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A probability weighting function (w(p)) is considered to be a nonlinear function of

probability (p) in behavioral decision theory. This study proposes a psychophysical model

of probability weighting functions derived from a hyperbolic time discounting model

and a geometric distribution. The aim of the study is to show probability weighting

functions from the point of view of waiting time for a decision maker. Since the

expected value of a geometrically distributed random variable X is 1/p, we formulized the

probability weighting function of the expected valuemodel for hyperbolic time discounting

as w( 1p) = (1− k log p)− . Moreover, the probability weighting function is derived

from Loewenstein and Prelec’s (1992) generalized hyperbolic time discounting model.

The latter model is proved to be equivalent to the hyperbolic-logarithmic weighting

function considered by Prelec (1998) and Luce (2001). In this study, we derive a

model from the generalized hyperbolic time discounting model assuming Fechner’s

(1860) psychophysical law of time and a geometric distribution of trials. In addition,

we develop median models of hyperbolic time discounting and generalized hyperbolic

time discounting. To illustrate the fitness of each model, a psychological experiment

was conducted to assess the probability weighting and value functions at the level of

the individual participant. The participants were 50 university students. The results of

individual analysis indicated that the expected value model of generalized hyperbolic

discounting fitted better than previous probability weighting decision-making models.

The theoretical implications of this finding are discussed.

Keywords: probability weighting function, hyperbolic discounting, prospect theory, decision under risk, probability

judgment

INTRODUCTION

Probability weighting functions (w(p)) are widely known in behavioral decision theory and
behavioral economics. A probability weighting function is considered to be a nonlinear
function of probability (p). There are several probability weighting decision-making models
for representing probability weighting functions (e.g., Tversky and Kahneman, 1992; Prelec,
1998; Gonzalez and Wu, 1999; Takahashi, 2011; Zhang and Maloney, 2012; Takemura, 2014).
However, most of the proposed models are not related to traditional psychological theories
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such as psychophysics and learning theory, with the exception
of studies by Prelec and Loewenstein (1991), Tversky and
Kahneman (1992), Kusev et al. (2009), and Takahashi (2011).
Prelec and Loewenstein (1991) first pointed out that there are
common properties between risky and intertemporal choices
from an axiomatic point of view. They illustrated that the
choice patterns of risky and intertemporal choices are very
similar in terms of their axiomatic properties. From this
point, they suggested that there are some common behavioral
foundations between the probability weighting function and
the time discounting function. Importantly, they illustrated
some common axiomatic properties between the probability
weighting function and the time discounting function, although
no psychological account was given.

In prospect theory (proposed by Kahneman and Tversky,
1979), the probability weighting function has psychophysical
foundation as well as the value function. Additionally,
in cumulative prospect theory (proposed by Tversky and
Kahneman, 1992), the probability weighting model parameter
represents “probability discriminability” and “diminishing
sensitivity”—assumptions derived from psychophysical research.
Furthermore, the probability-weighting model in Kusev et al.
(2009) accommodates a memory parameter (accessibility to
events from memory). Their results revealed evidence that
exaggerated risk is caused by the accessibility of events in
memory; in other words, the weighting function varies as
a function of the accessibility of events. This suggests that
people’s experiences of events leak into decisions even when
risk information is explicitly provided. In addition, Takahashi
(2011) combined psychophysical theory with Cajueiro’s (2006)
q-exponential function for explaining time discounting,
proposed a new general model, and then derived Prelec’s
(1998) probability weighting function as a special case. The
merit of combining a probability weighting model with a time
discounting model is to create an integrated human decision
model. The time discounting model and decision under risk,
whose probability distribution is known, are both important
areas in behavioral decision research. However, there seems to be
a strong connection between them.

The purpose of the present study is to show several probability
weighting functions from the viewpoint of a decision maker’s
waiting time to receive an outcome. The study proposes
another type of probability weighting function derived from the
hyperbolic time discountingmodel in a simpler form.We assume
only the hyperbolic time discounting function and Fechner’s
(1860) logarithmic psychophysical function. By the assumptions
of the geometric distribution of waiting time and Fechner’s (1860)
law, we provide a new account of Prelec’s (1998) probability
weighting function.

