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Predicting Protein–protein 
Association Rates using Coarse-
grained Simulation and Machine 
Learning
Zhong-Ru Xie†, Jiawen Chen & Yinghao Wu

Protein–protein interactions dominate all major biological processes in living cells. We have developed 
a new Monte Carlo-based simulation algorithm to study the kinetic process of protein association. We 
tested our method on a previously used large benchmark set of 49 protein complexes. The predicted 
rate was overestimated in the benchmark test compared to the experimental results for a group of 
protein complexes. We hypothesized that this resulted from molecular flexibility at the interface regions 
of the interacting proteins. After applying a machine learning algorithm with input variables that 
accounted for both the conformational flexibility and the energetic factor of binding, we successfully 
identified most of the protein complexes with overestimated association rates and improved our final 
prediction by using a cross-validation test. This method was then applied to a new independent test set 
and resulted in a similar prediction accuracy to that obtained using the training set. It has been thought 
that diffusion-limited protein association is dominated by long-range interactions. Our results provide 
strong evidence that the conformational flexibility also plays an important role in regulating protein 
association. Our studies provide new insights into the mechanism of protein association and offer a 
computationally efficient tool for predicting its rate.

Protein interactions constitute an indispensable part of all cellular processes1–6, and strong interactions between 
protein subunits drive the assembly of permanent molecular machines, such as ATP synthase7–9, and regulate the 
formation of transient protein complexes in cell signaling pathways10. This thermodynamic property of protein 
interactions is characterized by dissociation constants (Kd) that quantitatively determine the stability of a protein 
complex after binding11. In addition to the Kd, the kinetic aspect of binding (i.e., how fast two proteins associate) 
is usually as important to the biological functions of proteins in cells12,13 as the thermodynamics. For instance, 
the binding kinetics between membrane receptors and their ligands control the speed of signal transduction after 
cells are exposed to stimulation14. Moreover, any cellular activity, such as transcriptional regulation, involves the 
coordinated effects of several different proteins15. The temporal patterns of these dynamic systems are determined 
by the kinetic information for all pairwise interactions in complicated networks, and the processes of association 
and dissociation between two proteins are therefore topics of intense study. In principle, the relationship between 
the rate of association, kon, and the rate of dissociation, koff, is defined by Kd =  koff/kon, in which kon and koff have 
units of M−1 s−1 and s−1, respectively, if a first-order reaction is considered in which one ligand only binds to 
one receptor. The values of kon and koff can be experimentally measured using a number of in vitro and in vivo 
methods. In vitro biophysical techniques, such as analytical ultracentrifugation (AUC)16, NMR spectroscopy17, 
isothermal titration calorimetry (ITC)18,19, surface plasmon resonance (SPR)20, and mass spectrometry21, allow 
the quantitative analysis of the stoichiometry or binding parameters of complexes but lose the biological rele-
vance of the binding processes22. By contrast, in vivo approaches such as cross-linking23, Forster resonance energy 
transfer (FRET)24, and fluorescence recovery after photobleaching (FRAP)25 can be used to detect the binding of 
proteins in their physiological environments. However, the kinetic information that they can provide is relatively 
incomplete due to the multiple levels of cellular complexity. Surprisingly, the observed values for the kon span an 
extremely wide range: between 1 M−1 s−1 and 1010 M−1 s−1 26–32. Multiple factors, such as diffusion, the binding 
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energy, and the conformational flexibility, are thought to account for this ten order of magnitude difference in the 
kon

4. However, the traditional experimental approaches do not provide mechanistic details of protein association22,  
thus preventing a quantitative understanding of the problem.

A number of different models for the mechanism of protein association have been proposed. The earliest 
proposed mechanism was the lock-and-key model, in which binding was described as rigid-body docking with 
surface complementarity. In an alternative approach, known as the induced-fit model33, binding triggers a shift 
in the conformation of a protein from an unbound state to a bound state34. This was followed by the conforma-
tional selection model35,36, in which a protein remains in a pre-existing equilibrium of unbound conformations, 
and binding shifts the equilibrium toward its bound state. Computational approaches have unique advantages 
over experimental studies for testing the validity of different mechanisms and allow the testing of conditions 
that may be difficult or impossible to attain in the laboratory. Consequently, a variety of computational meth-
ods have been developed to calculate the rate constant for protein association. For instance, machine learning 
techniques have been used to predict association rate constants based on the chemical or structural properties of 
proteins37,38. Physics-based methods, such as Brownian dynamic (BD) simulation, are widely used to reproduce 
the association of two proteins39–60. These all atom-based methods are computationally expensive, as they have 
to take into account the large amount of freedom in both interacting proteins. Moreover, the role of molecu-
lar flexibility implied in the induced fit and conformational selection models is difficult to consider. A more 
recent method based on BD simulation was proven to successfully predict protein association rate constants 
using a “transient-complex” theory61–64; this method highlights the importance of electrostatic interactions in 
protein association and calculates rate constants by decomposing them into energetic and diffusion contributions. 
However, all the current computational predictions are verified by performing in vitro experiments and thus can-
not definitively represent the in vivo binding of proteins.

The usage of coarse-grained (CG) models is an alternative strategy that enables higher computational effi-
ciency by reducing the size of the simulation system. CG models have been developed to study protein–peptide 
and protein–protein binding and complex assembly65–67. In this article, we develop a new CG model to simulate 
the process of protein association using the kinetic Monte Carlo (KMC) algorithm. Each residue in this model 
is represented by its Cα  atom and the representative center of a side-chain. A simple physics-based force field is 
used to guide the diffusion of two interacting proteins. For a given size of simulation box and duration of simula-
tion, the association rate constant can be derived by counting the frequency of dimer formation between the two 
proteins among a large number of simulation trajectories. We tested our method on the wild-type barnase/barstar 
complex and various mutants26,27 and on a large benchmark set of 49 protein complexes, the kon values of which 
range from 104 to 109 M−1 s−1. Positive correlations were observed between the experimental measurements 
and our calculated values, indicating the potential of the method for predicting the rate of protein association. 
However, the kon values for some of the protein complexes were overestimated in the benchmark test. Based on 
the conformational selection model, we hypothesized that this overestimation resulted partially from the molec-
ular flexibility at the interface regions of the interacting proteins. After inputting variables, including the per-
centage of flexible loop residues from each protein at the binding surfaces to take into account the impact of the 
molecular flexibility using a machine learning algorithm, we successfully distinguished the most overestimated 
association rates from the non-overestimated ones and were thus able to correct the overestimated rate constants 
and improve the final prediction in a cross-validation test set. This method, which, to the best of our knowledge, 
is the first to combine physics-based simulation and a machine-learning algorithm, was then applied to a newly 
constructed independent 10 complex test set, and a strong correlation was obtained between our predicted kon 
values and the experimentally measured values. It was thought that the protein association in a diffusion-limited 
system is dominated by long-range interactions at the binding interfaces4. However, our results provide strong 
evidence that the conformational flexibility of protein structures plays a broader role in regulating the protein 
association than previously anticipated. In summary, our study provides new insights into the mechanism of 
protein association and provides a computationally efficient tool for predicting its rate.

