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Abstract
Background: Hydrogenases catalyze the simplest of all chemical reactions: the reduction of
protons to molecular hydrogen or vice versa. Cyanobacteria can express an uptake, a bidirectional
or both NiFe-hydrogenases. Maturation of those depends on accessory proteins encoded by hyp-
genes. The last maturation step involves the cleavage of a ca. 30 amino acid long peptide from the
large subunit by a C-terminal endopeptidase. Until know, nothing is known about the maturation
of cyanobacterial NiFe-hydrogenases. The availability of three complete cyanobacterial genome
sequences from strains with either only the uptake (Nostoc punctiforme ATCC 29133/PCC 73102),
only the bidirectional (Synechocystis PCC 6803) or both NiFe-hydrogenases (Anabaena PCC 7120)
prompted us to mine these genomes for hydrogenase maturation related genes. In this
communication we focus on the presence and the expression of the NiFe-hydrogenases and the
corresponding C-terminal endopeptidases, in the three strains mentioned above.

Results: We identified genes encoding putative cyanobacterial hydrogenase specific C-terminal
endopeptidases in all analyzed cyanobacterial genomes. The genes are not part of any known
hydrogenase related gene cluster. The derived amino acid sequences show only low similarity (28–
41%) to the well-analyzed hydrogenase specific C-terminal endopeptidase HybD from Escherichia
coli, the crystal structure of which is known. However, computational secondary and tertiary
structure modeling revealed the presence of conserved structural patterns around the highly
conserved active site. Gene expression analysis shows that the endopeptidase encoding genes are
expressed under both nitrogen-fixing and non-nitrogen-fixing conditions.

Conclusion: Anabaena PCC 7120 possesses two NiFe-hydrogenases and two hydrogenase specific
C-terminal endopeptidases but only one set of hyp-genes. Thus, in contrast to the Hyp-proteins,
the C-terminal endopeptidases are the only known hydrogenase maturation factors that are
specific. Therefore, in accordance with previous nomenclature, we propose the gene names hoxW
and hupW for the bidirectional and uptake hydrogenase processing endopeptidases, respectively.
Due to their constitutive expression we expect that, at least in cyanobacteria, the endopeptidases
take over multiple functions.

Background
Hydrogenases catalyze the simplest of all chemical reac-

tions: the reduction of protons to molecular hydrogen or
vice versa. Depending on the metal content of the active
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site hydrogenases are classified into Fe-, NiFe-, and metal-
free hydrogenases [1]. Independent from the metal con-
tent, the enzymes are characterized as hydrogen uptake,
bidirectional and hydrogen evolving hydrogenases, indi-
cating their actual in vivo activity. A prominent and evolu-
tionary old group of organisms possessing NiFe-
hydrogenases are phototrophic cyanobacteria (formerly
blue-green algae) [2]. All cyanobacteria investigated so far,
express an uptake, a bidirectional or both NiFe-hydroge-
nases [2–6]. The uptake hydrogenase is a dimeric enzyme
consisting of a large subunit (HupL) containing the active
site and a small subunit (HupS) with several FeS-clusters.
The physiological role of the uptake hydrogenase appears
to be coupled to nitrogen fixation [7–9]: the hydrogen
evolved as a by-product from nitrogenase activity can be
recycled by the action of the uptake hydrogenase [2]. Con-
sequently, the uptake hydrogenase is found in nitrogen-
fixing cyanobacteria only [2,10]. The bidirectional hydro-
genase consists of an electron transmitting and anchoring
diaphorase part (HoxFU), an active site containing large
subunit (HoxH) and a FeS-cluster harboring small subu-
nit (HoxY) [3,11]. The presence of a third diaphorase sub-
unit (HoxE) has been demonstrated for Anacystis nidulans
(Synechococcus PCC 6301) and Synechocystis PCC 6803
[12]. Neither is the bidirectional hydrogenase universally
distributed among cyanobacteria nor is its function clearly
understood, yet [2].