Last, we perform an experimental study to illustrate the
fitness of our models and previous models. Concerning the
empirical research on probability functions, important research
has been conducted by Stott (2006). In particular, Stott (2006)
reviewed eight different forms of the probability weighting
function (linear model, power model, log-odds model, Tversky–
Kahneman model, Wu–Gonzalez model, two versions of Prelec’s
model, and non-parametric model) and reported parameters

estimated from multiple empirical papers over a period of 10
years. He also reported an extensive empirical study for 96
participants by utilizing 90 different gamble stimuli. His study
compared fits on a total of 256 combinations of cumulative
prospect theory functional forms, including eight probability
functions, eight value function forms, and four choice functions.
Based on this study, he concluded that the best model has a
risky weighting function of the simple version of Prelec’s (1998)
model, a power value function, and a logit choice function. We
also examined the Prelec (1998) model using the power function
for a value function by comparing the proposed model and
some previous models. Although the number of participants was
limited (total of 50 participants), Prelec’s (1998) general version
of the probability weighting model fitted our data better than
the other models did. This finding shows that the best model
is the probability weighting function based on Loewenstein
and Prelec’s (1992) generalized hyperbolic time discounting
model.

PROBABILITY WEIGHTING FUNCTION
BASED ON PROSPECT THEORY

Nonlinear utility theory was proposed to explain several
anomalies of expected utility theory, such as the Allais paradox
(Allais, 1953). This body of theory is a generalization of expected
utility theory (Tamura et al., 1997; Starmer, 2000). This theory
is called the nonlinear utility theory (Fishburn, 1988; Edwards,
1992) or generalized expected utility theory (Quiggin, 1993) in
the field of economics, although it is mathematically equivalent
to the theory of non-Lebesgue integration in fuzzy measure
theory in the field of engineering (Sugeno and Murofushi,
1993; Takemura, 2014). Nonlinear utility theory often assumes
a non-additive probability weighting function that converts
probabilities for which additivity does not hold, even if
probability information is given for decision making under
risk, such as in the case of the Allais paradox. A non-additive
probability is sometimes referred to as a “capacity,” but in some
cases (e.g., in the field of engineering) is called a “fuzzy measure.”
Its mathematical definition is the same despite these varying
names. A non-additive probability refers to a set function, w: 2�

→ [0, 1] from an aggregate consisting of subsets of a nonempty
set, �, to a closed interval, [0,1], which is also a set function that
satisfies both a boundedness condition (w(φ)= 0, w(�)= 1) and
amonotonicity condition (if the relation of subsets E and F of� is
E⊆ F, then the relation w(E) ≦ w(F) is satisfied). A non-additive
probability is so named because it does not necessarily satisfy the
conditions of additivity.

Moreover, a non-additive probability weighting function in
prospect theory has the following properties: w(0) = 0 and
w(1) = 1; it is of the form shown in Figures 1, 2. Assuming that
the probability weighting function is w and that the probability is
p, the probability weighting function has the following qualitative
characteristics.

(i) It satisfies the condition of w(p)+ w(1− p) ≤ 1.
(ii) It overvalues the probability when the probability is very

low, engendering the relation of w(p) > p.
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FIGURE 1 | Probability weighting function based on the study of

Tversky and Kahneman (1992).

FIGURE 2 | Probability weighting function derived from hyperbolic

discounting model.

(iii) It shows non-proportionality—i.e.,
w(pq)
w(p)

≤
w(pqr)
w(pr)

.

(iv) It has non-continuity near the endpoints.