Results
Testing the robustness of the KMC simulation for calculating the protein association rate. We 
used the association of the proteins barnase and barstar as a test system to evaluate the robustness of our KMC 
simulation. The barnase/barstar complex (PDB id 1BRS) was separated into two monomers and randomly placed 
in a 10 × 10 ×  10 nm cubic simulation box. The parameter ξ  (Coulomb Debye length) in the simulation was 9.5 Å, 
which corresponded to an ionic strength of 103 mM. The relation between ξ  and the ionic strength will be dis-
cussed in the next section. Starting from a random orientation of two monomers, 104 simulation trajectories with 
a maximal duration of 1000 ns were generated, and encounter complexes were observed in 658 of these, giving 
a success rate, ρ , of 0.0658. Knowing the volume of the simulation box, the maximal duration of each trajectory, 
and the success rate, equation (8) was then used to calculate the kon, which was 4.22 ×  107 M−1 s−1. This result, 
which is close to the experimental measurement (1.2 ×  108 M−1 s−1) at the ionic strength of 103 mM, indicates a 
fast association between these two proteins.

Three representative trajectories are selected to illustrate the physical process of association in simulations. 
The changes of distance between two monomers’ centers of mass are plotted in Fig. 1a with the simulation time, 
while the changes in the RMSD from the native complex are plotted in Fig. 1b. The inter-molecular distance and 
RMSD are large at the beginning of the simulations, given the initial random conformations in all three trajec-
tories. The figure shows that the proteins associated into complexes faster in some trajectories than others. For 
instance, the complex in the black curve was formed at 300 ns, whereas the complex in the red curve was formed 
at 900 ns. In these cases, the proteins diffused around in the simulation box and spatially approached each other 
until they found their actual binding sites. However, in some cases, the proteins cannot associate into complexes 
by the end of the maximal time duration (blue curve). Therefore, large diversity exists among each individual 
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trajectory. The final meaningful calculation of kon cannot be derived without the statistical analysis of all 104 
trajectories.

We then changed the maximal duration of each simulation trajectory. As shown in Fig. 2a, an increase in 
the maximal duration led to a higher success rate (blue dots and line), indicating that, given sufficient time, 
two proteins have a higher probability of association. By contrast, the calculated kon values, shown by the red 
bars in Fig. 2a, were very consistent at different simulation durations. As shown in equation (8), the calculated 
kon was normalized by the maximal duration of the simulation and is thus temporally insensitive. We also tried 
simulation boxes of different sizes. As shown in Fig. 2b, larger simulation boxes resulted in lower success rates, 
i.e., the diffusion of proteins in a larger volume causes association to occur more slowly. The success rates for 
different volumes were then used to calculate the corresponding kon values. Overall, the calculated kon values 
were relatively stable in large volumes, which suggested that the size of the simulation box had little effect on our 
prediction results under relatively low concentrations. However, the kon for a small-volume box was relatively low 
because the increasing nonspecific interactions at a high concentration hinder the proper association between 
two proteins. This effect is not considered in traditional simulation methods, in which the concentrations of the 
interacting proteins are essentially ignored. Our results suggest that in a crowded cellular environment, the pro-
tein association is concentration-dependent. This is consistent with previous studies68. In summary, these tests 
demonstrated that the KMC simulation results were unaffected by the choice of simulation parameters and that 
this is a robust method for calculating the kon of protein association.

Estimating the solvation effect on protein–protein associations. The concentration of ions around 
two interacting proteins is an important factor controlling the rate of their association, and the experimentally 
measured kon values for protein binding at different ionic strengths show a negative correlation54. The salt effect 
in our CG model is manifested by the Coulomb Debye length, ξ , which describes the decay of the long-range 
electrostatic interactions between proteins in the solvent. Theoretically, the Coulomb Debye length is related to 
the ionic strength using the equation69

Figure 1. The association of the proteins barnase and barstar was first used as a test system. The complex 
was separated into two monomers and randomly placed in a 10 ×  10 ×  10 nm cubic simulation box. In total, 104 
simulation trajectories with a maximal duration of 1000 ns were generated, and each trajectory was terminated 
upon the formation of an encounter complex. Three representative trajectories are plotted to illustrate how the 
distance between the centers of mass for the two monomers (a) and the RMSD from the native complex (b) 
changed with the simulation time.
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where kB is the Boltzmann constant, e the elementary charge, I the ionic strength, T the absolute temperature, and 
ε  the solvent medium dielectric constant. In our study, equation (1) was further simplified to ξ = . I0 304/  f 
calculate the Coulomb Debye length at a given ionic strength70, and the calculated ξ  was then used in the subse-
quent KMC simulations. We simulated the association of the barnase/barstar complex at ionic strengths of 13, 23, 
33, 53, 103, 203, and 503 mM based on the data used in a previous study by Alsallaq and Zhou61. The calculated 
values of ξ  at these ionic strengths are listed in Table S1. In accordance with equation (1), the data showed a neg-
ative correlation between ξ  and the ionic strength. The derived kon values plotted against the ionic strength are 
shown in Fig. 3. Although the plot shows that our calculated kon values were underestimated compared to the 
experimental measurements, there was qualitative agreement between these two sets of data within the ionic 
strength range of 50 to 500 mM. The figure shows a fast association at low ionic strength and a slow association at 
high ionic strength, consistent with previous results61. Lower values of ξ  shield the long-range electrostatic inter-
actions and therefore slow down the association of proteins at higher ionic strengths54. These tests showed that 
our method can reproduce the effect of the ionic strength on associations of the barnase/barstar complex.

Evaluating the effects of point mutations on protein association rates. To systematically validate 
the sensitivity of our simulation algorithm and scoring function, we tested the effect of protein mutations on the 
calculated association rates. Mutations of specific residues at binding interfaces change the interactions between 
proteins, affecting their association rates. Our test set consisted of the wild type barnase/barstar protein complex 
plus 11 complexes of barnase mutants and wild-type barstar or complexes of mutants of both proteins in which 
the target amino acid(s) were mutated into alanine; the experimental kon values for these complexes have been 
reported in a previous study27. The side chains of the corresponding residues were computationally replaced for 
each mutant before the KMC simulation of its association (see Model and Methods). Figure 4 shows a compari-
son of the predicted kon values for these mutants (striped bars) and the experimental values (gray bars) at an ion 
concentration of 50 mM27; the sequence number of the mutated residue is shown on the x axis, with the 8 single 
mutations being in barnase, while in the case of the double mutants, the first mutated reside is in barnase and the 
second in barstar. As shown in the figure, of the eleven mutants, D54, E60, and E73 had the highest calculated kon 
values (higher than that for the wild-type complex), while K27D35 and R59 had the lowest.