The maturation of nickel-containing enzymes, e.g. hydro-
genases, ureases, and carbonmonoxide dehydrogenases, is
a complex process requiring accessory proteins [13–19].
For hydrogenases, the first experimental results were ob-
tained from Escherichia coli. A number of mutations in the
58–59 min region of the E. coli chromosome (location
2848670–2852287 in E. coli strain K12 genome [20]) af-
fect the biosynthesis of all NiFe-hydrogenases of this or-
ganism [21]. Sequencing of this region revealed 5 ORFs,
which were designated hypABCDE, indicating that these
genes affect hydrogenases pleiotropically [22] and which
were to be the first identified genes associated with hydro-
genase maturation. Later on, hyp homologous genes were
also identified in cyanobacteria (see [2] and references
therein).

One distinct step in NiFe-hydrogenases maturation is the
endoproteolytic cleavage of a C-terminal peptide (ca. 30
amino acids) of the large subunit precursor [19]. E. coli is
able to synthesize at least three NiFe-hydrogenases (oper-
ons hya, hyb and hyc, encoding hydrogenase 1, 2 and 3, re-
spectively). In addition, the operon for a fourth
hydrogenases (operon hyf, encoding hydrogenase 4) has
been identified but its functional expression has not been
proven yet [23]. Hydrogenases 1 and 2 have been shown
to be involved in anaerobic hydrogen oxidation for energy
production [24–27], whereas hydrogenase 3 is part of the

formate-hydrogen-lyase complex and catalyzes the evolu-
tion of hydrogen from formate [28]. Each hydrogenase
isoenzyme large subunit is proteolytically processed by a
corresponding specific C-terminal endopeptidase (i.e.
HyaB by HyaD, HybC by HybD and HycE by HycI). There
has been no peptidase identified for HyfG yet. The pepti-
dases cleave the hydrogenase large subunit precursor pro-
teins after a histidine or arginine residue in the C-terminal
consensus motif DPCxxCxx(H/R) liberating a short
polypeptide (Table 1) [29–32]. The first crystal structure
from a NiFe-hydrogenase of the sulfate reducing bacteri-
um Desulfovibrio gigas [33] revealed that those conserved
cysteines are ligands to the NiFe-active site of hydrogenas-
es. The endopeptidase HybD, responsible for proteolytic
maturation of the precursor of the large subunit from hy-
drogenase 2 of E. coli, has been overexpressed and crystal-
lized [34]. X-ray analysis of the crystal structure revealed
the presence of three amino acid residues, which are in-
volved in metal binding (Glu16, Asp62, and His93). Recog-
nition of the hydrogenase by the peptidase does not
depend on the cleavage site consensus sequence but is me-
diated by the overall 3-dimensional hydrogenase and
peptidase protein structures [35,36]. Until now, nothing
is known about the maturation of cyanobacterial NiFe-hy-
drogenases. Previously, we cloned, sequenced and charac-
terized a hyp-operon from the heterocystous nitrogen-
fixing cyanobacterium Nostoc punctiforme ATCC 29133/
PCC 73102 [37]. The availability of three completed cy-
anobacterial genomes from organisms with either only
the uptake (Nostoc punctiforme ATCC 29133/PCC 73102
[38]), only the bidirectional (Synechocystis PCC 6803
[39,40]) or both NiFe-hydrogenases (Anabaena PCC 7120
[41]) prompted us to mine these genomes for hydroge-
nase-related genes. In this communication we focus on
the presence and the expression of the NiFe-hydrogenases
and the corresponding putative hydrogenase specific C-
terminal endopeptidases in these three strains.

Results and Discussion
Genome Search and Sequence Analysis
Initially, we investigated the C-terminal parts of all avail-
able cyanobacterial hydrogenase large subunit sequences
for the presence of the characteristic cutting site motif:
DPCxxCxx(H/R) [1,19]. This motif was found in all de-
duced amino acid sequences (Table 1). In contrary to all
other analyzed sequences, in the uptake hydrogenase
(HupL) cutting site motif the neutral proline (P) at posi-
tion 2 is exchanged by an uncharged polar serine (S) (Ta-
ble 1).