Tversky and Kahneman (1992) conducted an experiment to
obtain detailed information about the value and weighting
functions. They recruited a total of 25 graduate students at
Stanford and Berkeley. The experiment was conducted on a
computer, which computer displayed a prospect and its expected
value. For example, the probability of gaining 150 dollars was
25% and the probability of gaining 50 dollars was 75%. The
display also included a descending series of seven sure outcomes

logarithmically spaced between each of the seven sure outcomes
and the risky prospect (Tversky and Kahneman, 1992). They
assumed the following power functions as value functions.

v(x) = xα(when x ≥ 0)

v(x) = −λ(−x)β (when x < 0)

Based on the results of the selections in this experiment, they
performed a nonlinear regression analysis and estimated 0.88 for
both α and β , and 2.55 for λ. The fact that the estimated values
of α and β are less than one indicates that the value function
is concave downward in both the areas of gain and loss. The
estimated value of λ suggests that loss has an impact that is
approximately twice as great as that of profit, implying substantial
strength for loss aversion.

They further considered the following functions as specific
decision weight functions, W+ and W−, of cumulative prospect
theory, and estimated the form of the decision weight functions
illustrated in Figure 1 from this selection experiment.

W+
(

p
)

=
pγ

(

pγ +
(

1− p
)γ)

1
γ

,W−
(

p
)

=
pδ

(

pδ +
(

1− p
)δ

)
1
δ

.

(1)
Another well-known two-parameter model was proposed by
Prelec (1998). The functional form is as follows:

w(p) = exp
[

−δ(−ln p)a
]

, (2)

where 0 < α < 1; w (0) = 0; w
(

1
e

)

= 1
e ; w(1) = 1.

In most empirical studies of probability weighting functions,
assuming δ equals 1, a one-parameter model is used, which can
be described as follows:

w(p) = exp
[

−(−ln p)a
]

. (3)

PROBABILITY WEIGHTING FUNCTION
DERIVED FROM HYPERBOLIC TIME
DISCOUNTING

Hyperbolic discounting is a mathematical model devised as an
improvement over the exponential discounting model, a time-
consistent model of discounting. Hyperbolic discounting can be
described as follows:

f (D) =
1

1+ kD
, (4)

where f (D) is the discount factor that multiplies the value of
the reward, D is the delay in the reward, and k is a parameter
governing the degree of discounting. In this study, we derive
the logarithmic hyperbolic probability weighting function from
f (D), assuming that the trial is a geometrically distributed
random variable and that the delay is evaluated using Fechner’s
(1860) law. Similar assumptions were previously adopted in
Takahashi’s (2011) study, in which he considered a link between
time discounting and Prelec’s (1998) two-parameter probability
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weighting function. Takahashi (2011) derived Prelec’s (1998)
probability weighting function Equation (2) from a q-exponential
time discount function (Cajueiro, 2006). In this study, however,
we adopt a more direct assumption of time discounting and then
derive the different probability weighting function of Equation
(2). Interestingly, we derive a hyperbolic probability weighting
function that has been derived from a different theoretical
foundation of probability weighting function in Equation (2)
from a generalized time discounting model (Loewenstein and
Prelec, 1992).

We assume that the probability weighting function, w(p),
is psychologically related to the delay discounting function,
f (D). The key assumption in this is equating delay, D, with
the expected number of Bernoulli trials to obtain one success
(1/p), and considering that the perceived delay is a logarithmic
function of the delay based on Fechner’s (1860) logarithmic
psychological function. Some of the previous empirical studies
on time discounting (Rachlin et al., 1991, 2000) indicated that the
odds of receiving probabilistic gain ((1-p)/p)) can be considered
to be the delay, D, in Equation (4). Rachlin et al. (1991,
2000) suggested that the probability discounting has the same
psychological foundation as that of time discounting.

Because the odds of receiving probabilistic gain ((1-p)/p)) is
equal to the expected number of Bernoulli trials to obtain one
success (1/p) − 1 (i.e., (1/p) −1), we have a similar assumption
by Rachlin et al. (1991, 2000). However, we also assume that
the perception of waiting time holds Fechner’s logarithmic
psychophysical law as hypothesized by Takahashi (2011).

