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Abstract: In this review, we discuss reports of genotype-dependent interindividual differences in
phenotypic neurobehavioral responses to total sleep deprivation or sleep restriction. We highlight
the importance of using the candidate gene approach to further elucidate differential resilience and
vulnerability to sleep deprivation in humans, although we acknowledge that other omics techniques
and genome-wide association studies can also offer insights into biomarkers of such vulnerability.
Specifically, we discuss polymorphisms in adenosinergic genes (ADA and ADORA2A), core circadian
clock genes (BHLHE41/DEC2 and PER3), genes related to cognitive development and functioning
(BDNF and COMT), dopaminergic genes (DRD2 and DAT), and immune and clearance genes (AQP4,
DQB1*0602, and TNFα) as potential genetic indicators of differential vulnerability to deficits induced
by sleep loss. Additionally, we review the efficacy of several countermeasures for the neurobehavioral
impairments induced by sleep loss, including banking sleep, recovery sleep, caffeine, and naps. The
discovery of reliable, novel genetic markers of differential vulnerability to sleep loss has critical
implications for future research involving predictors, countermeasures, and treatments in the field of
sleep and circadian science.

Keywords: total sleep deprivation; sleep restriction; candidate genes; polymorphisms; circadian
clock genes; interindividual differences; vulnerability; resilience; neurobehavioral; countermeasures

1. Introduction

Located in the suprachiasmatic nuclei of the anterior hypothalamus, the biological
clock, among other physiological processes, regulates the timing of sleep and wakefulness
as well as waking behavior, creating circadian rhythmicity in neurobehavioral variables
such as cognitive performance and sleepiness [1,2]. The two-process model of sleep
regulation posits that a homeostatic process (Process S) and a circadian process (Process C)
interact to modulate the timing of sleep onset and offset, as well as the stability of waking
neurobehavioral functions [3–7]. Process S (the drive for sleep) increases while awake
and decreases while asleep. Sleep onset occurs when the homeostatic drive increases
above a certain threshold, and wakefulness is induced when it decreases below a different
threshold [1]. Process C (the cycle of sleep and wakefulness) represents the daily oscillatory
modulation of these thresholds and promotes wakefulness at certain times [8].

It is well established that sleep loss induces decrements in neurobehavioral function-
ing [4,9,10], and that there are robust, trait-like interindividual phenotypic differences
related to the magnitude of such decrements, whereby some individuals are minimally
affected by insufficient sleep (i.e., resilient) and others are greatly affected (i.e., vulnera-
ble) [11–18].

This review explores the genetic underpinnings of phenotypic individual differences
related to sleep deprivation, particularly in relation to differential neurobehavioral re-
silience and vulnerability. It also discusses the efficacy of various mitigation strategies
for sleep loss-induced deficits including caffeine, naps, and recovery sleep, and examines
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candidate gene studies utilizing caffeine as a countermeasure. The review culminates with
a discussion of future directions. Please refer to Figure 1 for a flowchart highlighting the
main concepts discussed in this article and their relationships.
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type through targeted measurements) [27]. 
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2. Interindividual Differences in Neurobehavioral Responses to Sleep Loss
2.1. Metrics and Categorization of Neurobehavioral Resilience and Vulnerability to Sleep Loss

Common metrics of neurobehavioral functioning for classifying vulnerable and re-
silient individuals include behavioral attention tasks such as the Psychomotor Vigilance
Test (PVT) [19], cognitive throughput tasks such as the Digit Symbol Substitution Test [20],
working memory tests such as n-back tasks [21] and the Digit Span Task [22], measures of
self-rated sleepiness such as the Karolinska Sleepiness Scale (KSS) [23], and measures of
self-rated fatigue, vigor, and mood such as those derived from the Profile of Mood States
(POMS) [24]. Importantly, numerous studies have reported that an individual’s resilience
or vulnerability to sleep loss when assessing performance on objective and self-rated met-
rics are not related [12,17,18,25,26], making the determination of reliable categorization
methods more complex. The use of a variety of neurobehavioral tests when conducting
individual differences research mitigates this issue and allows for better cognitive endophe-
notyping (accurately capturing the complete essence of a cognitive phenotype through
targeted measurements) [27].

