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In 2001, the use of cylindrical coordinates was demonstrated to be more suitable

than was the use of polar coordinates for accurate computer calculations during

treatment planning for 192Ir intravascular brachytherapy sources. In the present

work, we investigated the applicability of cylindrical coordinate–based TG-43U1

parameters for dosimetric evaluation and dose calculations for RadioCoil 103Pd

sources (RadioMed Corporation, Tyngsboro, MA) 1.0-cm to 6.0-cm long. For

brevity, only the results for sources 1.0-cm, 3.0-cm, and 5.0-cm long are pre-

sented here. Dosimetric characteristics of RadioCoil 103Pd sources were calculated

in liquid water using the Monte Carlo simulation technique. To demonstrate the

suitability of this methodology, the Monte Carlo–simulated dose profiles for a

RadioCoil 103Pd source 5.0-cm long at radial distances of 0.5 cm, 0.9 cm, and

1.25 cm were compared with calculated data using TG-43U1 parameters in the

polar and cylindrical coordinate systems. In addition, we also used a source

1.0-cm long parameterized using cylindrical coordinates to investigate the ap-

plication of a linear segmented source (LSS) model originally introduced by our

group. The results indicate that, for dose calculation around elongated

brachytherapy sources, cylindrical coordinate–based TG-43U1 parameters more

accurately represent the dose distribution around an elongated source than the

polar coordinate–based parameters. In addition, the LSS model, in conjunction

with the cylindrical coordinate–based parameters for a source 1.0-cm long, can

be used to replicate the dose distribution around any integral source length. This

process eliminates the need to collect and enter data for multiple source lengths

into treatment planning systems.

Key words: RadioCoil, 103Pd, TG-43U1, cylindrical coordinate system, polar

coordinate system
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I. INTRODUCTION

Since the late 1990s, brachytherapy treatments have been widely expanded into management

of various tumor sites such as prostate, breast, and cervix. The success of this treatment modal-

ity is partly attributable to advances in the dosimetric evaluation of brachytherapy sources and

treatment procedures.

The original and updated recommendations of Task Group 43 (TG-43 and TG-43U1 respec-

tively) of the American Association of Physicists in Medicine (AAPM) are the foundation of

current brachytherapy source dosimetry procedures.(1,2) The TG-43 protocols have been exten-

sively used to determine the dosimetric characteristics of various source types and models with
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active lengths of 1.0 cm or less.(3–9) The original TG-43 protocol, introduced in 1995, was

based on recommendations of the Interstitial Collaborative Working Group(10) and provided

limited published dosimetric data. Their data included 125I [models 6711 and 6702 (Amersham/

Oncura, Plymouth Meeting, PA)], 103Pd [model 200 (Theragenics Corporation, Norcross,

GA)], and 192Ir (Best Industries, Springfield, VA) sources.(1) An update to the TG-43 proto-

col (TG-43U1)(2) was introduced in 2004 as a result of developments in the technology,

discovery of some shortcomings in the original protocol, availability of more brachytherapy

source dosimetry data, and the introduction of new source models. Per the TG-43U1 proto-

col, the two-dimensional (2D) anisotropy function for all brachytherapy sources should, at a

minimum, be reported for radial distances r = {0.5, 1, 2, 3, 5, and 7 cm} for 125I and {0.5, 1,

2, 3, and 5 cm} for 103Pd, from θ = {0 to 90 degrees in 10-degree increments}. In addition,

the recommendations state that, to minimize extrapolation, F(r,θ) data should be determined

over the widest reasonably achievable range of radial distances. Moreover, it was noted that

F(r,θ) data should be obtained such that bilinear interpolation between various data points

produces errors of less than 2%.

Dose distributions around brachytherapy sources with active lengths of 1.0 cm or less are

nearly spherical [Fig. 1(A)]. The polar coordinate system is therefore a logical choice in the

TG-43 and TG-43U1 recommendations for those sources.(1,2) However, distribution shape has

not been fully explored for elongated brachytherapy sources—that is, for those with active

lengths greater than 1.0 cm. This lack of information is a hindrance for clinical application of

elongated sources such as the recently introduced RadioCoil 103Pd sources by RadioMed Cor-

poration (Tyngsboro, MA). These sources are available in active lengths ranging from 1.0 cm

to 6.0 cm, in 1.0-cm steps.

In a separate investigation, we evaluated the use of TG-43U1–recommended parameters in

a polar coordinate system for dosimetric characterization of a RadioCoil 103Pd source 5.0-cm

long.(11) The results indicated that use of the TG-43U1 recommendations leads to discrepan-

cies of up to 30% as compared with the Monte Carlo–simulated data. Those differences were

attributed to the limited data points for the 2D anisotropy function and the inadequacy of the

linear interpolation technique for dose distribution around an elongated source based on these

limited data. The discrepancies were reduced to about 10% with the use of smaller radial incre-

ments for F(r,θ), but the TG-43U1–recommended 2% error could not be reached using a

reasonable number of radial increments. Fig. 1(B) shows that the pattern of radiation distribu-

tion around an elongated brachytherapy source is not spherical. Hence, the use of a polar

coordinate–based parameterization may not be the most effective system for implementing

such sources. A different approach may therefore be needed to accurately calculate dose distri-

butions around elongated brachytherapy sources.