Let X be the number of Bernoulli trials required to obtain one
success, supported on the set {1, 2, 3, . . . }. This is the probability
that the first occurrence of success requires k independent trials,
each with probability p of success. If the probability of success on
each trial is p, then the probability that the kth trial is the first
success is:

P(x = k) = (1− p)k−1p for k = 1, 2, 3, . . . (5)

The probabilities form a geometric sequence. The expected value
of a geometrically distributed random variable X is 1/p, and the
variance is (1− p)/p2.

Assuming Fechner’s (1860) law, the delay can be considered
to be a logarithmic function of the number of trials—that is,
D = ln(1/p) = −ln(p).

The probability weighting function derived from hyperbolic
time discounting (Figure 2) is:

w(p) =
1

1− k ln p
, (6)

where p is the probability, k is a constant, and k > 0.
The indicator −ln p (=ln (1/p)) is also related to the median

of trials to some extent. That is, the median of the trials is:

Median(X) =
−1

log2(1− p)
. (7)

Since the geometric distribution is skewed, −log p is considered
to be an approximation of the median of trials. On this

interpretation, the probability of the weighting function is:

w(p) =
1

1− k( 1
log2(1−p)

)
, (8)

where p is probability, k is a constant, and k > 0.
Although the median model is related to the hyperbolic

model, the median model in Equation (8) will be discussed
elsewhere in more detail.

PROBABILITY WEIGHTING FUNCTION
DERIVED FROM GENERALIZED
HYPERBOLIC TIME DISCOUNTING

The probability weighting function is also derived from
Loewenstein and Prelec’s (1992) generalized hyperbolic time
discounting model.

Their model is as follows:

f (D) = (1+ αD)−γ/α . (9)

Letting α = k and γ /α = β , their model can be written as follows:

f (D) = (1+ kD)−β . (10)

Assuming Fechner’s (1860) law, the delay can be considered to
be a logarithmic function of the number of trials—that is, D =

ln(1/p) = − ln(p).
The probability weighting function derived from the

generalized hyperbolic time discounting Equation (6) is as
follows:

w(p) = (1− k ln
(

p
)

)
β
, (11)

where p is probability, k is a positive constant, and β is a negative
constant.

The model (11) is the same as the hyperbolic-logarithmic
weighting function considered by Prelec (1998) and Luce (2001).

We also proposed a new psychophysical model based on
generalized hyperbolic time discounting. Since the geometric
distribution is skewed, as noted previously, −log p is considered
to be an approximation of the median of trials. On this
interpretation, the probability of the weighting function is as
follows:

w(p) =

(

1− k

(

1

log2(1− p)

))β

, (12)

where p is probability, k is a positive constant, and β is a negative
parameter.

METHOD OF PSYCHOLOGICAL
EXPERIMENT

We adopted experimental methods similar to those of previous
studies (Tversky and Kahneman, 1992; Gonzalez and Wu,
1999). Although the number of participants was limited, it
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appears to have been sufficient for illustratingmodel comparison.
A psychological experiment was conducted to estimate a
probability weighting function whose stimuli were presented
graphically.

Participants
We report data for 50 participants (35 females and 15 males, aged
19–24 years). All participants were undergraduate students in
psychology. They were paid 2000 Japanese yen (about 20 dollars)
for participating in four sessions that lasted 1 h and 30min each.

Materials
The basic design consisted of 15 two-outcome wagers with 11
levels of probability associated with the maximum outcome,
in the same manner of the study by Gonzalez and Wu
(1999). The two outcome wagers were (in yen), 2500-0, 5000-
0, 7500-0, 10,000-0, 15,000-0, 20,000-0, 40,000-0, 80,000-0,
5000-2500, 7500-5000, 10,000-5000, 15,000-5000, 15,000-10,000,
20,000-10,000, and 20,000-15,000. Note that all wagers offered
nonnegative outcomes, and that prospect theory codes all such
outcomes as gains. The 11 probability levels were 0.01, 0.05, 0.10,
0.25, 0.40, 0.50, 0.60, 0.75, 0.90, 0.95, and 0.99. Nine of these
wagers (randomly chosen) were repeated to provide a measure
of reliability. Thus, we used total of 174 materials (165 and 9
materials). Except for the restriction that the same wager could
not appear in two consecutive trials, the repeated wagers were
randomly interspersed within the complete set of wagers. The
outcomes and probabilities presented to the participants are
shown in the Supplementary Material.