Several approaches have been used to classify individuals as resilient or vulnerable
in past research, although the optimal methods to do so remain unknown. The most
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common prior approaches either utilized raw performance or self-rated scores on neu-
robehavioral tasks during sleep deprivation [15,28–31] or utilized difference scores that
accounted for baseline performance [32–38]. Intraindividual variance, which considers
time-of-day variation in performance [9,39–44], has been posited as another potential
method to characterize resilience or vulnerability to sleep deprivation. However, further
research is needed regarding this approach, since only one published study using two com-
monly used cognitive measures has explicitly investigated intraindividual variation as a
categorization method [45]. Furthermore, the threshold used to divide individuals into
resilient and vulnerable groups has also varied in prior research—studies have utilized a
median split [28–30,32,35,36,46–50], a tertile split [15,34,38,51], a quartile split [31,52], or
other numeric divisions of neurobehavioral performance [33,53]. Nevertheless, although
more research is needed to determine consistent categorizations and predictors of resilience
and vulnerability based on neurobehavioral performance, it remains important to explore
possible biological indicators of such characteristics.

2.2. Biomarkers and Predictors of Resilience and Vulnerability to Sleep Loss

While definitive predictors of neurobehavioral resilience and vulnerability to sleep loss
have yet to be discovered, genetic and omics (e.g., epigenomic, transcriptomic, metabolomic,
and proteomic) techniques have identified biomarkers (objective proxies of biological pro-
cesses that allow for remote detection of such processes, regardless of their mechanistic
role in the assessed condition [54]) to differentiate an individual’s response to chronic sleep
restriction (SR; several consecutive nights with a reduction in total sleep time) or total sleep
deprivation (TSD; one or more nights without sleep) [4]. While numerous biomarkers and
other factors, such as neurobehavioral performance, are considered potential predictors of
differential responses to sleep loss, genetic polymorphisms (variants in DNA sequence) are
perhaps one of the most studied indicators (see Figure 1).

3. Genetic Polymorphisms Related to Differential Neurobehavioral Vulnerability to
Sleep Loss

Neurobehavioral vulnerability to sleep loss is a heritable and stable trait. One twin
study found substantial differential neurobehavioral vulnerability to acute TSD (as mea-
sured by PVT performance), with 56.2% of the total variance in monozygotic twins, and
only 14.5% of the variance in dizygotic twins, attributable to variance between pairs of
twins [55]. This study [55] and other studies using unrelated participants [56] support the
notion that an individual’s neurobehavioral response to sleep deprivation is a genetically
determined and phenotypic trait. Additionally, although neurobehavioral performance
during sleep loss is typically normally distributed [13,57] and suggests a polygenetic
phenotype [4], previous candidate gene studies have found several specific genetic poly-
morphisms that are associated with differential neurobehavioral responses to sleep loss.
The candidate gene approach is useful for determining the influence of genetic variants on
neurobehavioral performance during sleep-deprived and rested conditions. Genome-wide
association (GWA) studies have also revealed findings in support of trait-like interindi-
vidual differences in sleep parameters and may be useful in determining neurobehavioral
vulnerability in response to sleep deprivation (reviewed in [58]). Furthermore, techniques
that incorporate a perturbation of the system (e.g., enforced sleep deprivation), theory-
driven genotyping, selective sampling, and cognitive endophenotyping are particularly
valuable for studying differential vulnerability in relatively small samples [27]. Below,
we summarize the genetic underpinnings of differential neurobehavioral responses to
sleep loss that explain a portion of the related interindividual variance in resilience and
vulnerability. We refer the reader to Goel [58], Yamazaki and Goel [59], Dutta [60], Bol-
sius et al. [61], and Garfield [62] for reviews of candidate gene and GWA studies related to
sleep parameters during rested conditions, normal sleep, and circadian rhythm sleep-wake
disorders, and we refer the reader to Goel [54], Mullington et al. [63], and Uyhelji et al. [64]
for reports describing additional biomarker and omics techniques used in the context of
sleep loss, which are beyond the scope of this article.
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3.1. Adenosinergic Genes
3.1.1. ADA