Figure 4 shows that, overall, the calculated kon values were underestimated compared to the experimental 
values. However, our computational model was able to reproduce the relative order of the rate constants for the 
mutant complexes compared to that for the wild-type complex. For instance, our simulations showed that the 
mutation of D54, E60, or E73 to alanine accelerated the association, while the mutation of K27D35 or R59 to 
alanine decreased the association. This result therefore suggests that for the barnase/barstar complex, our model 
can capture the effects of single- and double-point mutations on the association rates.

Figure 2. (a) Effect of changing the maximal duration of each simulation trajectory on the success rate (ρ ). 
Simulations were performed in a 10 ×  10 ×  10 nm cubic box. (b) Effect of changing the size of the simulation 
box on the success rate. The maximal duration of the simulation time for each trajectory was 1000 ns.
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Validation of the accuracy of the KMC simulation using a large-scale benchmark set. To test 
the generality of our KMC simulation method, we used a large-scale benchmark set of 49 protein complexes 
for which experimental measurements of the kon and ionic strength have been reported previously64. Detailed 
information about the benchmark set can be found in the Methods and Supporting Information Table S2A. For 
each complex in the benchmark set, 104 simulation trajectories were carried out based on the reported ionic 
strengths and native structures listed in Table S2A. Each trajectory has a maximal duration of 1000 ns and was 
initiated starting from a random orientation in which two monomers were placed in a 10 ×  10 ×  10 nm cubic 
simulation box. The kon values were calculated based on the simulations for all the 49 complexes except two (3BP8 
and 1VFB), for which the simulations did not generate any output. This could be because a multistep association 
mechanism was involved. Figure 5 shows a log base 10 plot of our calculated data and the experimental data 
for the remaining 47 complexes, shown as white dots, with a Pearson’s correlation coefficient of 0.66. This posi-
tive correlation between the calculated results and experimental data indicates that the combination of a simple 
physics-based scoring function and a CG simulation algorithm can distinguish between the fast and slow kinetics 
of a wide range of protein–protein associations.

Figure 3. Testing of the effect of the ionic strength on the association of the barnase/barstar complex by 
changing the Coulomb Debye length in the simulations. The derived kon values (striped bars with standard 
deviations) are plotted against different values of ionic strength. Experimental measurements under different 
values of ionic strength are shown as gray bars. To calculate the standard deviations, 104 KMC simulation 
trajectories were generated for each value of the specific ionic strength. We randomly divided these trajectories 
into 10 groups, each containing 103 trajectories. We estimated kon from the 103 trajectories of each group and 
derived 10 individual kon values. The standard deviation was calculated from the group of kon values.

Figure 4. Testing the effect of mutations on the protein association rate (kon). The test set consisted of the 
wild type of the barnase/barstar protein complex and 11 mutants, in which the indicated residue in barnase 
(single mutants or the first indicated residue in the double mutants) or barstar (second indicated residue 
in the double mutants) was mutated to alanine; the mutants are shown below the figure. The experimental 
measurements are shown as gray bars, and the calculated values as striped bars (with standard deviations).
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Most previous studies of all-atom BD simulations were tested only on a few individual cases. The reaction 
criteria in these all-atom simulations are determined by a structural parameter, Q, which is defined as the number 
of intermolecular native contacts formed during the simulations divided by the total number of contacts that 
would be found in the final complex. These criteria were normally varied in different studies, or even in the same 
study, to achieve the best agreement with the experimental results12,45. In contrast to previous BD simulation 
studies, we used the same criteria (at least 3 native connections restored and an rmsd <  10 Å) for all the protein 
complexes. Our CG model thus offers a general predictive method for calculating protein association rates based 
on physical principles. The same benchmark set was tested by TransComp, which is based on the 
“transient-complex” theory61–64 and all-atom BD simulations. The association rate constant in TransComp is cal-
culated as = −∆k k G k Texp( / )on on ele B

0 , where kon
0  is the basal rate constant for reaching the transient complex by 

random diffusion and Δ Gele is the electrostatic interaction free energy of the transient complex. Comparing the 
kon values predicted by TransComp with those calculated from our KMC simulations, we observed that, in some 
cases, the kon values calculated by our model are closer to the experimental values than those predicted by 
TransComp. For example, for the complex CheY/CheA (PDB id 1FFW, experimental kon equals 6.2 ×  107 M−1 s−1), 
our calculated value (5.8 ×  107 M−1 s−1) is more accurate than that of TransComp (9.0 ×  106 M−1 s−1). In some 
cases, on the other hand, kon values calculated by our model are less accurate than those of TransComp. For 
instance, the experimental kon of the complex Mlc transcription regulator/EIICB (PDB id 3BP8) is 
1.0 ×  106 M−1 s−1, which is closer to that of TransComp (6.3 ×  106 M−1 s−1) than that of our simulation 
(3.0 ×  104 M−1 s−1). The underestimation by KMC for this specific system is possibly due to the small binding 
interface in this complex. Starting from a random initial configuration, the native-like structure of this complex 
is relatively difficult to be sampled by the KMC simulation. It is also worth mentioning that the initial TransComp 
runs were not able to generate results for a few cases that contain extended interfaces in the native complexes, 
such as streptokinase/plasmin (PDB id 1BML) and thrombin/hirudin (PDB id 4HTC). To compare with the 
experiments in these cases, partial structures of the protein complexes were chosen as inputs. Our KMC simula-
tions were able to produce reasonably accurate kon values for these cases. Moreover, we carried out a blinder 
benchmark test in which the full-length proteins of all 49 complexes were used in our CG simulations. As shown 
in the next section, the correlation with experimental measurements could be increased by integrating a machine 
learning-based module to identify potentially overestimated calculated results. Future upgrades of our Kinetic 
Monte-Carlo simulation are also proposed in the Discussion.