Procedure
A simplified computer program following the procedure outlined
in Tversky and Kahneman (1992) and Gonzalez and Wu (1999)
was used in this study. The program presented one wager on
the screen and asked the participants to report a certainty-
equivalent value (yen) from a menu of possibilities. Tversky
and Kahneman (1992) used logarithmically spaced distributions
of certainty between the minimum and the maximum of the
prospect. However, the current study used linear distributions
of certainty/sure outcomes, as in Gonzalez and Wu’s (1999)
study, because of the simplicity of the manipulation involved.
The screen for this particular wager offered the participant a
choice of certainty-equivalent values. The certainty equivalents
(or cash equivalents) were determined by the midpoint between
the lowest accepted and highest rejected values, as in the study
of Tversky and Kahneman (1992) and Gonzalez and Wu (1999).
This method of direct reporting of the certainty-equivalent value
was a simplified version of the method used in the study of
Tversky and Kahneman (1992) and Gonzalez and Wu (1999).
The format presented in the experiment is shown in Figure 3.
The participant reported the certainty-equivalent value. Once the
certainty equivalent was determined within a range, a second
screen with a new menu list was presented. The program
presented wagers to each participant in random order.

FIGURE 3 | An example of presented format in the experiment.

RESULTS AND DISCUSSION OF THE
EXPERIMENT

Reliability for the nine repeated wagers was measured by
intraclass correlation. The median of 50 intraclass correlations
computed for the individual subject data was 0.98, with a range of
0.36–1.00. The experimental procedure appears to have elicited
relatively high levels of reliability for most participants. The
median of the reliability was slightly higher than that for the
findings of Gonzalez and Wu (1999). However, 4 out of 50
intraclass correlations were below 0.70 (the lowest being 0.36, the
second lowest being 0.57, the third lowest being 0.63, and the
fourth lowest being 0.69). Therefore, we omitted these data for
further analysis, and the 46 remaining data were analyzed.

As suggested by Gonzalez and Wu (1999), estimation of
the probability weighting function in the context of nonlinear
utility theory presents challenging problems. We used the
nonparametric estimation algorithm in the same manner as the
study of Gonzalez and Wu (1999), though monotonicity on v
and w was implemented into the estimation procedure. Using the
certainty equivalents from 165 two-outcome gambles, pick the
starting values for 11 w()s (i.e., one for each p) and eight v()s (i.e.,
one for each money amount). The algorithm proceeds as follows,
with the superscript denoting the ith iteration (Gonzalez andWu,
1999):

1. Interpolate for vi(CE): using the estimates of v() for the
current iteration, which are based on the eight stimuli money
amounts, interpolate to find vi(CE) for each of the 165
certainty equivalents; these 165 vi(CE) values will be used as
“data” for the estimation in Steps 2 and 3.

2. Fix all v() values to the current iteration values and estimate
the eleven wi values using an iteratively reweighted, nonlinear
least-squares algorithm.

3. Fix the 11 w() values to the current iteration values and
estimate the eight vi() values using an iteratively reweighted,
nonlinear least-squares algorithm.
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4. If an optimum value is found, then stop; otherwise, increment
iteration counter i and repeat.

We first computed the value function parameter assuming
the power function using the abovementioned nonlinear least-
squares algorithm for the median values of certainty equivalents
for all participants. The estimated value of power was 0.80. We
then computed the power value for each participant. The median
power value was 0.85 (the lowest was 0.34 and the highest was
1.00). The power value in the study by Tversky and Kahneman
(1992) was 0.88, whereas the median value in the present study
was 0.80, considering median values of certainty to be equivalent
for all participants. The value of α in this study is similar to that in
the original study by Tversky and Kahneman (1992). This finding
suggests that the experiment replicated the original research of
prospect theory.

