC and Shanmugam KT Purification and characterization of two forms of hydrogenase isoenzyme I from Escherichia coli | Bacteriol 1990, 172:5750-5757 - Böhm R, Sauter M and Böck A Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components Mol Microbiol 1990, 4:231-243 - Rossmann R, Maier T, Lottspeich F and Böck A Characterisation of a protease from Escherichia coli involved in hydrogenase maturation Eur | Biochem 1995, 227:545-550 - Rossmann R, Sauter M, Lottspeich F and Böck A Maturation of the large subunit (HycE) of Escherichia coli hydrogenase 3 requires nickel incorporation followed by C-terminal processing at Arg537 Eur J Biochem 1994, 220:377-384 - 31. Sorgenfrei O, Linder D, Karas M and Klein A A novel very small subunit of a selenium containing [NiFe] hydrogenase of Methanococcus voltae is postranslationally processed by cleavage at a defined position Eur | Biochem 1993, 213:1355-1358 - Gollin DJ, Mortenson LE and Robson RL Carboxyl-terminal processing may be essential for production of active NiFe hydrogenase in Azotobacter vinelandii FEBS Lett 1992, 309:371-375 - Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M and Fontecilla-Camps JC Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas Nature 1995, 373:580-587 - 34. Fritsche E, Paschos A, Beisel HG, Böck A and Huber R Crystal structure of the hydrogenase maturating endopeptidase HybD from Escherichia coli | Mol 1999, 288:989-998 - 35. Theodoratou E, Paschos A, Mintz W and Böck A Analysis of the cleavage site specificity of the endopeptidase involved in the maturation of the large subunit of hydrogenase 3 from Escherichia coli Arch Microbiol 2000, 173:110-116 - Theodoratou E, Paschos A, Magalon A, Fritsche E, Huber R and Böck A Nickel serves as a substrate recognition motif for the endopeptidase involved in hydrogenase maturation Eur J Biochem 2000, 267:1995-1999 - Hansel A, Axelsson R, Lindberg P, Troshina OY, Wünschiers R and Lindblad P Cloning and characterisation of a hyp gene cluster in the filamentous cyanobacterium Nostoc sp. strain PCC 73102 FEMS Microbiol Lett 2001, 201:59-64 - Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P and Atlas R An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium Photosynth Res 2001, 70:85-106 - Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M and Sasamoto S Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions DNA Res 1996, 30:185-209 - Nakamura Y, Kaneko T, Hirosawa M, Miyajima N and Tabata S CyanoBase, a www database containing the complete genome of Synechocystis sp. strain PCC 6803 Nucleic Acids Res 1998, 20:63-67 - Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K and Kimura T Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 DNA Res 2001, 8:205-253 - Gubili J and Borthakur D Organization of the hupDEAB genes within the hydrogenase gene cluster of Anabaena sp. strain PCC 7120 J Appl Phycol 1998, 10:163-167 - Kneller DG, Cohen FE and Langridge R Improvements in protein secondary structure prediction by an enhanced neural network J Mol Biol 1990, 214:171-182 - 44. Murzin AĞ, Brenner SE, Hubbard T and Chothia C **SCOP:** a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 1995, **247**:536-540 - 45. Pei J and Grishin NV Breaking the singleton of germination protease Protein Science 2002, 11:691-697 - Axelsson R and Lindblad P Transcriptional regulation of Nostoc hydrogenases: effects of oxygen, hydrogen and nickel Appl Environ Microbiol 2002, 68:444-447 - Boison G, Bothe H and Schmitz O Transcriptional analysis of hydrogenase genes in the cyanobacteria Anacystis nidulans and Anabaena variabilis monitored by RT-PCR Curr Microbiol 2000, 40:315-321 - Schmitz O, Boison G and Bothe H Quantitative analysis of expression of two circadian clock-controlled gene clusters coding for the bidirectional hydrogenase in the cyanobacterium Synechococcus sp. PCC7942 Mol Microbiol 2001, 41:1409-1417 - Pierik AJ, Roseboom W, Happe RP, Bagley KA and Albracht SP Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases. NiFe(CN)₂ CO, Biology's way to activate H₂ J Biol Chem 1999, 274:3331-3337 - Kleihues L, Lenz O, Bernhard M, Buhrke T and Friedrich B The H(2) sensor of Ralstonia eutropha is a member of the subclass of regulatory [NiFe] hydrogenases J Bacteriol 2000, 182:2716-2724 - Pierik AJ, Schmelz M, Lenz O, Friedrich B and Albracht SP Characterization of the active site of a hydrogen sensor from Alcaligenes eutrophus FEBS Lett 1998, 438:231-235 - Altschul SF, Gish W, M W., Myers EW and Lipman DJ Basic local alignment search tool J Mol Biol 1990, 215:403-410 - Peitsch MC ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling Biochem Soc Trans 1996, 24:274-279 - 54. Peitsch MC Protein modeling by E-mail Bio/Technology 1995, 13:658-660 - Guex N and Peitsch MC SWISS-MODEL and the Swiss-Pdb-Viewer: An environment for comparative protein modelling Electrophoresis 1997, 18:2714-2723 - Kabsch W and Sander C Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features Biopolymers 1983, 22:2577-2637 - Rippka R, Deruelles J, Waterbury JB, Herdman M and Stanier RY Generic assignments, strain histories and properties of pure cultures of cyanobacteria J Gen Microbiol 1979, 111:1-61 - Tamagnini P, Troshina O, Oxelfelt F, Salema R and Lindblad P Hydrogenases in Nostoc sp. strain PCC 7 a strain lacking a bidirectional enzyme Appl 3102, 63:1801-1807 - Axelsson R, Oxelfelt F and Lindblad P Transcriptional regulation of Nostoc uptake hydrogenase FEMS Microbiol Lett 1999, 170:77-81 Publish with **Bio Med Central** and every scientist can read your work free of charge "BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime." Sir Paul Nurse, Cancer Research UK Your research papers will be: - available free of charge to the entire biomedical community - peer reviewed and published immediately upon acceptance - cited in PubMed and archived on PubMed Central - yours you keep the copyright Submit your manuscript here: http://www.biomedcentral.com/info/publishing_adv.asp