In order to search for putative hydrogenase specific C-ter-
minal endopeptidases (hydrogenase maturating peptidas-
es) in the cyanobacterial genomes, the protein sequences
of HyaD, HybD, and HycI from E. coli were used in BLAST
searches. The E. coli sequences are 22 to 41% similar to
Page 2 of 12
(page number not for citation purposes)



BMC Microbiology 2003, 3 http://www.biomedcentral.com/1471-2180/3/8
each other (Table 2). Analysis of the positive hits revealed
overall low similarities between both the E. coli and the
putative cyanobacterial hydrogenase maturating peptidas-
es, and among the cyanobacterial proteins, respectively
(Table 2). The average similarity is 42%. Interestingly,
only in the Anabaena PCC 7120 genome two putative cy-
anobacterial hydrogenase maturating peptidases were
found. The deduced amino acid sequences show 27 and
89% similarity to the putative cyanobacterial hydrogenase
maturating peptidase from the closely related Nostoc punc-
tiforme ATCC 29133/PCC 73102. In addition to the puta-
tive peptidase genes, sequences of flanking genes with the
same reading frame orientation were retrieved (Fig. 1AB).
Analysis of these genes gave no indication of functional
relations (Fig. 1B). None of the open reading frames ori-
ented in the same direction showed any homology to any
known protein involved in either hydrogenase matura-
tion or hydrogen metabolism. This finding is not surpris-
ing in the case of Synechocystis PCC 6803. In this strain all
hydrogenase maturation related genes were found to be
scattered over the entire genome [2]. However, in the case
of Anabaena PCC 7120 [42] and Nostoc punctiforme ATCC
29133/PCC 73102 [37] the hyp-genes were found to be
clustered in one operon.

Figure 2 shows an alignment of the retrieved putative cy-
anobacterial hydrogenase maturating peptidases and the
known enzymes from E. coli. In all sequences the nickel-
binding site, as assigned from the E. coli HybD crystal
structure [34], could be identified at conserved positions.

It consists of an N-terminal aspartic or glutamic acid resi-
due, a second aspartic acid residue and a histidine residue
(Fig. 2). The amino acid conservation around these active
site metal-binding amino acids was found to be low.
Thus, the identity of the cyanobacterial hydrogenase mat-
urating peptidases can not be unambiguously concluded
from the primary sequence information alone. In order to
corroborate the identity and to collect further evidence for
the participation of the three highly conserved amino ac-
ids in metal binding, secondary and tertiary protein struc-
tures were computed. Figure 3 shows an alignment of
alpha helices and beta sheets, which were calculated by
the program NNPREDICT [43]. The alignment clearly
shows that the putative cyanobacterial hydrogenase mat-
urating peptidases are structurally related to the hydroge-
nase maturating peptidases from E. coli (67–77%
structural identity).

This allowed performing a 3-dimensional alignment
against HybD from E. coli. Except for the sequence from
Synechocystis PCC 6803 all putative cyanobacterial
hydrogenase maturating peptidases could be aligned with
and fitted to the 3-dimensional structure of HybD (Fig. 4).
From Table 2 it can be seen that of all analyzed putative
cyanobacterial hydrogenase maturating peptidase se-
quences the Synechocystis PCC 6803 sequence shows the
lowest similarity (28%) and identity (14%) to HybD from
E. coli. Most probably, this accounts for the computational
inability to perform a 3-dimensional alignment to E. coli
HybD. For the putative cyanobacterial hydrogenase

Table 1: The C-terminal part of deduced cyanobacterial hydrogenase large subunit amino acid sequences. Cyanobacterial sequences in 
the focus of this study are shown in bold. The accession number and the C-terminal protein sequence follow the gene name. The 
putative cutting site is represented by a gap. As reference, the cutting sites of Escherichia coli hydrogenase large subunits are shown. 
Corresponding GenBank accession numbers are indicated. The consensus sequence D(P/S)CxxCxx(H/R) is shown in italic letters.