It should be noted that the value function is convex for the
loss domain, as indicated by Tversky and Kahneman (1992).
As Stott (2006) demonstrated in his review, the alpha (power
value in gain domain) and beta (power value in loss domain)
parameters reported by Tversky and Kahneman (1992) are clear
outliers when compared to parameter values reported since then,
which include two papers (Wu andGonzalez, 1996; Gonzalez and
Wu, 1999) that report parameters very close to 0.50. Stott (2006)
reported a value of 0.19 for alpha. As Stott (2006) pointed out,
these values may be related to the size of the payoffs used in the
gamble stimuli.

To examine whether the finding in that study was replicated
or not, we compared the value of a parameter of this study to
the corresponding value in the previous study. The value of γ

in the study of Tversky and Kahneman (1992) was 0.61, whereas
the value of γ in the present study was 0.63 using the median
values of the certainty equivalent for all participants. The value
of γ in this study is similar to that in a previous study by Tversky
and Kahneman (1992). This finding suggests that the experiment
replicated the results of the previous study. Stott (2006) reported
the values of γ for seven studies reviewed between 1992 and 2006.
According to his review, the value of γ was in the range of 0.50 to
0.96, and the median was 0.61. The value of γ in this study is also
close to the median value in a previous study reviewed by Stott
(2006).

We fitted the individual choice data with not only the
probability weighting function proposed by Tversky and
Kahneman (1992), but also with the probability weighting
functions of a simple version of the Prelec model (1998) and our
derived models.

We used the same procedure as in the study by Gonzalez

and Wu (1999) for estimating the parameters of both functions.

Moreover, we computed the Akaike information criterion (AIC),

which indicates the goodness of fit for the models. The

cumulative distributions of the AIC values for the six models

are shown in Figure 4; the stacked bar chart of the AIC ranks

was shown in Figure 5. As shown in Figures 4, 5, the generalized

hyperbolic time discounting model fitted better than the other

models.
We also analyzed individual data, and computed AIC and BIC

for each participant. Since patterns of AIC and BIC were similar

FIGURE 4 | The cumulative distributions of the AIC values for the six

models.

FIGURE 5 | The stacked bar chart of the AIC ranks for the six models.

for each participant data, we only analyzed the AIC values. We
coded the rank of the AIC value of the model for each participant
in a manner similar to that shown in Stott’s (2006) study; we
then conducted the Kruskal–Wallis test and the Mann–Whitney
test using the Bonferroni correction to compare the median
rank of one model with the median rank of another model for
each combination of models. A Kruskal–Wallis test revealed
a significant effect of models on the rank of the AIC value
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FIGURE 6 | Individual fits of all 46 participants in a single plot for each

model.

(χ2(5) = 59.3, p < 0.001). A post hoc test using Mann–Whitney
tests with the Bonferroni correction suggested that the general
hyperbolic model was significantly better than all five other
models (p < 0.05), and that the median hyperbolic model was
significantly worse than the general median hyperbolic model.
There are no other significant effects, and the other four models
tested show no significant differences among each other.

This result suggests that the generalized hyperbolic model
(Prelec, 1998; Luce, 2001) fitted better than the other models,
and implies that the projection invariance property holds in
the probability weighting function. In Stott’s (2006) study, the
best model was the one-parameter Prelec model in terms of the
AIC measure. Although he did not consider the median time
discounting model because we have proposed this model in this
study, he analyzed all other models. Stott (2006) examined all
combinations of probability weighting functions, value functions,
and choice functions using 96 samples. His result was slightly
different from that obtained in our analysis. As Stott (2006)
suggested, these estimations may be related to the size of the
payoffs used in the gamble stimuli. Therefore, further empirical
study will be needed to clarify the origin of this difference. In
spite of the difference between both studies, the one-parameter
Prelec model is considered to be a special case of the generalized
hyperbolic model. In this sense, the generalized hyperbolic model
proposed by Prelec (1998) is considered to fit well for the present
study, as well as for Stott’s study.