The enzyme adenosine deaminase (ADA) breaks down and regulates intra- and
extracellular adenosine levels. Studies have demonstrated differential neurobehavioral
vulnerability to sleep deprivation associated with the ADA G22A polymorphism (single
nucleotide polymorphism (SNP) ID: rs73598374). Bachmann et al. [65] found that G/A
participants had worse vigilant attention, as measured by PVT lapses (>500 ms reaction
time) and PVT response speed, and greater self-reported sleepiness and fatigue compared
to participants with the G/G genotype [65]. However, in a large twin sample, this ADA
polymorphism did not relate to differential vulnerability to TSD, as defined by PVT perfor-
mance [55]. Another study [66] used a protocol consisting of two sleep conditions (either
40 h TSD or 40 h multiple naps) to investigate the influence of this ADA polymorphism on
neurobehavioral measures under conditions of high versus low sleep pressure. The authors
found that G/A individuals reported greater subjective sleepiness than G/G individuals only
during TSD when sleep pressure was high. G/A individuals also reported worse subjective
wellbeing during TSD than during the nap condition and exhibited worse working memory
performance when sleep pressure was high [66]. Furthermore, at the end of the night, G/G
individuals performed better on the PVT during the nap condition, when sleep pressure
was low, than during TSD [66].

3.1.2. ADORA2A

The T1083C polymorphism (SNP-ID: rs5751876) in the adenosine A2A receptor
(ADORA2A) gene also contributes to an individual’s neurobehavioral vulnerability to
sleep loss: a recent study found that T allele carriers had worse vigilant attention perfor-
mance (greater number of PVT lapses) than C/C individuals after 32 h TSD [67]. Similarly,
another study showed that C/T carriers exhibited greater PVT performance resilience
during chronic SR compared with T/T carriers [68]. Additionally, out of the eight distinct
haplotypes created by eight SNPs in ADORA2A (SNP-IDs: rs5751862, rs5760405, rs2298383,
rs3761422, rs2236624, rs5751876, rs35320474, and rs4822492), HT4 allele carriers performed
better on the PVT after a night of TSD than those without the HT4 haplotype [69].

Moreover, the ADORA2A polymorphism is particularly integral to an individual’s
sensitivity to caffeine, and accordingly plays a role in whether caffeine may be an espe-
cially effective mitigation strategy for maintaining neurobehavioral functioning during
extended wakefulness. Caffeine is structurally similar to adenosine, thus contributing to
its stimulating properties during sleep loss [70]. One study found that caffeinated coffee
mitigated performance deficits on tasks of vigilant attention and executive control, but not
self-rated sleepiness, induced by five consecutive nights of SR in C/C allele carriers [71].
Furthermore, caffeine counteracted 40 h TSD-induced decrements in PVT performance in
non-HT4 allele carriers but was not effective in individuals with the HT4 haplotype [69],
although another study showed that the ADORA2A genotype did not influence the mitiga-
tory effect of caffeine on PVT performance during 38 h TSD [67]. In addition, although A1
adenosine receptor (A1AR) availability has been linked to the mitigatory effects of recovery
sleep on neurobehavioral performance following 52 h TSD, this effect was not moderated
by the ADORA2A genotype [72]. These studies have particularly important implications
for determining whether mitigation strategies involving caffeine consumption may be
more beneficial to certain individuals based on their ADORA2A genotype. Please see the
Section 4 entitled, “Countermeasures for the Detrimental Neurobehavioral Effects of Sleep
Deprivation” for further discussion of this concept (also see Figure 1).

3.2. Core Circadian Clock Genes
3.2.1. BHLHE41/DEC2

The BHLHE41/DEC2 gene is involved in the circadian regulation of sleep quantity,
and also contributes to differential vulnerability to sleep loss. Variants of BHLHE41/DEC2
have been reported to be involved in responses to chronic SR and acute TSD [73]. In
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this study with one pair of twins, the presence of the Y362H variant (c.1084C>T; no
SNP-ID available) was associated with fewer lapses on the PVT during TSD, reduced
sleep duration, and less recovery sleep following TSD, though non-rapid eye movement
sleep duration did not differ between the twins [73]. The Y362H variant also decreased
the ability of BHLHE41/DEC2 to suppress in vitro CLOCK/BMAL1 and NPAS2/BMAL1
transactivation [73]. The differential neurobehavioral resilience to sleep deprivation related
to BHLHE41/DEC2 may be a consequence of a decreased need for sleep, as the P384R
mutation (SNP-ID: rs121912617) has been implicated in familial natural short sleep [74].