Synechocystis PCC 6803

HoxH CAA66212.1 -NRVEAGIRCYDPCLSCSTH AAGQMPLMIDLVNPQGELIKSIQRD
Nostoc ATCC 29133
HupL AAC16277.1 -VEVGHVARSFDSCLVCTVH AHDAKTGEELARFRTA
Anabaena PCC 7120 
HupL AAC79878.1 -VEVGHVARSFDSCLVCTVH AHDAKTGEELARFRTA
HoxH NP_484809 -NRVEAGIRAFDPCLSCSTH AAGQMPLHIQLVAADGNIVNQVWRE
Anabaena variabilis
HupL CAA73659.2 -VEVGHVARSFDSCLVCTVH AHDAKTGEELARFRTA
HoxH CAA55878.1 -NRVEAGIRAFDPCLSCSTH AAGQMPLHIQLVAANGNIVNQVWREKLGV
Synechococcus PCC 6301
HoxH CAA66383.1 -NRVEAGIRCFDPCLSCSTH TAGQMPLKIEIFDSRGELYQCLCRDL
Prochlorothrix hollandica
HoxH AAB53705.1 -NRVEAGIPCYDPCLSCSTH AAAKCPSMWNWWVPTA-

PLSRKRCGLGQRVPRF
Escherichia coli
HyaB AAA23998.1 -LEILRTLHSFDPCLACSTH VLGDDGSELISVQVR
HybC AAA21591.1 -LEVVRTIHSFDPCMACAVH VVDADGNEVVSVKVL
HycE CAA35550.1 -SDAPLIIGSLDPCYSCTDR MTVVDVRKKKSKVVPYKELERYSIERKNSPLK
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Figure 1
Cyanobacterial hydrogenase specific endopeptidases. A) The hydrogenase specific endopeptidase genes (colored in 
yellow) and flanking regions are shown. The size of the flanking region was chosen so that all open reading frames having the 
same direction are included (putative operons; colored in gray). B) Annotation of the above genes according to genome data-
base entries. In addition, the proposed annotation of the cyanobacterial hydrogenase maturating endopeptidases is shown.
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maturating peptidases from Nostoc punctiforme ATCC
29133/PCC 73102 and Anbaena PCC 7120 the 3-dimen-
sional structural alignment result in an almost perfect
match (Fig. 4). Most importantly, the active site metal-
binding amino acid residues fit into the same sterical con-
formation as in the HybD template. Taken all data of the
sequence analysis together, the sequences all0770 and
alr1423 from Anabaena PCC 7120 and the sequence c509/
r320 from Nostoc punctiforme ATCC 29133/PCC 73102
can clearly be assigned as hydrogenase maturating pepti-
dases. The good secondary structure alignment between
sequence slr1876 from Synechocystis PCC 6803 and HybD
from E. coli, especially with respect to the active site metal-
binding amino acid residues, identifies this gene as encod-
ing a hydrogenase maturating peptidase, too. In the fu-
ture, we hope to obtain physiological and biochemical
evidence to corroborate these identifications.

It should be noted that, according to the structural classi-
fication of proteins (SCOP; [44]), HybD (1CFZ) belongs
to the superfamily of HybD-like structures in the class of
alpha/beta proteins. The only other known structural
member of this superfamily is a germination protease
from Bacillus megaterium (1C8B, [45]), which contains a
phosphorylase/hydrolase-like fold. Although sequence-
wise very different, germination proteases match structur-
ally very good to hydrogenase maturating peptidases. The
only exception is the absence of helices 4 and 5 in the
former enzymes (Fig. 3).