In 2001, Schaart et al.(12) explained that a straightforward application of the TG-43 formal-

ism to calculate the dose distribution around intravascular line sources, as proposed by TG-60,

may be difficult. They concluded that such an application would be even more difficult for line

sources emitting low-energy photons or beta particles. To resolve the limitations, they recom-

mended the use of a formalism based on cylindrical coordinates. Similarly, in an independent

investigation, Patel et al.(13,14) suggested the use of a cylindrical coordinate–based TG-43 for-

malism for dose calculations at short distances relative to a linear intravascular 192Ir source.

With some modifications, Chiu-Tsao et al.(15) implemented a cylindrical coordinate–based for-

malism for dose calculations around beta-emitting intravascular brachytherapy sources. The

results of the foregoing investigations indicate that the dose calculation formalism based on a

cylindrical coordinate system is more suitable for dosimetry around elongated brachytherapy

sources than is a polar coordinate system. Appendix A outlines a comparison between the TG-

43U1 formalism in the polar and cylindrical coordinate systems. Fig. 2(A,B) shows the

coordinate system used for brachytherapy source dosimetry calculations in the polar and cylin-

drical coordinate systems respectively.
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In the present work, we investigated the dosimetric characteristics of RadioCoil 103Pd

sources ranging in length from 1.0 cm to 6.0 cm, but for brevity, we present the data for the

sources 1.0-cm, 3.0-cm, and 5.0-cm long only. All parameters were determined using the

cylindrical coordinate–based TG-43U1 formalism.

In addition, we investigated the advantages of cylindrical over polar coordinates for dose

calculations around elongated brachytherapy sources. Further, to reduce the amount of dosimet-

ric data for treatment planning with such sources, we investigated the validity of the linear

segmented source (LSS) model(16) used in combination with the cylindrical coordinate–based

formalism. We used the polar coordinate–based parameters published by Dini et al.(17) and the

values obtained using the cylindrical coordinate–based parameters to compare the calculated

dose profiles.

(a) (b)

FIG. 1. Auto radiographs of (a) a conventional seed-type 103Pd source and (b) a RadioCoil 103Pd linear source (RadioMed
Corporation, Tyngsboro, MA) 5.0-cm long.

FIG. 2. Coordinate system used for brachytherapy dosimetry calculations in (a) polar and (b) cylindrical coordinate systems.

(a) (b)

II. MATERIAL AND METHODS

A. Monte Carlo calculation
In the present investigations, we used the MCNP5(18) Monte Carlo code to determine the cylin-

drical coordinate–based TG-43U1 dosimetric parameters for elongated (active length greater
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than 1 cm) RadioCoil 103Pd sources. Dosimetric parameters and dose profiles around RadioCoil
103Pd sources 1.0-cm, 3.0-cm, and 5.0-cm long are presented here. The general-purpose three-

dimensional radiation transport MCNP5 Monte Carlo code is designed to simulate coupled

neutron, photon, and electron transport through homogeneous and heterogeneous media.

Melhus and Rivard demonstrated that the use of the *F4 tally with the µ
en

/ρ from the Na-

tional Institute of Standards and Technology (NIST) is in excellent agreement (within 0.1%)

with the data obtained using the F6 tally, along with the inherent µ
en

/ρ in the MCNP5 code for

an energy range of 15 KeV to 1.5 MeV.(19) Therefore, in the present investigations, the *F4

tally was used to determine the dose rate distribution around RadioCoil 103Pd brachytherapy

sources. The *F4 tally allows for the calculation of average photon fluence over the tally cell in

units of MeV cm–2 photon–1.(18) However, the result can be directly converted to dose in units

of MeV g–1 photon–1 by incorporating the updated energy-dependent mass–energy absorption

coefficients (cm2/g) into the simulation. Furthermore, we converted dose units of MeV/g per

photon to Gy h–1 U–1 by using the tally multiplier (FMn) card.(18–20) The MCNP5 Monte Carlo

code uses a default photon cross section library, p04, from the National Nuclear Data Center’s

ENDF/B-VI.(21) The mass absorption coefficients of Hubbell and Seltzer(22) distributed by NIST

were used to obtain absorbed dose from energy flux. For the Monte Carlo simulations, the

photon spectrum of 103Pd was taken from the TG-43UI report.(2) In those simulations, a 5 keV

cut-off energy was used for photons. That cut-off is consistent with the NIST 1999 air kerma

strength standard, in which an aluminum foil was used to filter the photons with energies

below 5 keV in the wide-angle free-air chamber.(23)

Fig. 3 shows a schematic of the new RadioCoil 103Pd source design used in the present

investigations.(9,17) In this source design, high-purity rhodium ribbon is activated in a cyclotron

to produce radioactive palladium-103, which is then turned into a dense helix. In the Monte

Carlo simulations, the geometry of the source was modeled as a cylindrical rhodium shell of

0.05 mm thickness, assuming that the effect of the helical structure of the source on dose

distribution is negligible. The 103Pd activity was modeled as uniformly distributed to 20 µm

depth. The Monte Carlo simulations were performed by virtual placement of the source centers

at the center of a spherical liquid water phantom 50.0 cm in diameter. Dose values around the

source were calculated in circular tori tally cells with a cross-sectional diameter of 1 mm and

variable major radii. In addition, the dose distribution on the longitudinal axis of the sources

was calculated using spherical tally cells 0.8 mm in diameter. The densities and chemical com-

position of the liquid water and the air used in these simulations were obtained from the TG-43U1

report.(2) The densities of 103Pd and 103Rh—12.02 g/cm3 and 12.41 g/cm3 respectively—were

obtained from the NIST web site.(22)

FIG. 3. Schematic of the new RadioCoil 103Pd brachytherapy source (RadioMed Corporation, Tyngsboro, MA).
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The simulations for dose rate constant, radial dose function, and 2D anisotropy function

were performed for up to 8×107 starting particle histories in liquid water. However, for deter-

mination of dose rates on the longitudinal axis of the sources, the simulations were performed

for up to 2.4×109 starting particle histories. The larger histories provided a statistical fluctua-

tion of less than 5% for the points falling within 3 cm beyond the active length of the sources.