3.2.2. PER3

PER3, a core circadian clock gene, has a 54-nucleotide coding region variable-number
tandem repeat (VNTR) (SNP-ID: rs57875989) repeating in either four or five units that is
associated with differential vulnerability to sleep deprivation. TSD studies have shown
that individuals with the PER35/5 genotype (five-repeat allele) had worse cognitive perfor-
mance [75], poorer executive function performance selectively in the early morning [76],
and greater decrements in sustained attention [77] compared to PER34/4 (four-repeat allele)
individuals. However, the PER3 genotype did not differentially influence neurobehavioral
vulnerability to acute TSD in twins [55] or to chronic SR in unrelated individuals [78]. In
contrast to Goel et al. [78], two other studies found individual differences in neurobehav-
ioral responses to SR related to this PER3 VNTR polymorphism [68,79].

The PER3 C7827519G SNP (SNP-ID: rs228697) has also been studied in relation to
interindividual differences in responses to sleep loss. However, a study involving 38 h TSD
found neither an association between PER3 genotype and neurobehavioral response to
TSD, nor an interaction between PER3 genotype, TSD, and caffeine on PVT performance at
any point throughout the protocol [67].

3.3. Cognitive Development and Functioning Genes
3.3.1. BDNF

The brain-derived neurotrophic factor (BDNF) gene is essential for proper neuronal
development and neuronal plasticity, including as applied to neurobehavioral functioning.
The BDNF Val66Met polymorphism (SNP-ID: rs6265) has been found to impact an individ-
ual’s vulnerability to sleep deprivation, as studies have shown that Met carriers performed
more poorly on neurobehavioral metrics than Val/Val individuals during extended wakeful-
ness. One study demonstrated that Met carriers had worse response inhibition performance
on the Stroop Task, which assesses cognitive flexibility, than Val/Val homozygotes after
20 h of wakefulness, suggesting differential impairment related to this BDNF polymor-
phism [80]. Similarly, Met carriers also performed more poorly than Val/Val homozygotes
on a verbal two-back working memory task after 40 h of wakefulness [81]. However, this
BDNF genotype did not differentially impact sustained attention, or self-rated sleepiness or
wellbeing [81]. In contrast, a study involving simulated night shift schedules demonstrated
that the Val/Met BDNF genotype may allow for greater flexibility to adapt to circadian mis-
alignment, since heterozygotes showed fewer lapses on the PVT toward the end of the night
shifts in the second simulation bout as compared to the first bout; Val/Val homozygotes did
not show a performance difference between night shift bouts [82]. Taken together, these
findings suggest possible genotypically regulated differences in BDNF protein expression
during sleep loss, which also may be important for determining neurobehavioral resilience
and vulnerability [83].

3.3.2. COMT

The catechol-O-methyltransferase gene (COMT) encodes the COMT protein, which
is responsible for breaking down catecholamines including epinephrine, norepinephrine,
and dopamine. The functional COMT Val158Met polymorphism (SNP-ID: rs4680) has
been found to be associated with neurobehavioral responses to sleep deprivation. After a
night of TSD, individuals with the Val allele demonstrated poorer performance on tasks
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of behavioral attention [84] and adaptive decision making [85] than Met carriers. During
chronic SR, however, this COMT polymorphism did not differentially impact cognitive
performance or subjective or physiological sleepiness [86].

Additionally, this COMT polymorphism was shown to regulate the effect of modafinil,
a pharmacological stimulant, on behavioral attention, self-reported wellbeing, and ex-
ecutive functioning, yet was not associated with subjective sleepiness [87,88]. A recent
study also investigated the potential effect of this COMT polymorphism on performance
impairment during TSD both independent from, and related to, the mitigatory effect of
caffeine. While no main effect of COMT genotype was observed on PVT performance or
KSS scores overall, the study found that, after 20 h TSD, but not after 26 h or 32 h TSD, Met
allele carriers had more PVT lapses than Val/Val individuals in the placebo condition [67].
Notably, this genotypic performance difference was not observed when participants were
provided caffeine, suggesting its beneficial impact [67]. Please see the Section 4 entitled,
“Countermeasures for the Detrimental Neurobehavioral Effects of Sleep Deprivation” for
more details about the potential link between genetic polymorphisms and mitigation
strategies (also see Figure 1).