Expression Analysis
From previous studies, the expression of hydrogenase
structural genes is well known (see [2] for a review). The
bidirectional hydrogenase is continuously expressed,
though strongly induced by e.g. anaerobic conditions, as
shown for Nostoc muscorum [46]. The uptake hydroge-
nase is only expressed under nitrogen-fixing conditions in
Anabaena PCC 7120 and Nostoc punctiforme ATCC
29133/PCC 73102. In order to analyze the expression pat-

tern of the cyanobacterial hydrogenase maturating pepti-
dase genes and the hydrogenase large subunit structural
genes, we performed RT-PCR based transcription studies
(Fig. 5, Table 3). A transcript corresponding to the hydro-
genase maturating peptidases could be detected under all
conditions examined. This means that the transcript is
present when the corresponding hydrogenase large subu-
nit transcript is absent. Thus, the expression of the puta-
tive hydrogenase maturating peptidases seems to be
differently regulated than the expression of both the hy-
drogenase structural and accessory genes in cyanobacteria.
For Anabaena PCC 7120 it was shown that the accessory
genes hypFCDEAB (initially identified as hup-genes) are
expressed in heterocyst-induced (nitrogen-fixing) but not
in non-nitrogen-fixing cultures [2,42]. The same situation
was described for Nostoc punctiforme ATCC 29133/PCC
73102 [37]. These findings point to either a post-tran-
scriptional regulation of the peptidase transcript or to an
additional function of the protein. Since proteolytic
processing of the large hydrogenase subunit is considered
to be the last step during hydrogenase maturation, the
former mechanism would allow a rapid maturation of the
pre-processed, but immature, hydrogenase [19]. Our ob-
servation is supported by the finding that in the unicellu-
lar cyanobacterium Synechococcus PCC 7942 (Anacystis
nidulans R2) hoxW is co-transcribed as part of the polycis-
tronic message hoxUYHW [47,48]. Thus, similar expres-
sion levels were anticipated for these genes. However,
hoxU and hoxW transcription was found to be ca. 4-times
higher than hoxY and hoxH transcription [48]. Further-
more, hoxW was found to have its own promoter element.
Thus, although part of a polycistronic transcript with
structural hydrogenase genes, transcription of hoxW can
be independently regulated in Synechococcus PCC 7942.
In the cyanobacteria analyzed in the present study, the in-
dependence of hoxW and hupW is pronounced by their
operon distribution in the respective genomes (Fig. 1) and
is further reflected in their transcription being independ-
ent of the structural hydrogenase genes (Fig. 5, Table 3).

Table 2: Protein cross-comparison Deduced amino acid sequence relationship among the putative cyanobacterial and known Escherichia 
coli hydrogenase specific C-terminal endopeptidases. Similarities are shown in bold.

identical/similar [%] Synechocystis Nostoc Anabaena Escherichia coli
HoxW HupW HupW HoxW HyaD HybD HycI

Synechocystisa HoxW 21/33 21/35 35/52 09/21 14/28 15/30
Nostocb HupW 82/ 89 17/27 22/33 22/39 16/36
Anabaenac HupW 18/31 23/34 22/42 17/38
Anabaena HoxW 09/22 20/30 09/25
E. coli HyaD 26/41 15/30
E. coli HybD 14/36
E. coli HycI