The air kerma strengths of the sources were calculated in a spherical void phantom 100.0 cm in

diameter with tally cells composed of dry air for 2×107 starting particle histories. For those

determinations, the air kerma rates were first calculated along the transverse bisector of each

source length, at radial distances ranging from 0.5 cm to 35.0 cm in 0.5-cm increments. The

propagation of errors in these Monte Carlo simulations was estimated in the same fashion as

described in our previous publication.(17) From these simulations, the total errors at radial dis-

tances of 1.0 cm and 5.0 cm were found to be 2.6% and 4.3% respectively. Variation of the air

kerma rates, multiplied by the square of the corresponding radial distances, was less than 1% at

radial distances greater than 3L, L being the active length of the source. The product of the

simulated air kerma rate at a radial distance of 5L and the square of the corresponding radius

was therefore chosen as the air kerma strength of the source.

B. Cylindrical coordinate–based TG-43U1 dosimetric parameters
The next two subsections (II.C and II.D) describe the method of determination of the dosimetric

characteristics of RadioCoil 103Pd sources 1.0-cm, 3.0-cm, and 5.0-cm long, in water, using the

cylindrical coordinate–based TG-43U1 formalism, as shown in Appendix A. To validate the source

geometry in the Monte Carlo simulations, the values of the dose rate constant and the radial dose

function from the present project were compared with the corresponding data obtained by Dini et

al.(17) It should be noted that the data presented by Dini et al.(17) were validated by experimental

data obtained using a thermoluminescence dosimetry (TLD) technique.

The dose rate constants for the RadioCoil 103Pd sources were calculated as the ratio of the

simulated dose rate at the reference point (that is, R = 1.0 cm, Z = 0) to the simulated air kerma

strength (equation A-6). The radial dose functions of the sources were calculated using equa-

tion A-8. These calculations were performed for radial distances ranging from 0.2 cm to 1.0 cm

in 0.2-cm increments and distances ranging from 1.0 cm to 7.0 cm in 0.5-cm increments. The

2D anisotropy functions, F(R,Z), of the sources were calculated in the cylindrical coordinate

system (equation A-14). The parameters were obtained for points with radial (R) distances

ranging from 0.2 cm to 1.0 cm in 0.2-cm increments and from 1.0 cm to 3.0 cm in 0.5-cm

increments. The Z coordinates ranged from 0.0 cm to 3.6 cm in 0.2-cm increments. It should be

noted that the g
L
(R) and F(R,Z) for the sources were determined using the linear source ap-

proximation. In those calculations, the effective length of each source was assumed to be the

same as its physical length, and the geometry functions were obtained using equation A-10 for

points with R values greater than 0.

It should be noted that equations A-10 and A-14 (for the geometry function and the 2D anisot-

ropy function respectively) present singularities for R = 0 for points falling on the longitudinal

axis of the source. Equation A-12 has been extracted from A-10 using l’Hôpital’s rule to resolve

the singularity in the geometry function. However, the singularities for the 2D anisotropy func-

tion arise from the fact that the value of the dose rate in the denominator of equation A-14 is the

dose rate at the center of the active length of the source (R = 0, Z
o
 = 0), which cannot be deter-

mined using experimental or theoretical models. As an intermediate solution, the tabulated dose

rate values for the points falling on the longitudinal axis (located outside of the active length) of

an elongated source have been provided for treatment planning with such sources.

C. Cylindrical as compared with polar coordinate–based TG-43U1 dose profile
In this subsection, the advantages of using the cylindrical over the polar coordinate–based TG-

43U1 formalism and parameters for dose calculations around elongated RadioCoil 103Pd



128 Awan et al.: Cylindrical coordinate–based TG-43U1 parameters for... 128

Journal of Applied Clinical Medical Physics, Vol. 9, No. 2, Spring 2008

brachytherapy sources are evaluated. For these evaluations, the Monte Carlo–simulated dose

profiles around a RadioCoil 103Pd source 5.0-cm long were compared with the data calculated

using both polar and cylindrical coordinate–based TG-43U1 parameters. Dose profiles were

obtained along the lines parallel to the longitudinal axis of the source, with radial distances of

R = 0.5 cm, 0.9 cm, and 1.25 cm. For each line, dose values were calculated at several points

with Z coordinates ranging from 0 cm to 3.6 cm. These calculation points were selected to

create a realistic approach for dose calculations around the elongated sources. Bilinear interpo-

lation techniques were used to extract the 2D anisotropy functions from both the cylindrical

and polar coordinate–based parameters. In those calculations, the polar coordinate–based TG-

43U1 parameters were obtained from data published by Dini et al.(17) The calculations were

performed using Microsoft Excel 2003 installed on a Windows XP operating system.

D. Application of the LSS model for treatment planning with cylindrical
coordinate–based TG-43U1 parameters
Implantation with linear sources may involve various source lengths for the required dose

coverage within the implanted volume. Dosimetry for patients implanted with multiple source

lengths demands that dosimetric characteristics be available in the treatment planning sys-

tem for each source length. In an earlier project, we introduced the LSS model as an interim

solution for treatment planning with elongated low-energy brachytherapy sources.(16) We

demonstrated that the LSS model with the polar coordinate–based TG-43U1 formalism re-

produces (±4%) Monte Carlo–simulated values for the points bounded within the active

length of the source. However, outside of the boundary, differences of up to 14% have been

observed for a source 3.0-cm long. The current work examined the accuracy of the LSS

model for dose calculation around the elongated sources using cylindrical coordinate–based

TG-43U1 parameters.