3.4. Dopaminergic Genes
DRD2 and DAT

The dopamine D2 receptor gene (DRD2) C957T polymorphism (SNP-ID: rs6277) and
the dopamine transporter gene (DAT1) 3′-UTR VNTR polymorphism (SNP-ID: rs28363170)
have also been implicated in differential cognitive vulnerability to sleep deprivation, both
separately and in combination with each other. During 38 h TSD, DRD2 C/C individuals
were particularly resilient to the effects of sleep loss on cognitive flexibility, whereas T/T
individuals were particularly vulnerable; however, no genotypic influence was found on
PVT performance resilience [89]. Another TSD study showed that DRD2 T/T homozygotes
demonstrated greater declines in performance with increased time spent performing the
PVT than C allele carriers, suggesting that the DRD2 genotype predicts the magnitude
of this time-on-task (TOT) effect [90]. Similarly, the DAT1 genotype was also found to
modulate the TOT effect on the PVT during TSD, as 10-repeat allele (10R) homozygotes
showed less severe TOT deficits compared to nine-repeat allele (9R) carriers [91]. Addi-
tionally, when examining the combination of these two polymorphisms, individuals with
the DAT1-DRD2 10R/10R-C/T or 9R-C/C genotypes showed greater PVT performance
resilience from TSD-induced decrements than individuals with other genotype combi-
nations [92]. DAT1-DRD2 9R-C/C individuals were also most resistant to self-reported
sleepiness [92]. Collectively, these studies exemplify the influence of multiple different
genetic polymorphisms on individual responses to sleep deprivation, as well as suggest
a modulatory effect of dopaminergic pathways on some neurobehavioral responses to
sleep loss.

3.5. Immune and Clearance Genes
3.5.1. AQP4

Aquaporin 4 (AQP4) is an astrocytic water channel that facilitates the flow of cere-
brospinal fluid (CSF) throughout the brain. The AQP4 gene has several SNPs that modulate
the expression of AQP4, and which were recently associated with differential responses to
40 h TSD (SNP-IDs: rs162007, rs162008, rs63514, rs455671, rs335931, rs335930, rs335929,
and rs16942851). Ulv Larsen et al. [93] reported that individuals with the low-AQP4-
expressing HtMi variant haplotype (carriers of the minor allele) had less of a reduction
in PVT response speed and less of an increase in self-rated sleepiness than individuals
with the HtMa haplotype (carriers of the major allele) during prolonged wakefulness,
suggesting that HtMi individuals may be more neurobehaviorally resilient to sleep depri-
vation [93]. These findings are particularly important for the relationship between CSF
flow and brain clearance since these are essential for protecting against the development of
neurodegenerative diseases.
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3.5.2. DQB1*0602

The human leukocyte antigen DQB1*0602 allele, which relates to narcolepsy [94,95],
has been investigated in relation to differential vulnerability to sleep loss. During five con-
secutive SR nights, DQB1*0602-positive individuals reported greater subjective sleepiness
than DQB1*0602-negative individuals [96]. Similarly, DQB1*0602-positive individuals
reported greater self-rated sleepiness and fatigue during baseline [96]. Additionally, during
SR, DQB1*0602-positive individuals exhibited differentially greater increases in subjective
fatigue [96]. Notably, carrying the DQB1*0602 allele did not differentially influence cumu-
lative decrements in neurobehavioral performance induced by SR, as total decreases in
cognitive performance and increases in physiological sleepiness were comparable between
both positive and negative groups [96].

3.5.3. TNFα

The tumor necrosis factor alpha gene (TNFα) encodes TNFα, a proinflammatory
cytokine, and has a G308A polymorphism (SNP-ID: rs1800629) in its promoter region.
This polymorphism has been associated with differential resilience to sleep-loss-induced
deficits on the PVT, as A allele carriers demonstrated greater performance resilience during
TSD [97,98]. Additionally, one study demonstrated a greater sensitivity of TNFα A allele
carriers to the effects of caffeine than G/G carriers during TSD; however, this effect may be
related to greater TSD performance degradation in A allele carriers since PVT lapses did not
differ as a function of genotype [67]. However, Skeiky et al. [98] did not find an interaction
of TNFα genotype and caffeine (either 200 or 300 mg doses) on PVT performance during
48 h TSD, despite demonstrating a genetic influence on PVT performance variance alone.