aSynechocystis PCC 6803, bNostoc punctiforme ATCC 29133/PCC 73102, cAnabaena PCC 7120
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Figure 2
Primary structure alignments. Deduced amino acid sequence alignment of the putative cyanobacterial (green letters) and 
the E. coli (black letters) hydrogenase maturating endopeptidases. The top row indicates secondary structure features (H: alpha 
helix, S: beta sheet), which were extracted from the crystal structure of E. coli HydD [34] using the software tool DSSP [56]. 
The conserved nickel coordinating amino acid residues are shaded yellow. The sequences are annotated with the (suggested) 
protein name plus the organism identification: PCC6803: Synechocystis PCC 6803, PCC7120: Anabaena PCC 7120, PCC73102: 
Nostoc punctiforme ATCC 29133/PCC 73102, PCC6301: Synechococcus PCC 6301, PCC7002: Synechococcus PCC 7002, Ecoli: 
Escherichia coli.
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Figure 3
Secondary structure alignments. Alignment of the secondary structures of cyanobacterial (green letters) and known E. coli 
(black letters) hydrogenase maturating endopeptidases. The secondary structures, except for the top sequence 1CFZ (bold let-
ters), were determined from the deduced amino acid sequences using NNPREDICT [43]. The secondary structure features 
from the crystal structure of E. coli HydD (1CFZ) [34] were extracted using DSSP and used as reference (top sequence). Boxes 
are drawn and named according to the nomenclature used by Fritsche et al. [34]. The stars mark the position of nickel ligating 
amino acid residues. The right column indicates amino acid counting. H: alpha helix, S: beta sheet, x6803: HoxW from Syne-
chocystis PCC 6803, x7120: HoxW from Anabaena PCC 7120, p7120: HupW from Anabaena PCC 7120, p73102: HupW from 
Nostoc punctiforme ATCC 29133/PCC 73102, HyaD, HybD, and HycI: sequences from Escherichia coli. – Note that the same 
amino acid sequence underlies 1CFZ and HybD. Thus, their secondary structure comparison reflects the accuracy of 
NNPREDICT.
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Conclusions
Hydrogenase specific C-terminal endopeptidases share
only low sequence similarity. Thus, the present study gives
an example for the necessity to apply secondary and terti-
ary protein sequence information in order to facilitate un-
ambiguous gene identification. Anabaena PCC 7120
possesses two NiFe-hydrogenases and two hydrogenase
specific C-terminal endopeptidases but only one set of
hyp-genes. Thus, in contrast to the universal Hyp-proteins,
the C-terminal endopeptidases are the only known hydro-
genase maturation factors that are specific. In order to
keep in line with previous nomenclature we name the
bidirectional hydrogenase (encoded by hox-genes)
processing endopeptidases HoxW and propose to name
the hydrogenase uptake (encoded by hup-genes) process-
ing endopeptidases HupW.

Phylogenetic analysis of NiFe-hydrogenases revealed a
close relationship between cyanobacterial uptake hydro-
genases (HupSL) and bacterial hydrogen sensing hydroge-
nases (HoxBC, HupUV) [1]. These hydrogen sensors lack
the C-terminal extension, which is cleaved off after nickel
insertion, but nevertheless contain the bimetallic NiFe-
center [49–51]. This indicates that the final endopepti-
dase mediated hydrogenase maturation step is not abso-
lutely necessary in order to obtain the fully assembled
active site. From a phylogenetic point of view it seems that
the last common ancestor of cyanobacterial uptake hydro-
genases and hydrogen sensing hydrogenases possessed
the C-terminal extension and the cutting site motive.
Thus, it will be interesting to elucidate the advantage or
necessity to loose that extension in the case of hydrogen
sensing hydrogenases. Furthermore, it raises the question
why the C-terminal extension was kept in all other known
NiFe-hydrogenase. The fact, that cyanobacterial hydroge-
nase specific endopeptidase are constitutively expressed
might point to multiple functions of these enzymes.

Methods
Genome data analysis
The genomes of Nostoc punctiforme ATCC 29133/PCC
73102 http://spider.jgi-psf.org/JGI_microbial/html/nos-
toc/nostoc_homepage.html, Anabaena PCC 7120 http://
www.kazusa.or.jp/cyanobase/Anabaena/index.html and
Synechocystis PCC 6803 http://www.kazusa.or.jp/cyano-
base/Synechocystis/index.html were analyzed using the
online program BLAST (Basic Local Alignment Search
Tool) [52] provided by the respective genome initiative.
For Nostoc punctiforme ATCC 29133/PCC 73102, prelimi-
nary sequence data was obtained from "The DOE Joint
Genome Institute (JGI)".