The LSS model was used to calculate dose profiles around RadioCoil 103Pd sources 3.0 cm

and 5.0 cm in length. In those calculations, the elongated source was replaced by a series of

source segments each 1.0-cm long, arranged in a linear fashion. The Monte Carlo–simulated

dosimetric parameters of the source 1.0-cm long in the cylindrical coordinate system were

used to calculate dose profiles around a RadioCoil 103Pd source 5.0-cm long at radial dis-

tances of 0.5 cm, 0.9 cm, and 1.25 cm. The success of the LSS model with the cylindrical

coordinate–based parameters will allow dosimetric parameterization of the smallest source

segment (1.0 cm) to be used for dose calculations in implantations using various source lengths.

That approach will not only ease the dosimetric evaluations of the sources, but will also reduce

the collection and entry of data into the treatment planning system.

III. RESULTS

Cylindrical coordinate–based TG-43U1 dosimetric parameters (dose rate constant, radial

dose function, 2D anisotropy function) of RadioCoil 103Pd brachytherapy sources 1.0-cm

and 5.0-cm long were determined using the Monte Carlo simulation technique. The results of

those investigations show that the dose rate constants of the those sources in liquid water are

0.603 ± 0.016 cGy h–1 U–1 and 0.236 ± 0.006 cGy h–1 U–1 respectively. Table 1 compares the

dose rate constants of those sources in the cylindrical coordinate system with the data in the

polar coordinate system published by Dini et al.(17) The small differences (<0.4%) between the

dose rate constants from the two separate investigations are attributed to statistical fluctuation

in the Monte Carlo simulations and the rounding of numbers during the data analysis.

Fig. 4 compares the Monte Carlo–simulated radial dose function of RadioCoil 103Pd sources

1.0-cm and 5.0-cm long obtained using the cylindrical coordinate–based TG-43U1 formalism

and the published data using the polar coordinate–based formalism.(17) The results indicate
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excellent agreement (<1%) between the data from the cylindrical and polar coordinate–based

formalisms. As described earlier, the small differences (<1%) between the data in the two

separate investigations are attributed to statistical fluctuation in the Monte Carlo simulations.

Table 2 presents the Monte Carlo–simulated radial dose functions for the sources. Similar

results were observed for other source lengths.

TABLE 1. Comparison of dose rate constants for RadioCoil 103Pd sources (RadioMed Corporation, Tyngsboro, MA)
1.0-cm and 5.0-cm long obtained in liquid water as determined in the present work and as published by Dini et al.(17)

Active Dose rate constant (cGy/h/U)
length Cylindrical coordinate Polar coordinate
(cm) (present work) (Dini et al.(17))

1.0 0.603±0.016 0.602 ±3%
5.0 0.236±0.006 0.235 ±3%

TABLE 2. Monte Carlo–simulated radial dose function, g
cyl

 (R), of RadioCoil 103Pd sources (RadioMed Corporation,
Tyngsboro, MA) 1.0-cm and 5.0-cm long determined in liquid water using the cylindrical coordinate system

R g
cyl

 (R) for source length
(cm) 1.0 cm 5.0 cm

0.2 1.24 1.418
0.4 1.25 1.317
0.6 1.191 1.211
0.8 1.097 1.103
1.0 1.000 1.000
1.5 0.780 0.797
2.0 0.585 0.619
2.5 0.436 0.474
3.0 0.323 0.364
3.5 0.237 0.27
4.0 0.174 0.205
4.5 0.131                      —
5.0 0.096 0.115
6.0 0.052 0.062
7.0 0.029 0.031

FIG. 4. Comparison of the Monte Carlo–simulated radial dose functions (RDFs) of RadioCoil 103Pd sources (RadioMed
Corporation, Tyngsboro, MA), (A) 1.0-cm and (B) 5.0-cm long in liquid water, calculated for cylindrical and polar coor-
dinate systems.

(a) (b)
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Tables 3 and 4 respectively present the Monte Carlo–simulated F(R, Z) for RadioCoil 103Pd

sources 1.0 cm and 5.0 cm in length. In addition, Fig. 5(A) shows a graphical representation of

F(R, Z) as a function of Z for radial distances of 0.2 cm, 0.6 cm, 1.0 cm, 2.0 cm, and 3.0 cm, for

a source 1.0-cm long. Similarly, Fig. 5(B) shows F(R, Z) for a source 5.0-cm long. Those figures

suggest that the 2D anisotropy function for these source lengths can be divided into two zones:

• the region bounded by the active length of the source, and

• the region outside the active length of the source.