3.6. Strengths and Weaknesses of the Candidate Gene Approach

The candidate gene approach for studying differential vulnerability to sleep depriva-
tion, largely driven by the existence of phenotypic individual differences in neurobehavioral
responses to sleep loss, has been commonly used to investigate the influence of genetic
variants on such trait-like responses [4]. This approach is useful for investigating the asso-
ciation between specific genetic polymorphisms and phenotypic responses to sleep loss,
particularly in a laboratory setting with relatively small sample sizes. Although the candi-
date gene approach is useful, no published studies have used this approach to explicitly
determine causality rather than associations between genotype and phenotype. Neverthe-
less, previous work has demonstrated that the influence of some of the aforementioned
SNPs, individually or in combination, may explain a substantial portion of the variance
in neurobehavioral responses to sleep loss (reviewed in Satterfield et al. [27]). Thus, it is
important to continue using the candidate gene approach to examine the contribution of
specific genes to differential neurobehavioral vulnerability.

4. Countermeasures for the Detrimental Neurobehavioral Effects of Sleep Deprivation

The neurobehavioral and physiological effects of sleep loss are detrimental yet often
are undetected by sleep-deprived individuals. Although the optimal way to protect against
poorer neurobehavioral performance and adverse health outcomes that are associated with
sleep deprivation is to consistently obtain sufficient sleep aligned with an individual’s
circadian rhythms [99], societal and work demands often make this difficult to achieve.
This is especially true for populations such as shift workers, students pulling “all-nighters”,
on-call medical personnel, transmeridian travelers, and individuals whose jobs require
extended wakefulness [9]. Sleep deprivation also directly impacts driving and accident
risk—sleepiness-related crashes exhibit similar injury and fatality rates as alcohol-related
crashes [100–102], though they are often underestimated [9,103–106]. Thus, mitigation
strategies to combat the severity of such negative effects, including banking sleep, recovery
sleep, caffeine, and naps, are critical. It is particularly important to investigate the efficacy
of countermeasures in relation to the aforementioned candidate genes, as doing so may
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offer more definitive recommendations as to which individuals would benefit most from
certain mitigation strategies based on their genetic make-up (see Figure 1).

4.1. Effects of Banking Sleep on Neurobehavioral Performance

Banking sleep—increasing sleep duration to 8–9 h per night for several consecutive
nights—has been demonstrated to mitigate neurobehavioral decrements resulting from sub-
sequent sleep loss, including diminished performance on sustained attention tasks [107,108]
and high-cognitive-load decision tasks [109]. Banking sleep also has been reported to ef-
fectively manage fatigue, stress, and excessive daytime sleepiness [110,111], which may
be useful in applied settings such as military operations [112] and shift work [113]. The
beneficial effects of banking sleep have been found to persist during a recovery sleep
opportunity following sleep deprivation [107,108]. Though promising, further research is
needed to establish whether this strategy can reliably maintain neurobehavioral perfor-
mance during sleep-deprived conditions and subsequent recovery, especially in relation to
interindividual phenotypic and genotypic differences. Further research is also necessary
to determine whether the utility of banking sleep may be greater for certain individuals;
for example, although not yet examined, the BHLHE41/DEC2 polymorphism has been
implicated in short sleep [74], which suggests that increasing sleep through banking may
not be as effective for individuals with the P384R mutation.

4.2. Effects of Recovery Sleep on Neurobehavioral Performance

Recovery sleep—increased nightly sleep opportunity following a period of sleep
deprivation—has also been proposed as a mitigation strategy to facilitate the restoration of
several neurobehavioral measures after sleep loss. Some studies have shown that recovery
sleep improved cognitive performance, reduced sleepiness, fatigue, and sleep propensity,
increased alertness, and improved mood [114–117]. However, other studies have found
that recovery sleep failed to completely reverse sleep deprivation-induced performance
impairments on vigilance and working memory tasks, worsened inhibition as defined by a
pinball task, and decreased self-rated vigor as defined by the POMS [10,117,118]. While
reliable biomarkers of response to recovery sleep have yet to be discovered, interindividual
differences may account for some of the discrepancies in research related to recovery sleep,
since differential vulnerability could impact the amount of recovery sleep needed for
certain aspects of neurobehavioral functioning to return to baseline levels [117]. Thus, it is
important to further investigate biomarkers and genetic polymorphisms that may underlie
differences in the effectiveness of recovery sleep.