Integration of a machine learning-based correction module to improve the results for the 
benchmark test. One major factor affecting the correlation with the experimental measurements was that 
the kon values calculated from the KMC simulations were overestimated for a large percentage of protein com-
plexes in the benchmark set. Interestingly, we are not the first to observe this phenomenon. Gabdoulline and 
Wade44 reported BD simulation results for five protein complexes and found that the kon values for three pro-
tein complexes were accurately reproduced, while those for the other two protein complexes were significantly 
overestimated by approximately 30-fold. The authors proposed that this may have been due to protein flexibility, 

Figure 5. Testing of the KMC simulations on a large benchmark set of 47 protein complexes by comparing 
the calculated and observed log10 kon values (white circles), giving a Pearson’s correlation coefficient of 0.66. 
However, the calculated association rates for a large percentage of the protein complexes were significantly 
overestimated, so a machine learning algorithm was used to recognize these overestimated cases and correct 
the corresponding kon values by an adjustment factor. After applying a leave-one-out cross-validation test, the 
Pearson’s correlation coefficient between the log10 values for the adjusted kon values and their experimental 
values (black circles) was 0.79. The dashed red line is from linear regression fit between simulated and observed 
log10 kon values, with a slope of 0.52 and intercept of 3.39. The solid red line is from linear regression fit between 
adjusted and observed log10 kon values, with a slope of 0.8 and intercept of 1.32.
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suggesting that the flexibility of the secondary structure of the proteins at a binding interface may be related to 
the kon overestimation in many simulation models. Because the intramolecular degrees of freedom were fixed in 
our KMC simulations, the structural flexibility is also one of the factors that we did not take into account in the 
calculation of kon. This implies that the lack of intramolecular flexibility in the simulation might be one of reasons 
that led to the overestimation of the calculated kon values. Other factors, such as the electrostatic interactions 
between residues that are not at binding interfaces, could also cause non-specific interactions that interfere with 
the association rates. If we were able to identify the structural flexibility and other factors that are responsible 
for the overestimation and use them to identify protein complexes with overestimated kon values, we would be 
able to not only improve predictions purely based on KMC simulations but also better understand the molecular 
mechanisms of protein association.

Based on the results from our KMC simulations and similar observations in the study by Gabdoulline and 
Wade, we hypothesized that even when the protein association is dominated by diffusion, it is regulated by a 
combination of structural factors (conformational flexibility) and energetic factors (mainly electrostatic interac-
tions). To validate the hypothesis, we applied a proof-of-concept analysis by integrating the elastic network model 
(ENM)71,72 into the KMC simulation (Fig. S2). ENM was used to change the conformations of the two interacting 
proteins during their association. The detailed procedure and results can be found in the Supporting Information. 
In brief, three protein complexes were primarily tested (Fig. S3). Using the KMC that contains conformational 
changes, we found that our newly calculated kon have values that are closer to the experimental values. Especially 
in the case of 1GXD, for which the kon was overestimated, we show that the conformational fluctuation due to 
the high structural flexibility can impede association. Unfortunately, ENM has difficulty in modeling large con-
formational changes due to its limitation of using the harmonic approximation of the force field. Its application 
to large-scale benchmark tests is under development. No other physics-based method is currently sophisticated 
enough to fully model the conformational flexibility in simulating protein–protein interactions. Previous meth-
ods only considered the effects of conformational changes indirectly by judicially selecting fragments of proteins 
in a complex as the input structures of simulations.

Therefore, we decided to incorporate the structural flexibility by a different strategy. We added a machine 
learning-based module to identify and adjust overestimated kon values. As described in the Methods, we intro-
duced three indicators as inputs for the model. Two of these, the percentages of interface residues on the flexible 
loops of each of the two interacting proteins, account for the conformational flexibility, whereas the third, the 
ratio of the electrostatic potential at the binding interface to that of the whole protein pair, accounts for the ener-
getic factor of association, particularly the non-specific interactions. A cross-validation test was then performed 
on the 47-protein complex benchmark set in which the leave-one-out strategy was applied to avoid potential 
over-fitting.

The KMC simulations for the 47 complexes in the benchmark set resulted in 23 overestimations and 24 
non-overestimations (no outputs for two complexes). Using the leave-one-out training and testing process, 
we found that the kon values for 39 of the 47 complexes were predicted correctly as either overestimated or 
non-estimated, giving an accuracy of 83%. Moreover, of the 23 overestimated cases, 19 were successfully iden-
tified, giving a sensitivity of 82.6%. The detailed classification results are shown in Table S3A. After machine 
learning, all the simulated kon values were adjusted by a corresponding correction factor based on the classifi-
cation results; the detailed procedure is described in the Model and Methods. The black circles in Fig. 5 show 
the correlation between the logarithmic values for the adjusted kon values and the experimental values for all 47 
complexes. In this plot, the Pearson’s correlation coefficient was increased to 0.79 from the original value of 0.66. 
This improvement resulted from the implementation of the machine learning-based module and highlights the 
importance of molecular flexibility. We have further performed the linear regression to the dataset. Specifically, 
the dashed red line in Fig. 5 is from linear regression fit between simulated and observed log10kon values, while 
the solid red line is from linear regression fit between adjusted and observed log10kon values. Considering the 
slope of 1 and intercept of 0 in a perfect correlation, the increase of slope and decrease of intercept indicate the 
prediction results have been improved after the application of machine learning. Thus, the new method combin-
ing physics-based simulation with machine learning not only enhanced the predictive potential of our model 
but also emphasized the functional role of conformational fluctuations, which has been underestimated in the 
diffusion-limited protein association class.

Application of the prediction method to a new independent test set. To further test the stability 
of our KMC simulations and rule out the possibility of model over-fitting during machine learning, an inde-
pendent test set of 10 complexes was collected; the detailed information for this set can be found in the Methods 
and Table S2B. Multiple trajectories were carried out based on the reported ionic strength and corresponding 
native structure for all 10 protein complexes, starting from the random initial orientations, and then the values 
of kon calculated from the simulations were compared to the experimental data, as shown in Fig. 6a. The Pearson’s 
correlation coefficient between the logarithmic values for the predicted and observed kon values was 0.8, and this 
strong correlation indicates the robustness of our KMC method in simulating the rates of protein association. The 
machine learning process was then applied to the same dataset to identify the potential overestimation in simula-
tions. All 47 of the protein complexes in the previous benchmark set were used as training sets, and each of the 10 
protein complexes in the new dataset was individually tested using the trained model. The three indicators for the 
corresponding protein complex were then input to predict the potential overestimation and the kon adjusted by the 
corresponding correction factor. Among the 10 complexes, there are 3 overestimated and 7 non-overestimated 
kons. After our training and testing process, we found that the values for 6 kons from the 10 complexes were pre-
dicted correctly as either overestimated or non-estimated, giving an accuracy of 60%. Moreover, of the 3 over-
estimated cases, 2 were successfully identified, giving a sensitivity of 66.6%. After the adjustment from machine 
learning, the final predicted results are plotted in Fig. 6b, which shows that the Pearson’s correlation coefficient 
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between the logarithmic values for the newly predicted and observed kon values was 0.85. We have also performed 
the linear regression to this dataset, both before and after the application of machine learning. Specifically, the 
red line in Fig. 6a shows that the linear regression fit between simulated and observed log10kon values gave a slope 
of 0.68 and intercept of 2.18. The red line in Fig. 6b shows that the linear regression fit between adjusted and 
observed log10kon values led to a slope of 1.25 and intercept of − 1.98. This suggests that the correlation between 
predicted and experimental results after machine learning is not significantly improved, but rather over-rectified. 
The over-rectification is caused by the reason that one data point (3hfm) was misidentified, which significantly 
shifted the regression result. Moreover, in the dataset with relatively small size, individual cases can cause larger 
effect on the overall statistical result. Therefore, our study suggest that, although the correlation coefficient after 
machine learning (0.85) is better than before (0.8), the regression results indicate that a higher correlation coeffi-
cient does not necessarily lead to the improvement of prediction results.