TABLE 3. Two-dimensional anisotropy function, F(R, Z), of a RadioCoil 103Pd source (RadioMed Corporation, Tyngsboro,
MA) 1.0-cm long determined in liquid water using the cylindrical coordinate system

Z Radial distance R (cm)
(cm) 0.20 0.40 0.60 0.80 1.00 1.50 2.00 2.50 3.00

0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.20 1.013 0.990 0.982 0.986 0.991 0.987 1.001 0.998 1.004
0.40 1.012 0.942 0.932 0.940 0.947 0.959 0.979 0.989 0.996
0.80 1.689 1.276 1.131 1.073 1.039 0.989 0.989 0.983 1.010
1.00 1.006 1.023 0.994 0.980 0.972 0.941 0.948 0.967 0.968
1.20 0.674 0.780 0.831 0.862 0.870 0.884 0.901 0.918 0.943
1.40 0.516 0.609 0.674 0.729 0.770 0.820 0.857 0.870 0.891
1.60 0.404 0.483 0.555 0.617 0.667 0.728 0.785 0.812 0.839
2.00 0.416 0.482 0.568 0.631 0.671 0.739 0.787 0.820 0.845
2.20 0.333 0.397 0.465 0.520 0.575 0.656 0.723 0.765 0.793
2.40 0.295 0.334 0.385 0.435 0.491 0.580 0.638 0.684 0.714
2.60 0.249 0.280 0.320 0.375 0.414 0.498 0.578 0.624 0.679
2.80 0.213 0.236 0.268 0.313 0.354 0.439 0.513 0.569 0.621
2.60 0.211 0.176 0.268 0.307 0.344 0.435 0.503 0.563 0.591
2.80 0.126 0.106 0.150 0.175 0.202 0.261 0.319 0.378 0.424
3.00 0.078 0.063 0.090 0.107 0.120 0.155 0.202 0.252 0.296
3.20 0.049 0.042 0.061 0.062 0.071 0.093 0.136 0.169 0.205
3.40 0.031 0.000 0.000 0.000 0.000 0.001 0.004 0.011 0.023
3.60 0.018 0.000 0.000 0.000 0.000 0.001 0.002 0.006 0.013

TABLE 4. Two-dimensional anisotropy function, F(R, Z), of a RadioCoil 103Pd source (RadioMed Corporation, Tyngsboro,
MA) 5.0-cm long determined in liquid water using the cylindrical coordinate system

Z Radial distance R (cm)
(cm) 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0

0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.20 1.005 1.003 1.000 1.006 1.014 1.000 0.991 0.983 0.992
0.40 1.005 0.996 1.002 1.004 1.010 1.002 0.986 0.995 0.973
0.60 1.004 1.000 0.998 1.008 1.014 0.993 0.994 0.999 0.973
0.80 1.005 1.004 1.013 1.015 1.019 0.999 0.989 1.007 0.986
1.00 1.011 1.008 1.012 1.022 1.019 1.009 0.986 0.986 0.983
1.20 1.009 1.024 1.032 1.025 1.030 1.001 0.977 0.974 0.968
1.40 1.023 1.022 1.031 1.041 1.035 0.993 0.971 0.972 0.941
1.60 1.028 1.046 1.046 1.037 1.037 0.993 0.959 0.941 0.915
1.80 1.040 1.053 1.053 1.049 1.039 0.974 0.938 0.923 0.883
2.00 1.070 1.070 1.051 1.041 1.020 0.945 0.910 0.868 0.874
2.20 1.100 1.079 1.037 1.013 0.992 0.923 0.872 0.862 0.835
2.40 1.107 1.023 0.978 0.956 0.938 0.884 0.846 0.826 0.809
2.60 0.824 0.871 0.874 0.863 0.858 0.824 0.796 0.767 0.757
2.80 0.560 0.687 0.730 0.763 0.773 0.752 0.735 0.718 0.724
3.00 0.394 0.527 0.597 0.633 0.674 0.679 0.683 0.694 0.674
3.20 0.313 0.400 0.490 0.539 0.569 0.613 0.616 0.622 0.630
3.40 0.251 0.322 0.392 0.449 0.485 0.527 0.562 0.574 0.585
3.60 0.199 0.271 0.320 0.376 0.415 0.474 0.511 0.519 0.537
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The variation of the 2D anisotropy function within the active region of the source is greater

for larger radial distances (R). However, for the regions outside the active length of the source,

the dose gradient is larger at shorter radial distances.

Fig. 6(A,B,C) compares the Monte Carlo–simulated and analytically calculated dose pro-

files around a RadioCoil 103Pd source 5.0-cm long at radial distances of 0.5 cm, 0.9 cm, and

1.25 cm. The analytical calculations for a RadioCoil 103Pd source 5.0-cm long were performed

using the TG-43U1 parameters with polar coordinates obtained from Dini et al.(17) Fig. 6(D,E,F)

presents the corresponding percentage differences between the Monte Carlo–simulated data

and the analytically calculated values. The comparisons indicate differences of up to 7% be-

tween the two data sets for radial distances (R) less than 1.0 cm. However, the differences

decline with increasing radial distance. Similar results were observed for the other source lengths.

Fig. 7(A,B,C) compares the Monte Carlo–simulated dose profiles and analytically calcu-

lated data using cylindrical coordinate–based parameters at radial distances of 0.5 cm, 0.9 cm,

and 1.25 cm for a RadioCoil 103Pd source 5.0-cm long. Fig. 7(D,E,F) presents the percentage

difference between the two data sets. Excellent agreement (±2%) was observed between the

Monte Carlo–simulated and analytically calculated dose profiles. Similar accuracy was ob-

served for the cylindrical coordinate–based parameters for source lengths ranging from 1.0 cm

to 6.0 cm.