FIGURE 7 | Histograms of the estimated parameters of all six models

across 46 participants: (A) Tversky and Kahneman (1992) model(γ), (B)

Prelec (1998) model (a), (C) Hyperbolic model (k), (D) Median Hyperbolic (k), (E)

Generalized Hyperbolic(β), (F) Generalized Hyperbolic(k), (G) Generalized

Median Hyperbolic(β), and (H) Generalized Median Hyperbolic(k).

We also provide individual fits of all 46 participants in a single
plot for each model of interest in Figure 6. Histograms of the
estimated parameters of all six models across 46 participants
are shown in Figure 7. In Figure 7, the following parameters
were shown: (A) Tversky and Kahneman (1992) model(γ ), (B)
Prelec (1998) model (a), (C) Hyperbolic model (k), (D) Median
Hyperbolic (k), (E) Generalized Hyperbolic(β), (F) Generalized
Hyperbolic(k), (G) Generalized Median Hyperbolic(β), and (H)
Generalized Median Hyperbolic(k). The best-fit model was the
generalized hyperbolic model. However, there was only one
outlier in the histogram of the parameter k for the generalized
hyperbolic model, as shown in Figure 7. The estimated
probability weighting function of the outlier (Participant 7) is
shown in Figure 8. The best-fit model for Participant 7 was the
generalized median hyperbolic model. In summary, through the
individual analysis of the probability weighting function, we that
conclude the general hyperbolic model tended to fit most of the
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FIGURE 8 | The estimated probability weighting function of the outlier

(Participant 7).

data relatively better than the other models examined in this
study.

CONCLUSION

The present study proposed a probability weighting function
derived from a hyperbolic time discounting model by assuming
a geometric distribution. Moreover, our probability weighting
function was derived from Loewenstein and Prelec’s (1992)
generalized hyperbolic time discounting model. The present
study derived this hyperbolic-logarithmic model from the
generalized hyperbolic time discounting model assuming
Fechner’s (1860) psychophysical law of time and a geometric
distribution of trials. Since the geometric distribution is skewed,
a logarithmic psychophysical function (−log p) was considered
to be an approximation to the median of trials. Under this
interpretation, the probability of the weighting function was
derived from the generalized hyperbolic model using the median
of geometrically distributed trials.

There are two primary contributions of this study. First,
we derived the probability weighting function based on the
generalized hyperbolic time discounting function. Second, we
demonstrated the empirical study comparisons that fitted for
six different probability weighting functions for 50 participants
each corresponding to 165 unique gambles. This paper therefore

provides theoretical and empirical support for a psychological
interpretation of the probability weighting function from a time
discounting perspective.

Further theoretical and empirical studies will be required
to examine the shape of the probability weighting function.
The results of the psychological experiment indicated that the
expected value model of generalized hyperbolic discounting was

a better fit than previous probability weighting decision-making
models. However, we do not think that strong conclusions are ill
advised owing to the limited number of participants, as compared
to those in Stott’s (2006) study. Moreover, the weighting function
might vary in response to changes in psychological factors. For
instance, Kusev et al. (2009) found that exaggerated risk was
caused by the accessibility of events in memory. The results
suggested that the weighting function varied as a function of the
accessibility of events. This finding was supported by the studies
of Kusev and van Schaik (2011) and Jones and Oaksford (2011),
in which they applied the findings from Kusev et al.’s (2009)
study on transactional content on the temporal and probabilistic
discounting of costs. Since the limited sample size of this study
is the same as that in previous studies (Tversky and Kahneman,
1992; Gonzalez and Wu, 1999), further experiments with larger
sample sizes and manipulating psychological factors—such as
the accessibility of events in memory (Kusev et al., 2009)—will
be required to more fully examine the psychophysical model of
probability weighting functions.
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