Finally, the overall data that combine the 10 complexes with the 47 complexes give a Pearson’s correlation 
coefficient of 0.78 between the logarithmic values of our predicted and observed kon values. When the same 
dataset was tested by the TransComp server, the Pearson’s correlation coefficient with the observed kon values is 
0.75. Taken together, our results demonstrate the stability of our computational method for predicting protein 
association rates and that there is no over-fitting in the training of the machine learning process.

Discussion
Each cell contains millions of different proteins, the interactions of which maintain the routine functions of the 
cell73–75. In this crowded environment, each protein might bind to more than one target, and different proteins 

Figure 6. Application of the computational framework to an independent test set. (a) The calculated 
logarithmic values of the kon from KMC simulations show a high correlation with the experimental data, and the 
Pearson’s correlation coefficient is 0.8. The red line is from linear regression fit between simulated and observed 
log10kon values, with a slope of 0.68 and intercept of 2.18. (b) The machine learning process was implemented 
to identify potential overestimation in simulations and adjust the calculated kon values, giving a Pearson’s 
correlation coefficient of 0.85. The red line is from linear regression fit between adjusted and observed log10kon 
values, with a slope of 1.25 and intercept of − 1.98.
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might compete for one binding site. In such cases, the association of a protein with its binding partner is often 
under kinetic, as well as thermodynamic, control12,13. Research on the binding kinetics between proteins is thus 
of paramount importance for understanding their cellular functions76. Of the various methods, computational 
modeling approaches are being intensively studied because they cannot only predict the rate constants of binding 
but also identify the physical principles governing the association mechanisms. These approaches have been 
developed based on different disciplines, including machine learning, BD simulations, and transient complex 
theory, which all depend on an atomic level description of proteins, which is computationally expensive to obtain. 
In this article, we present a CG method for simulating the process of protein association and calculating the asso-
ciation rate constant. The diffusion of proteins in the simulation is based on a KMC algorithm and is guided by a 
physical force field to control the kinetics of their association. Applying the KMC simulations, we obtained values 
for the kon that were consistent with the experimentally derived values under different simulation conditions, 
indicating the robustness of our method. Furthermore, after constructing a computational framework that inte-
grated the KMC simulations into a machine learning algorithm, we obtained strong positive correlations between 
the experimental and predicted kon values for both a previously used benchmark set of 49 complexes and a newly 
constructed test set of 10 complexes, indicating the potential of our method as a powerful tool for predicting the 
in vitro protein association rates.

Our computational prediction is based on a physics-based scoring function and Monte Carlo movements 
to accurately simulate the protein diffusion and conformational changes. This CG model therefore attempts to 
mimic the biological process of protein association ab initio. It has been proposed that the wide spectrum of 
protein association rate constants can be divided into two groups5, those higher than 104 M−1 s−1, in which the 
association is limited by protein diffusion, and those lower than this value, in which the association is limited 
by conformational changes during binding. The significance of the electrostatic complementarity between two 
binding partners in allowing a fast association in a diffusion-limited system has been previously emphasized. In 
this diffusion-limited case, the proteins are normally modeled as rigid bodies in the simulation to calculate the 
association rates. However, in our model, when the conformational flexibility was not considered, we found that 
a group of protein complexes in the diffusion-limited class had computationally overestimated rate constants. 
This result is consistent with those of a previous study44, in which the predicted rate constants for a small group 
of wild-type and mutated protein complexes were divided into two classes, in one of which the rate constants 
were accurately reproduced, but in the other, they were overestimated by a factor of 10 to 30. The conformational 
selection model of protein–protein binding led us to hypothesize that this overestimation was at least partially 
caused by the molecular flexibility of different proteins during association, even when the rate constants are for 
an association in the diffusion-limited class. Using indicators that take into account the secondary structural 
composition and electrostatic interactions to capture both the conformational and energetic factors of binding, 
we were able to identify most of the protein complexes with overestimated rate constants and improve the overall 
prediction results. These data strongly suggest that even the protein association in the diffusion-limited class is 
co-regulated by multiple factors, and our study therefore adds a new dimension to our understanding of protein 
association mechanisms.

It has been well accepted that machine learning algorithms are able to provide a mechanistic understand-
ing to biological systems in addition to improving prediction results by adjusting multiple parameters. In 
terms of protein–protein binding, for example, a feature selection and regression algorithm was applied in 
a recent study to mine a large set of molecular descriptors about binding interfaces between proteins38. This 
machine-learning-based method used empirical data to construct simple models for the association and dis-
sociation rate constants and then obtained insights from these models. This provided supporting evidence for 
the conformational selection model in which proteins adopt many shapes, and only those that are in the correct 
configuration are selected by their binding partner. Similarly, in our study, the machine learning is targeted to 
explore what was missing in the KMC simulations. The application of machine learning is based on a predefined 
hypothesis. The input of the machine learning only added one factor that was missing in the original model: 
structural flexibility. The purpose of the output was to rectify the corresponding error resulting from this model, 
the systematic overestimation. Through this process, we were able to capture the functional insights of structural 
flexibility in regulating the protein association.

In our machine learning process, a standard benchmark set containing 49 protein complexes was used for 
machine learning. We believe that the sample size is large enough for learning in this model. This is due to the 
following reasons. Firstly, there are only three inputs in our machine learning: the percentage of interface residues 
on loops of each of the two interacting proteins (factor of flexibility) and the ratio of the electrostatic potential 
at the binding interface to that of the whole protein pair (factor of energetics). Moreover, the factors of flexibility 
and energetics are complementary with each other. There is no degeneracy in the space of inputs. At the mean-
while, there are not many other adjustable parameters in the algorithm of the “complex decision tree”. The only 
parameter is the criterion of overestimation, which has been used based on a previous study77. In other words, 
the size of parameter space in the machine learning is much less than the size of sample size. Furthermore, during 
machine learning, we tried our best to guarantee that the improvement was not due to the reason of over-fitting 
through parameter adjustment. As described in Model and Methods, a cross validation test was performed on the 
49 protein complex benchmark set in which the leave-one-out strategy was applied to avoid potential over-fitting. 
Finally, in order to further rule out the possibility of model over-fitting during machine learning, an independent 
test set was constructed by collecting the most updated experimental data that are not in the standard benchmark 
set.