Figs. 8 and 9 respectively compare the Monte Carlo–simulated dose profiles around RadioCoil
103Pd sources 3.0-cm and 5.0-cm long with the values calculated using the LSS model. The

calculations using the LSS model were based on TG-43U1 parameters with cylindrical coordi-

nates for a RadioCoil 103Pd source 1.0-cm long. Fig. 8(D,E,F) shows the percentage difference

between the Monte Carlo–simulated and the LSS model–calculated dose profiles for a source

3.0-cm long. Fig. 9(D,E,F) demonstrates a similar comparison for a source 5.0-cm long. The

results indicate that, for all of the points with Z ≤ L / 2 + 0.5 cm, the Monte Carlo–simulated

and analytically calculated dose profiles show excellent agreement (±2.5%). However, for Z >

L / 2 + 0.5 cm, the differences increase to ±5% because of the lower dose rate, which leads to

larger statistical fluctuations in the Monte Carlo simulations.

Table 5 shows tabulated dose-rate values (cGy h–1 U–1) for dose calculations at the points

falling on the longitudinal axis (that is, R = 0.0) for RadioCoil 103Pd sources 1.0-cm, 3.0-cm,

and 5.0-cm long. We used the data from the source 1.0-cm long to examine reproduction by the

LSS model of the dose rates on the longitudinal axis, beyond the tip and end of the physical

source, for sources 3.0-cm and 5.0-cm long. Table 6 compares the Monte Carlo–simulated

dose rates for RadioCoil 103Pd sources 3.0-cm and 5.0-cm long with the values calculated

using the LSS model and the data for the source 1.0-cm long. The results indicate good agreement

(a) (b)

FIG. 5. Graphical representation of the two-dimensional anisotropy function F(R, Z) for RadioCoil 103Pd sources (RadioMed
Corporation, Tyngsboro, MA) (a) 1.0-cm and (b) 5.0-cm long, determined in liquid water using the cylindrical coordinate
system.
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(within 5%) for the points within Z ≤ L / 2 + 1.0 cm from the end of the active length. However,

at larger distances, an increase in the differences between the two data sets (up to 10%) was

observed. That increase could be attributed to the larger statistical fluctuation of the Monte

Carlo simulations.

FIG. 6. Left-hand panels: Comparison of Monte Carlo (MC)–simulated and analytically calculated (TG-43U1) dose pro-
files at radial distances of (A) 0.5 cm, (B) 0.9 cm, and (C) 1.25 cm from a RadioCoil 103Pd source (RadioMed Corporation,
Tyngsboro, MA) 5.0-cm long. Analytically calculated values are obtained using TG-43U1 parameters in the polar coordi-
nate system recommended by Dini et al.(17) Right-hand panels: Percentage differences between MC–simulated and
analytically calculated values at radial distances of (A) 0.5 cm, (B) 0.9 cm, and (C) 1.25 cm from a RadioCoil 103Pd source
5.0-cm long.
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FIG. 7. Left-hand panels: Comparison of Monte Carlo (MC)–simulated and analytically calculated (TG-43U1) dose pro-
files at radial distances of 0.5 cm (A) 0.5 cm, (B) 0.9 cm, and (C) 1.25 cm from a RadioCoil 103Pd source (RadioMed
Corporation, Tyngsboro, MA) 5.0-cm long. Analytically calculated values are obtained using TG-43U1 parameters in the
cylindrical coordinate system. Right-hand panels: Percentage differences between MC–simulated and analytically calcu-
lated values at radial distances of (A) 0.5 cm, (B) 0.9 cm, and (C) 1.25 cm from a RadioCoil 103Pd source 5.0-cm long.
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FIG. 8. Left-hand panels: Comparison of Monte Carlo (MC)–simulated and analytically calculated (LSS) dose profiles at
radial distances of (A) 0.5 cm, (B) 0.9 cm, and (C) 1.25 cm from a RadioCoil 103Pd source (RadioMed Corporation,
Tyngsboro, MA) 3.0-cm long. Analytically calculated values are obtained using the linear segmented source (LSS) model
and TG-43U1 parameters for a source 1.0-cm long in the cylindrical coordinate system. Right-hand panels: Percentage
differences between MC–simulated and analytically calculated dose profiles at radial distances of (D) 0.5 cm, (E) 0.9 cm,
and (F) 1.25 cm from a RadioCoil 103Pd source 3.0-cm long.
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FIG. 9. Left-hand panels: Comparison between Monte Carlo (MC)–simulated and analytically calculated dose profiles
at radial distances of (A) 0.5 cm, (B) 0.9 cm, and (C) 1.25 cm from a RadioCoil 103Pd source (RadioMed Corpora-
tion, Tyngsboro, MA) 5.0-cm long. Analytically calculated values are obtained using the linear segmented source
(LSS) model and TG-43U1 parameters for a source 1.0-cm long in the cylindrical coordinate system. Right-hand
panels: Percentage differences between MC–simulated and analytically calculated dose profiles at radial distances
of (D) 0.5 cm, (E) 0.9 cm, and (F) 1.25 cm from a RadioCoil 103Pd source 5.0-cm long.
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TABLE 5. Monte Carlo–simulated dose rates (cGy h–1 U–1) on the longitudinal axis (that is, R = 0.0) of RadioCoil 103Pd
sources (RadioMed Corporation, Tyngsboro, MA) 1.0-cm, 3.0-cm, and 5.0-cm longa

Z Active length of source (cm)
(cm) 1.0 3.0 5.0

0.6 5.71E+00 — —
0.8 8.31E–01 — —
1.0 3.24E–01 — —
1.2 1.72E–01 — —
1.5 8.06E–02 — —
1.6 7.00E–02 1.94E+00 —
1.8 4.94E–02 3.00E–01 —
2.0 3.30E–02 1.25E–01 —
2.2 2.50E–02 6.75E–02 —
2.5 1.60E–02 3.50E–02 —
2.6 1.39E–02 2.76E–02 1.18E+00
2.8 1.11E–02 2.01E–02 1.84E–01
3.0 8.37E–03 1.54E–02 7.57E–02
3.2 7.11E–03 1.13E–02 4.10E–02
3.5 4.92E–03 6.87E–03 2.16E–02
3.6 4.60E–03 2.82E–03 1.86E–02
3.8 3.67E–03 — —
4.0 2.87E–03 — —
4.2 2.26E–03 — —
4.5 1.78E–03 — —
4.6 1.53E–03 — —
4.8 1.18E–03 — —
5.0 9.17E–04 — —
5.2 5.74E–04 — —
5.5 5.86E–04 — —
5.6 6.54E–04 — —

a These points fall outside of the active length of the sources.