Computational structure modeling
The derived protein sequences from the putative cyano-
bacterial hydrogenase maturation peptidase genes were
structurally aligned using the online program SWISS
MODEL http://www.expasy.ch/swissmod/SWISS-MOD-
EL.html[53–55]. As reference the crystal structure from
the hydrogenase specific C-terminal endopeptidase HybD
from E. coli [34] was chosen.

Secondary structure prediction
The secondary structure was predicted using NNPREDICT
http://www.cmpharm.ucsf.edu/~nomi/nnpre-
dict.html[43]. No special parameters were set. The sec-
ondary structure from the crystal structure data file of the
hydrogenase maturating endopeptidase HybD from E. coli
[34] (ProteinDataBank accession number: 1CFZ.pdb) was
extracted by DSSP http://www.cmbi.kun.nl/swift/dssp/
[56]. These data were used as a template for secondary
structure identity calculations. The calculations were
performed with a homemade PERL script employing a

Figure 4
Tertiary structure alignments. The upper left image 
sketches the 3-dimensional structure of Escherichia coli 
hydrogenase maturating endopeptidase HybD; [34]. A yellow 
ball represents the bound nickel ion. The deduced amino acid 
sequences of the putative cyanobacterial endopeptidases 
were aligned to this structure using SWISS-MODEL [53–55]. 
The nickel binding amino acid residues are explicitly drawn as 
sticks. Alpha helices and beta sheets are sketched as rods and 
flat arrows, respectively. E. coli HybD: Escherichia coli HybD 
[34], p73102: Nostoc punctiforme ATCC 29133/PCC 73102 
HupW, p7120: Anabaena PCC 7120 HupW, x7120: Anabaena 
PCC 7120 HoxW
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weight matrix. Identities were weighted one, all other
combinations zero.

Primer Design
Using the genomic sequences as templates PCR and re-
verse transcription PCR (RT-PCR) oligo-nucleotide prim-
ers were designed using the online program Primer3 (S.
Rozen and H. J. Skaletsky, 1996,1997,1998; code availa-
ble at http://www-genome.wi.mit.edu/genome_software/
other/primer3.html). The expected product size was set to
be around 300 bp. All used primers are shown in Table 4.

Cell growth and harvesting
Nitrogen-fixing cultures of Nostoc punctiforme ATCC
29133/PCC 73102 and Anabaena PCC 7120 were grown
in BG110 [57] as previously described [37]. Non-nitro-
gen-fixing cultures of Nostoc punctiforme ATCC 29133/
PCC 73102, Anabaena PCC 7120 and Synechocystis PCC
6803 were grown in BG110 supplemented with 5 mM
ammonium chloride and 10 mM HEPES (pH 7.5) (Nostoc
and Anabaena) or BG110 supplemented with 1.5 g/l (17.7
mM) sodium nitrate (Synechocystis). All cultures were
sparked with air. Cells were harvested by centrifugation at

Figure 5
Gene expression analysis RT-PCR results are shown for nitrogen-fixing and non-nitrogen-fixing conditions. The PCR gener-
ated DNA products were visualized by agarose gel electrophoresis. From the left to the right the four individual lanes on each 
agarose gel represent: 1) RT-PCR product demonstrating the transcription of the hydrogenase maturating peptidases (hoxW/
hupW) and their respective hydrogenase large subunits (hoxH/hupL). 2) Control, where DNA instead of the cDNA sample 
from the RT reaction from the respective strain were used in the PCR reaction. 3) Control, with no reverse transcriptase 
enzyme added to the RT reaction. 4) Control, where dH2O instead of the cDNA sample from the RT reaction was added to 
the PCR reaction tube. Product sizes are shown in Table 4. Diffuse bands originate from primer-dimers artifacts. Nostoc 
punctiforme: Nostoc punctiforme ATCC 29133/PCC 73102.
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Table 3: Summary of the gene expression studies Note that Synechocystis PCC 6803 does not survive under nitrogen deprivation, i.e. 
nitrogen-fixing conditions.