4.3. Effects of Caffeine and Napping on Neurobehavioral Performance

The efficacy of caffeine in attenuating neurobehavioral performance deficits induced
by sleep loss has been well established [119–124]. Acute caffeine consumption (using doses
from <80 mg to 600 mg) has been shown to mitigate performance declines in sleep-deprived
individuals in a variety of domains, including on attention, memory, information process-
ing, executive functioning, and driving tasks (reviewed in [125]). As aforementioned, the
efficacy of caffeine has also been linked to the ADORA2A [69,71] and COMT [67] genotypes,
thus, further evincing caffeine’s biological utility. Notably, caffeine becomes less effective at
preventing performance declines as the pressure for sleep increases during extended wake-
fulness [4]. In addition, robust individual differences in response to both sleep deprivation
and caffeine confound the effectiveness of this mitigation strategy [4,123,124].

Napping during the day is another effective countermeasure to prevent performance
declines in conditions of increased sleepiness and decreased alertness [126]. Although naps
are beneficial, rest opportunities are typically followed by sleep inertia (a period of grog-
giness and diminished performance) upon awakening [127]. This has traditionally been
thought to be especially true after longer naps during which slow-wave sleep is reached,
though recent reports showed mixed findings [128]. Since naps alone are also unable to pre-
vent the negative effects of sleep deprivation under all conditions [4,123,127] and across all
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neurobehavioral domains [129,130], the combination of caffeine consumption and a short
nap may provide maximum protection against sleep-loss-induced decrements [127,131].

5. Conclusions and Perspectives

Adequate sleep is a biological imperative, essential for maintaining waking neurobe-
havioral performance, though it is often difficult to achieve. Thus, determining reliable
predictors of differential vulnerability to sleep loss is crucial, given that diminished neu-
robehavioral functioning may negatively impact productivity and performance in a variety
of real-world settings. As discussed, past research has identified several candidate genes
and genetic polymorphisms related to circadian factors, neurotransmitter transmission,
and immune and cognitive functioning, among others, which are associated with neu-
robehavioral resilience and vulnerability to sleep deprivation [67,80,82,84,85,89–91,93,98]
(also see review [4]), and which are important components of individual differences re-
search. Notably, some studies have also identified genetic polymorphisms involved in
the efficacy of specific countermeasures used for sleep loss-induced deficits such as caf-
feine [67,69,71,98] (also see review [4]), suggesting that particular countermeasures may
be more effective for certain individuals based on their own genetic profile. Importantly,
establishing causality between specific genes and mitigation strategies through the candi-
date gene approach will enable the implementation of more individualized approaches
for countering sleep loss-induced deficits, which is especially important for maximizing
neurobehavioral functioning in applied settings.

It also is important to investigate the genetic determinants of resilience and vulnera-
bility in diverse demographic and clinical populations. Studies have reported the influence
of ethnicity and/or race on sleep characteristics [132–135], which are likely impacted by
genetic ancestry and social and environmental pressures. Additionally, although associa-
tions between various candidate genes (e.g., ADA, ADORA2A, PER3) and clinical and/or
sub-clinical symptomology and conditions have been shown [136–140], genotypic rela-
tionships between such symptomology and neurobehavioral performance have not been
directly examined in the context of sleep loss. Interindividual differences in self-rated
personality traits have also been proposed as factors contributing to differences in sleep
characteristics [141,142] and to differential vulnerability to sleep loss [143]; however, the
polygenetic and complex nature of personality makes it difficult to conduct genetic studies
exploring this relationship. Further research on the genetic underpinnings of neurobehav-
ioral responses to sleep deprivation is necessary to create a more generalizable framework
of resilience and vulnerability to sleep loss-induced decrements. Overall, investigating such
topics will lead to the development of personalized countermeasures and treatments based
on an individual’s genetic and neurobehavioral performance profiles, which is critical for
optimizing functioning in applied settings involving extended wakefulness.
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