TABLE 6. Comparison of Monte Carlo (MC)–simulated dose rates (cGy h–1 U–1) on the longitudinal axis (that is, R =
0.0) with values calculated using the linear segmented source (LSS) model, for RadioCoil 103Pd sources (RadioMed
Corporation, Tyngsboro, MA) 3.0-cm and 5.0-cm longa

Z              Active length of the source (cm)

(cm) 3.0 5.0

MC LSS % Diff. MC LSS % Diff.

1.6 1.94E+00 1.93E+00 –0.6 —
1.8 3.00E–01 2.97E–01 –1 —
2.0 1.25E–01 1.22E–01 –2.6 —
2.2 6.75E–02 6.80E–02 0.6 —
2.5 3.50E–02 3.38E–02 –3.4 —
2.6 2.76E–02 2.95E–02 6.9 1.18E+00 1.16E+00 –1.7
2.8 2.01E–02 2.14E–02 6.3 1.84E–01 1.79E–01 –2.4
3.0 1.54E–02 1.48E–02 –4.1 7.57E–02 7.38E–02 –2.4
3.2 1.13E–02 1.15E–02 1.5 4.10E–02 4.13E–02 0.8
3.5 6.87E–03 7.56E–03 10 2.16E–02 2.08E–02 –3.7
3.6 6.13E–03 6.66E–03 8.6 1.86E–02 1.81E–02 –2.4

a These points fall outside of the active length of the sources.

IV. DISCUSSION AND CONCLUSIONS

Several investigators have demonstrated the suitability of the cylindrical coordinate–based

formalism for dose calculation around elongated brachytherapy sources.(12,13) In the present

work, the updated TG-43U1 protocol, presented in a cylindrical coordinate system, was used
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for dosimetric parameterization of RadioCoil 103Pd sources 1.0 cm and 5.0 cm in length. The

Monte Carlo simulation technique was used to determine dose rate constants, radial dose func-

tions, and 2D anisotropy functions of these sources in water.

As shown in Appendix A, the modified TG-43 formalism in the cylindrical coordinate sys-

tem and the corresponding parameters were selected such that the dose rate constant and radial

dose functions were identical to those in the polar coordinate system.(17) Fig. 4 demonstrates the

concept by comparing the radial dose functions of RadioCoil 103Pd sources 1.0-cm and 5.0-cm long

in the two coordinate systems. In addition, Table 1 compares the dose rate constants for the

source lengths determined earlier in the present work and the values published by Dini et al.(17)

using the polar coordinate system. It should be noted that, despite the identical nature of the

radial dose functions for a brachytherapy source in the two coordinate systems, different val-

ues might be required for dose calculation at a given point. For example, for a dose calculation

using the polar coordinate system at a given point P (3 cm, 30 degrees) relative to a RadioCoil
103Pd source 5.0-cm long, the TG-43U1 formalism requires a value g

pol
.(3.0 cm) = 0.364 (Table

2). However, for dose calculation using the cylindrical coordinate system at the same point, the

modified formalism requires the value g
cyl

.[R = 3 sin(30 degrees) = 1.5 cm] = 0.797.

Tables 3 and 4 show the cylindrical coordinate–based 2D anisotropy functions of the sources

investigated earlier. Although the mathematical definitions of F(r,θ) and F(R,Z) are similar,

their values are different. Fig. 5 demonstrates that the variation of F(R, Z) is minimal within the

active region of the source, but significant outside of that region. These variations closely

represent the variation of dose distribution around the elongated brachytherapy sources, as

shown in Fig. 1(B).

One of the main advantages of cylindrical coordinate–based TG-43U1 parameterization

over that based on polar coordinates for elongated brachytherapy sources can be found by

comparing the dose profiles shown in Figs. 6 and 7. The results in Fig. 7 indicate excellent

agreement (within ±1% at close distances, and a maximum of 2.5% at larger distances) be-

tween the Monte Carlo–simulated dose profiles for a RadioCoil 103Pd source 5.0-cm long and

the values calculated using the cylindrical coordinate parameters. However, despite the use of

the 2D anisotropy functions recommended by Awan et al.,(11) differences of approximately

±7% at a 5-mm radial distance have been observed between the Monte Carlo–simulated values

and the values calculated using the polar coordinate–based parameters published by Dini et

al.(17) (Fig. 6). Although those differences were reduced to about ±3% at larger radial distances,

the overall agreement of the data with the cylindrical coordinate–based parameters was superior.

Fig. 8 demonstrates another advantage of the cylindrical coordinate–based parameters. The

results in the figure indicate that the dose profiles around RadioCoil 103Pd sources 3.0 cm and

5.0 cm in length were replicated to within ±2% by the LSS model using cylindrical coordinate–

based TG-43U1 parameters for a source 1.0-cm long. This improvement is again significant as

compared with the 14% differences found with the same model, but using polar coordinate–

based parameters for a source 1.0-cm long.(16) The results of these investigations indicate that

the LSS model with cylindrical coordinate–based dosimetric parameters can accurately repro-

duce the dose distributions around elongated sources. This approach minimizes the number of

data points that would be needed to perform the treatment planning for implantation using

various source lengths.