Cyanobacterium Gene nitrogen-fixinga non-nitrogen-fixinga

Synechocystis PCC 6803 hoxH lethal +
hoxW lethal +

Nostoc punctiforme hupL + -
ATCC 29133/PCC 7120 hupW + +

Anabaena PCC 7120 hupL + -
hupW + +
hoxH + +
hoxW + +

a +: expressed, -: not expressed

Table 4: Primers used in PCR and RT-PCR experiments performed in this study Primer sequences are shown 5' to 3'. "L" annotates 
sense, "R" antisense primers. In addition, the proposed gene names, as depicted in Fig. 1, and PCR product sizes are shown (see also 
Fig. 5).

Synechocystis PCC 6803 Primer Sequence Gene Name Product Size [bp]

Bidirectional hydrogenase
hoxH6803/L AAT CCC ACG CCC TAA GTT TT

hoxH 200
hoxH6803/R CAC TGA CCA AGC AGA GTG GA
hoxW6803/L TCA TCG GTT ACG GCA ATA CC

hoxW 198
hoxW6803/R ATG GTT CGT TTG CTG ATT CC

Nostoc punctiforme ATCC 
29133/PCC 73102

Uptake hydrogenase
hupL-L CTG TTG GGC GGA CAA TGG CCT CA

hupL 383
hupL-R CCA CTT TTC ATA ATC AT
hybD73102/L CGC AGG GAT GGA AGT AAT GT

hupW 218
hybD73102/R TCA CAT CAT CGG GAA AGT CA

Anabaena PCC 7120

Uptake hydrogenase
hupL7120/L2 TAT ATC ACC CGT CGG TAG AG

hupL 205
hupL7120/R2 CCA TGA TGC AGA GGT TAA GT
hybD7120/L CGC AGG GAT GGA AGT TAT GT

hupW 209
hybD7120/R GCG GAA AAT CAT CTG GAA A

Bidirectional hydrogenase
hoxHF CCA CTA TGC TCG TTT AAT TGA AAT

hoxH 355
hoxHR GGA ACA ACT TAA ACA GGG GTC AAA
hoxW7120/L2 ATC TCT TGC AGT CCA TCA AC

hoxW 200
hoxW7120/R2 CGT AGA TGG CTT TGG TTA AG
Page 10 of 12
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4°C for 5 min in 50 ml Falcon tubes (Falcon#2070). Sub-
sequently, the supernatant was removed, the cell pellet
immediately frozen in liquid nitrogen, and the cells stored
at -20°C.

DNA and RNA purification
Genomic DNA from all investigated cyanobacterial strains
was isolated as described earlier [58]. Total RNA was
isolated from all strains as described by Axelsson et al.
[59]. Nucleic acid quality was assessed by gel electro-
phoresis (1% agarose) and photospectroscopy.

Transcription analysis (RT-PCR)
Transcription analysis was carried out as previously de-
scribed [59]. Total RNA (0.5–1 µg) was used for reverse
transcription with AMV reverse transcriptase (Promega
Corporation) using antisense primers (Table 4). cDNA
produced in reverse transcription reaction was used for
PCR reactions with sense/antisense primer pairs given in
Table 4. The following PCR program profile was applied:
1 min at 94°C followed by 40 repetitive cycles of 10 s de-
naturation at 94°C, 1 min annealing at 55.1°C, and 30 s
elongation at 72°C and finishing with 7 min at 72°C.
Products of the PCR reactions were analyzed using 1%
agarose gels. Images were captured on film, scanned and
edited into Photoshop 4.0. Negative controls included no
reverse transcriptase in the RT reaction prior to PCR and
dH2O in the PCR, both resulting in no amplificates. For
positive controls genomic DNA was used in PCR.
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