Despite the above-mentioned merits, our method has a number of limitations and can be further improved. 
First, the energy function in our model might be oversimplified, as it only takes into account the most dominant 
elements in protein–protein interactions. Some minor effects, such as short-range hydrogen bond interactions 
and electric dipole moments, can also play subtle roles in regulating the binding kinetics, and the improvement 
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of our method will depend on how these factors are incorporated into the CG model. Another factor poten-
tially affecting the accuracy of our method is the criteria used to determine the formation of an encounter com-
plex. In our present model, the same criteria were applied to all protein complexes. However, as indicated in the 
transient-complex model, each protein complex has a unique binding interface and energy landscape, meaning 
that the criteria for the formation of different encounter complexes should be individually determined63. Thus, the 
use of different binding criteria for the formation of specific protein complexes would be expected to result in the 
improvement of our method. Finally, it is worth mentioning that changes to the experimental environments, such 
as the pH value of the solvent, the ion strength and the concentration of proteins, can lead to different measured 
values of kon. The sensitivity of these factors to simulations needs to be evaluated on a systematic level.

Another issue rises from the use of the decision tree method as a “black box”. A decision tree is a series of 
Boolean tests that serve to classify the data. The structure of a decision tree consists of a root node, a set of inter-
nal nodes, branches and leaves. The classification algorithm starts from the construction of the tree, in which 
one of the input indicators is selected as the root node and the training set is divided into two or more subsets. 
Additional partitions are carried out by generating new internal nodes. The branches coming out of the root and 
internal nodes are labeled with possible values of the indicators, while the leaves correspond to a decision, in this 
case, whether the kon of a protein complex is overestimated or not. The most commonly used learning rules that 
are used to partition decision trees are based on the maximum entropy or largest information gain. After the 
tree construction, new data points can be traversed through the tree from the root to one of the leaf nodes, from 
which the class of each data point can be determined. We used the software MATLAB to automatically construct 
and optimize the tree after providing types of input indicators and training datasets. Consequently, the details of 
the learning procedure were not revealed, and the criteria of classification cannot be fully understood. The future 
application of machine learning programs that require more manual involvement is therefore needed to under-
stand the mechanistic details of the overestimation.

Nevertheless, the use of reduced representations enables us to tackle the problems of protein–protein inter-
actions with spatiotemporal ranges that are beyond the accessibility of the all-atom model. Therefore, our CG 
model can be applied to biological systems that are difficult to study using previous methods. For example, we 
will be able to study the binding kinetics of proteins with domains separated by flexible loops78. The interaction 
between thrombin and its functional inhibitor, rhodniin, was used as a test system in our previous study. We cap-
tured the conformational changes of the inter-domain loops by mapping the changes with time in the CG internal 
coordinates from the all-atom molecular dynamic simulations. We found that the association with full-length 
flexible rhodniin was faster than that with its two individual domains. This supports the idea of the existence of a 
“fly-casting” mechanism in which the partial structures of an intrinsic disordered protein first dock to the target, 
and then the remaining segments undergo conformational searches and sequentially coalesce around the target.

We can also extend our model to study the interaction between membrane proteins. Compared with the solu-
ble proteins, it is technically much more difficult to simulate the association of membrane proteins due to the com-
plexity of membrane environments. Furthermore, the binding of membrane proteins (2D) is measured in units 
that are different from those for the binding of soluble proteins (3D)79. The units of 2D kon and Kd are reflected 
by the surface density of the interacting molecules and are expressed in terms of μ m2/s and molecules/μ m2,  
while the units of the 3D kon and Kd are reflected by volumetric concentrations and are expressed by M−1 s−1 and M,  
if the first-order reaction is considered in which one ligand binds to only one receptor. This difference in units 
makes it very difficult to directly compare the 2D binding with the 3D. In one of our previous studies, we applied a 
similar method of coarse-grained kinetic Monte-Carlo simulation to study the binding of membrane receptors on 
cell surfaces. Using the interaction between the membrane proteins CD2 and CD58, two cell adhesion molecules 
known to mediate the activation of T cells and natural killer cells, as a test system, we showed that the 3D and 2D 
association rates could be directly linked and quantitatively compared80. However, a number of important factors 
were not considered in this simplified model. For instance, the fluctuations of the plasma membrane were only 
modeled implicitly. Moreover, in studies of both thrombin/rhodniin and CD2/CD58, the Go-like potential81–83 
was used to characterize the binding between two interacting proteins; this potential is biased towards the forma-
tion of the native structure and will be replaced by the physics-based force field used in this paper to provide more 
accurate tests with greater predictive power.

Finally, we emphasized the importance of the protein conformational flexibility in regulating the protein 
association by assuming that the lack of conformational flexibility in the KMC is one of the reasons that led to 
the overestimation of calculated kon values. It is worth mentioning that there are other possibilities that might 
also cause the overestimation. For instance, the calculation of the rate constant might be affected by omitting 
the degrees of freedom in the coarse-grained representation of the protein, as described in a previous study84. 
Moreover, in our KMC approach, the simulation will be terminated upon the formation of a ligand–receptor 
encounter complex, as we did not take into account the process of complex dissociation. Neglecting the effect of 
koff might potentially lead to the systematic overestimation of kon. However, the simulation of protein-protein dis-
sociation is an extremely challenging topic, especially when the protein complexes are energetically stable. It will 
take very large computational resources to obtain the process of dissociation for a protein complex with a long life 
span. Fortunately, a multi-scaling modeling framework can be used to estimate both kon and koff in simulation85. 
The framework can be constructed by combining the KMC simulation method with a previously developed rigid 
body-based simulation approach86 by feeding the kinetic information derived from the current CG model into 
rigid body-based lower-resolution simulations. Consequently, both long time-scale and high spatial-resolution, 
the information that is needed for the evaluation of the protein association and dissociation, can be captured in 
the model. This integrated procedure should help us to further understand the mechanisms of subcellular pro-
cesses, such as complex assembly and membrane receptor clustering.
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Model and Methods
Training and testing datasets of protein complexes used in the study. In this study, two sets of 
protein complexes were used to test the KMC simulations and to train and test the machine learning-based 
classification model. First, we used a set of 49 protein complex structures collected by Qin et al.64, consisting of 
2 or more protein chains and including enzyme/inhibitor, ligand/receptor, regulator/effector, and other classes 
of protein interactions; the data included the PDB ids, experimentally observed association rate constants, and 
ionic strength used in the experiments. The experimentally measured rate constants ranged from 2.5 ×  104 to 
1.3 ×  109 M−1 s−1. Detailed information for this benchmark set is listed in Supporting Information Tables S2A 
and S3A.

To avoid over-fitting during the machine learning of the 49 protein complex structures in the benchmark set, 
we collected another independent test set of 10 protein complexes from the SKEMPI database87. Complexes that 
had been included in the data set of the original 49 complexes and their homologs were excluded. In addition, 
only wild-type complexes were selected. Detailed information about the PDB ids of these complexes, experimen-
tally observed association rate constants, and the ionic strength used in the experiments is listed in Tables S2B 
and S3B.