Interestingly, the methodologies introduced in the present work could be extended to dosi-

metric evaluations of the traditional seed-type brachytherapy sources, particularly in close

proximity of the source, which has clinical relevance in many cases. For example, various

models of 125I and 103Pd sources are being used for eye-plaque therapy. For these treatments,

the accuracy of the calculated dose to various parts of the eyeball, such as sclera, optic nerve,

and macula, is crucial for the treatments. Currently, few publications are available on dosimet-

ric evaluations of seed-type sources at close proximity.(24) Fig. 10(A) shows a rare set of

dosimetric data collected for a conventional Model 3500 I-Plant 125I seed.(24) The results indicate



138 Awan et al.: Cylindrical coordinate–based TG-43U1 parameters for... 138

Journal of Applied Clinical Medical Physics, Vol. 9, No. 2, Spring 2008

that the large variations in the 2D anisotropy function of the source outside the TG-43U1–

recommended radial distances are similar to those for a RadioCoil 103Pd source 1.0-cm long.(17)

Significance of the data at close proximity to this model of a seed-type source can be

demonstrated by comparing the Monte Carlo–simulated F(r = 0.1 cm, θ = 35 degrees) = 1.107

to F(r = 0.5 cm, θ = 35 degrees) = 0.856, because TG-43U1 recommends using the value

F(0.5,θ) for 2D anisotropy functions at short radial distances. Therefore, in the absence of

values at close proximity (that is, 0.1 cm), the value of the 2D anisotropy function used in the

calculation would have been 0.856 rather than the Monte Carlo–simulated value of 1.107 (a

difference of about 30%). Determination of the polar coordinate–based 2D anisotropy function

is notably difficult at short distances (comparable to the source diameter), where most of the

calculation points fall on the source itself. The loss of data points is more significant for elon-

gated brachytherapy sources. The cylindrical coordinate–based formalism allows for calculation

of the 2D anisotropy function as close as the surface of the source, and it facilitates the interpo-

lation and extrapolation of that parameter for dose calculation purposes.

To summarize, cylindrical coordinate–based TG-43U1–recommended dosimetric charac-

teristics of elongated RadioCoil 103Pd sources were determined and are presented here. The

advantages of these formalisms relative to the polar coordinate system have also been con-

firmed. As demonstrated in our findings, the cylindrical coordinate formalism significantly

improves on the dosimetric evaluation of elongated sources. However, the similarity in the

FIG. 10. Comparison of Monte Carlo–simulated two-dimensional anisotropy functions for 1.0-cm (RadioCoil 103Pd:
RadioMed Corporation, Tyngsboro, MA) and 0.5-cm seed-type (Model 3500 I-Plant 125I) brachytherapy sources.
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mathematical description of the polar coordinate–based formalism will facilitate its adoption

into treatment planning systems (Appendix A). In addition, the application of the cylindrical

coordinate–based TG-43U1 formalism could be extended to dosimetric evaluations in close

proximity to conventional seed-type sources.
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APPENDIX A

Comparison of polar and cylindrical coordinate–based TG-43 formalism
Figure 2 shows schematic diagrams of dose calculation point “P” in (A) polar and (B) cylindri-

cal coordinate systems around a linear brachytherapy source.

The relationships between the coordinates of a given point in these two systems are

Z = r cos(θ) (A-1)

R = r sin(θ) (A-2)

The main formalism for 2D dose calculation in the two coordinate systems is

(A-3)

      , (A-4)

where r
o
 = 1.0 cm, θ

o
 = 90 degrees, R

o
 = 1.0 cm, and Z

o
 = 0 are the values of coordinates of

reference points in the two systems. Dose rate constants in polar and cylindrical coordinate

systems are defined in equations A-5 and A-6 respectively:

(A-5)

      , (A-6)

where P(r = 1.0 cm, θ = 90 degrees) is the same as P(R = 1.0 cm, and Z = 0). Therefore, the dose

rate constants in the two systems are the same.

Radial dose functions in polar and cylindrical coordinate systems are presented in equations

A-7 and A-8 respectively:

(A-7)

  . (A-8)

Geometry functions in polar and cylindrical coordinate systems are given as follows:

(A-9)
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            (A-10)

For the points falling on the longitudinal axis of the source (that is, θ = 0 in the polar, or R =

0 in the cylindrical coordinate system), these equations simplify to

            (A-11)

       .             (A-12)

In the polar and cylindrical coordinate systems, the 2D anisotropy functions of brachytherapy

sources are defined in equations A-13 and A-14 respectively:

            (A-13)

            (A-14)

Considering the relationship between the polar and cylindrical coordinate systems shown in

equations A-1 and A-2, the geometry function, the radial dose function, and the dose rate con-

stant can be shown to be the same. It should be noted that for the same radial distances of r = R,

the values of the radial dose function in the two coordinate systems are identical. Although the

main concept and formalism for the 2D anisotropy function are similar in the two coordinates

systems, the values are not the same, because their normalization points are different. In polar

coordinate–based parameters, the dose rate at any angle is normalized with the dose rate at the

same radial distance of “r” and θ = 90. However, in cylindrical coordinate–based parameters,

the dose rate at any point is normalized to the value at same “R” and “Z
o
 = 0”.