Representation of the model. The atomic structure of proteins was reduced to the following simplified 
model in the present simulations. Each residue is represented by two sites (Fig. 7a): one is the position of its Cα 
atom, while the other, indicated as S, is the representative center of a side-chain selected based on the specific 
properties of a given amino acid (Table S4). Similar representation has been used before to describe the structure 
and energetics of proteins88. Specifically, the representative centers of the side chains for charged residues were 
represented by their tip atoms to increase the sensitivity of the electrostatic effect. The position of atom NZ was 
selected as the representative center for lysine, while the centers of atoms NH1 and NH2 were selected as the rep-
resentative centers for arginine, the centers of atoms OD1 and OD2 as the representative centers for aspartic acid, 
the centers of atoms OE1 and OE2 as the representative centers for glutamic acid, and the centers of atoms CG, 
ND1, CD2, CE1, and NE2 as the representative centers for histidine. The representative centers of all other amino 
acids are described either by the outmost atom on the side chains, such as serine and threonine, or the centers 
of a group of selected atoms which are located at the outer end of the side chains, such as the amino acids with 
aromatic rings. The detailed description of representative centers for all amino acids can be found in Table S4.

In addition, because each residue only contains two sites in this CG representation, the computational muta-
tion of a specific residue in the barnase/barstar complex was accomplished as follows. For each of the 11 mutants 
in the test set, one or two charged residues were replaced by alanine. Computationally, the coordinates of all the 
side chain atoms of the original charged residues except their Cβ atoms were truncated. The Cβ atoms became the 
new side-chain function centers of the mutated alanine, and the charge of the side chains was neutralized.

The total energy of interaction between the two proteins. The total energy of interaction between 
two proteins during association (Etot) described by a simple physics-based potential function consisting of three 
terms that can be written as

ω= + + .E E E E (2)tot ele hp hp clash

The first component on the right side of equation (2) is the electrostatic interaction, previously used in the 
Kim-Hummer model89,90:

Figure 7. (a) Representation of our coarse-grained model. Each residue is represented by two sites, C and S. 
The positions of the Cα  atoms (C) show the pseudo-backbone of the protein (green). The side chain of each 
residue is simplified as a representative center (S) (cyan) selected based on the specific properties of a particular 
amino acid. (b,c) A KMC simulation trajectory is initiated starting from a conformation in which a pair of 
proteins is randomly placed in a 3D cubic box (b), and the simulation is terminated if an encounter complex is 
formed between these two molecules (c).



www.nature.com/scientificreports/

1 2Scientific RepoRts | 7:46622 | DOI: 10.1038/srep46622

∑ πε
= .E

q q

D r4 (3)
ele

i j

i j

eff ij, 0

The Kim-Hummer potential, together with an intramolecular Go-like potential, was developed to model flex-
ible protein interactions91. In equation (3), qi is the charge of residue i. At pH 7, qi equals + e for Lys and Arg, − e 
for Asp and Glu, and + 0.5e for His (e is the elementary charge). The charge was assigned to the representative 
center of the side-chain of each corresponding residue. ε 0 is the vacuum electric permittivity. An effective dielec-
tric coefficient, Deff =  Ds exp(rij/ξ), is used to reflect the shielding effect between two residues in which the repre-
sentative centers of the side-chain are separated by a distance of rij. As described in a previous study90, Ds =  10 is 
used to describe the local dielectric environment in which two proteins form an interface, and ξ  is the Coulomb 
Debye length used to mimic the screening effect at different ion strengths, as discussed in the Results. The profiles 
of the electrostatic potential at different ionic strengths are plotted in Fig. S1, compared to the box size. It is worth 
mentioning that the Coulomb potential between charged atoms has also been used to model the binding between 
protein and DNA molecules92,93.

The second component, Ehp, is the hydrophobic interaction, which is calculated by summing the hydrophobic 
scores of all contact residue pairs (residue i in chain 1 and residue j in chain 2) in which the representative centers 
of the side-chain are close to each other (rij <  6 Å)94 and can be expressed as

∑= 
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,

The hydrophobic scores of a contact residue pair, HPi and HPj, were taken from a previous study by Kyte and 
Doolittle95. The value of the constant whp, which is used to re-scale the weights of the energy terms and determine 
the relative contributions between the hydrophobic and electrostatic interactions, is 0.04.

Finally, the excluded volume effect during protein binding is taken into account in the third component of 
equation (2):
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The depth of the potential ε  equals 5 kT. The value of σ  defines the finite distance at which the inter-particle 
potential is zero; it is set as 3.8 Å between two Cα  atoms, 2.8 Å between a Cα  atom and the representative center 
of a side-chain, and 2.2 Å between the representative centers of two side-chains.

The kinetic Monte-Carlo (KMC) simulation algorithm. The association of two proteins was simulated 
using the KMC algorithm (Fig. 8b). The simulation was initiated starting from an orientation in which a pair of 
CG structural models of interacting proteins was randomly placed in a 3D cubic box (10 ×  10 ×  10 nm, i.e., the 
concentration is equal to 1.67 mM) (Fig. 7b). After the initial orientation was randomly generated, both proteins 
randomly diffused in the simulation box. The translational and rotational diffusion constants were obtained by 
fitting data calculated using a precise boundary element method96,97. The values of the diffusion constants for all 
test proteins are listed in Table S2A,B. The translational and rotational diffusion of the proteins was performed 
in a similar way to that in our previous study86. In detail, the internal degrees of freedom were fixed for both pro-
teins, and each protein moved as a rigid body. In other words, the coordinates of a molecule only changed along 
the three translational and three rotational degrees of freedom, while the structural parameters of the molecule, 
such as the bond angles and bond dihedrals, remained unchanged. More detailed operations are described as 
follows. For translations, the probability of diffusion and the translation distance, in which each molecule moves 
in a random direction with a random length r (the average distance of diffusion is 10 Å), were computed in each 
simulation time step, Δ t (1 ns). The probability of diffusion is

η=
∆
.P D t

r (6)T
T

2

In equation (6), η  equals 6 for diffusion in three dimensions, and DT is the translational diffusion constant of 
the selected protein. A periodic boundary condition was applied to any protein that reached the boundary of the 
simulation box. The rotational movement was then calculated after the translational movement. For rotations, 
within each time step, the molecule randomly rotates around each Euler angle with a value of ∆ ×D t rR , where 
DR is the rotational diffusion constant of the molecule and r a randomly generated number between − 1 and 1.

After the calculation of the translational and rotational movements for both proteins in the system, the energy 
between the two proteins was calculated using equation (2). The probability of acceptance of the diffusion p is 
calculated using the function98
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where Etot
0  and Etot are the total energy of the system before and after diffusion, respectively. The decision on 

whether diffusion occurred was made by comparing a generated random number with the calculated probability. 
At the end of each simulation step, the distances between all intermolecular interfacial pairs were calculated to 
determine how many native contacts were recovered. A native contact is defined as a pair of residues, i and j, in a 
native complex, the interaction of which contributes significantly to the total energy (Eij <  − 1 kT) of the complex. 
A native contact was considered to be recovered during simulation if the distance between the representative 
centers of the two residues was less than 2 Å from the distance in the native conformation. The numbers of native 
contacts for each complex in the 2 benchmark sets are listed in Table S2A,B. When at least three native contacts 
were recovered, we assumed that the two proteins formed an encounter complex and the current simulation tra-
jectory was terminated (Fig. 6c). Otherwise, the simulation ended when it reached the predefined maximal dura-
tion of 1000 ns.

Calculation of the protein association rate constant from the KMC simulations. Multiple trajec-
tories of KMC simulations were generated for each protein complex. The rate constant of the protein association 
was derived by counting how many protein complexes were associated from these simulation trajectories. The 
calculation of the association rate was based on the assumption that the formation of an encounter complex is 
rate-limiting (i.e., the transition from an intermediate encounter structure to its final native complex is much 
faster than the dissociation from the encounter complex). Each KMC simulation trajectory was terminated either 
when an encounter complex was formed or at the end of the simulation. After all Ntot simulation trajectories were 
completed, a success rate of ρ  (ρ  =  Non/Ntot) was derived, in which Non is the number of times that two proteins 
form an encounter complex. Given the volume of the simulation box, V, the kon of protein association can be 
written as

ρ
ρ

=
−

.k c V
t(1 ) (8)on

tot

In equation (8), ttot is the maximal simulation time for each trajectory and c is a constant that converts units 
from molecule/nm3 to M. The detailed derivation of equation (8) can be found in the Supporting Information.

Identification of potentially overestimated rates using a machine learning algorithm. We 
observed that, in some cases, our kon calculated from the KMC simulations was seriously overestimated compared 
to the experimental value. To identify potential overestimation, a machine learning algorithm was implemented 
to correct the simulation results (Fig. 8a). Before the algorithm was applied to a specific test, a training dataset was 
selected and classified into the predefined groups of overestimated and non-overestimated using the “complex 
decision tree”. The method is included as one of the “classification Learner” packages in MATLAB. Three indica-
tors were chosen as inputs for each pair of proteins in the complex in the training set. The first two indicators take 
account of the conformational flexibility (the percentage of interface residues on flexible loops) of each of the two 

Figure 8. (a) Flowchart of the overall prediction framework, in which multiple trajectories of the KMC 
simulation are used to calculate kon. In parallel, three indicators are calculated based on the structural and 
energetic features at the binding interface of the query protein complex. These indicators are input into a 
trained “complex decision tree” to identify potential overestimation, and then the kon calculated from the KMC 
simulations is adjusted based on the machine learning output. (b) Procedures involved in the KMC simulation. 
The detailed simulation algorithm is described in the Methods.
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interacting proteins. The flexible loops are defined by the regions in the proteins whose secondary structural types 
are neither α -helix nor β -strand. The secondary structure type of a residue is determined by the standard DSSP 
algorithm by calculating the geometry of the hydrogen bonds in the backbone of a protein99. The third indicator is 
the energetic factor relec, which is the ratio of the electrostatic potential at the binding interface to that of the whole 
protein pair. The ratio is defined as follows.
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The numerator in the above equation is the summation over all residue pairs at the binding interfaces of a 
native protein complex. Residue i in chain 1 and residue j in chain 2 are at binding interfaces if the representative 
centers of the side-chains of these two residues are close to each other (rij <  6 Å) in the native structure of a protein 
complex. By contrast, the denominator in equation (9) is the summation over all residue pairs in a native protein 
complex. The definitions of all the other variables in equation (9) are the same as in equation (3). Two classes were 
designed as outputs: “overestimated” and “non-overestimated”. After the KMC simulations, if the calculated kon 
of a protein complex in the training set was more than 4 times greater than the experimentally derived rate, it was 
assigned as “overestimated”. The same criterion of overestimation was used in a previous study77.

Based on the classification of all protein complexes in the training set, cutoff boundaries for the three input 
indicators were determined by machine learning. After the training, the calculated kon for a new protein complex 
for which no experimental value is available was predicted as ‘overestimated” or “non-overestimated” based on 
the values of the three indicators for this protein complex (Fig. 8a). If the calculated kon was predicted as “over-
estimated”, it was adjusted by dividing the original value by a correction factor, which is the geometric average 
of the calculated kon/experimental kon ratio for all predicted overestimated protein complexes in the training set. 
Likewise, if the calculated kon was predicted as “non-overestimated”, the geometric average of the calculated kon/
experimental kon ratio for all predicted non-overestimated protein complexes in the training set was used as the 
correction factor.

Two specific strategies were used to test the effect of this machine learning-based correction. They were 
applied to minimize the possibility that the model improvement was due to the result of data fitting through 
parameter adjustment. The first was the cross-validation of the 49-benchmark set. In this test, the strictest 
method, leave-one-out, was applied to avoid the potential over-fitting of the model. During each run of the 
leave-one-out test, one of the 49 protein complexes was selected as the test, while the remaining 48 were classified 
into “overestimated’ and “non-overestimated” groups and used as the training set, and the kon for the test protein 
complex was adjusted by the training results. In the second strategy, a new independent 10-complex test set was 
constructed to further exclude bias in model training, and the 49-benchmark set was used as the training set to 
adjust the simulated kon values for all protein complexes in the new test set. This second strategy further rules out 
the possibility of model over-fitting. The prediction results for the 49-complex training set (leave-one-out) and 
the results for the 10-complex testing set using the trained model are described in the Results.

Calibration of computational performance. Because the cost of performing machine learning calcula-
tions is negligible after training, we only benchmark the computational performance of coarse-graining kinetic 
Monte-Carlo simulations. Specifically, two systems are used. The first is the protein complex barnase/barstar 
(1BRS), which we used as a test system to evaluate the robustness of our KMC simulation in our study. The second 
is B. anthracis Protective Antigen complexed with human Anthrax toxin receptor (1T6B), which is the largest 
system in the 49-complex benchmark set. As a result, for the system of 1BRS, it takes 12 seconds on average to 
generate a trajectory of 100 ns on a regular Linux desktop. For the system of 1T6B, it takes 130 seconds on aver-
age to generate a trajectory with the same length. Based on previous studies in the literature, it is shown that a 
typical 100 ns trajectory of BD simulation for a protein complex of normal size takes approximately an hour on a 
regular Linux desktop100,101. This indicates that our CG simulations are much faster than the traditional all-atom 
Brownian dynamic simulations.

Availability of the simulation source codes. The source codes of this method for the protein–pro-
tein association rate constant prediction are available for download at: https://sourceforge.net/projects/
pp-association-rate-prediction/. This package contains a set of Perl scripts for the batch prediction of the protein–
protein association rates, a couple of executable files and their source codes, and a MATLAB prediction model to 
determine whether the predicted association rate for the target protein complex would be overestimated or not. It 
also offers a demonstration example of how to obtain the predicted association rate. These scripts work on a Linux 
platform, and downloading is free for academic users.
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