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Simple Summary: Intraoperative radiation therapy is evolving towards new treatment regimens,
including ultrahigh dose rates, while in-room imaging systems are increasingly being used for
treatment planning and verification. Furthermore, the combination of multiple treatment modalities
is being investigated and suggested in some studies, with the aim to improve clinical outcomes. This
evolution calls for newly designed treatment planning systems in which several features shall be
integrated. In this article, an attempt is made to identify emerging needs and foresee the possible
evolution of treatment planning technology and strategies for intraoperative radiation therapy in the
near future.

Abstract: As opposed to external beam radiation therapy (EBRT), treatment planning systems (TPS)
dedicated to intraoperative radiation therapy (IORT) were not subject to radical modifications in the
last two decades. However, new treatment regimens such as ultrahigh dose rates and combination
with multiple treatment modalities, as well as the prospected availability of dedicated in-room
imaging, call for important new features in the next generation of treatment planning systems in
IORT. Dosimetric accuracy should be guaranteed by means of advanced dose calculation algorithms,
capable of modelling complex scattering phenomena and accounting for the non-tissue equivalent
materials used to shape and compensate electron beams. Kilovoltage X-ray based IORT also presents
special needs, including the correct description of extremely steep dose gradients and the accurate
simulation of applicators. TPSs dedicated to IORT should also allow real-time imaging to be used for
treatment adaptation at the time of irradiation. Other features implemented in TPSs should include
deformable registration and capability of radiobiological planning, especially if unconventional
irradiation schemes are used. Finally, patient safety requires that the multiple features be integrated
in a comprehensive system in order to facilitate control of the whole process.
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1. Introduction

The last two decades have seen unparalleled development in treatment planning for
external beam radiation therapy (EBRT) [1]. Evolutions in dose calculation algorithms,
optimization strategies and the availability of advanced imaging systems has laid to the
capability of designing, evaluating, and verifying high-resolution dose distributions almost
“painted” to optimally cover target volumes, while sparing sensitive structures and nearby
healthy tissue as much as possible. Accuracy in dose calculation has reached levels that
guarantee sufficient confidence when pondering slightly different solutions between rival
treatment plans—a task often jeopardized by poor accuracy in sub-optimal treatment
planning settings. In clinical practice, limiting factors in EBRT treatment planning are
nowadays probably intrafraction motion management and day-by-day variations, that
would require the extensive use of adaptive radiotherapy approaches.
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The same cannot be said for treatment planning in intraoperative radiation therapy.
Treatment planning solutions, in this case, are not characterized by diverse strategies nor
are they implemented with the richness of options currently available in EBRT. The difficult
modelling of the anatomical district to treat through proper imaging techniques—unlike
EBRT, where pre-treatment accurate imaging solutions are available—seriously hinders
the capacity of treatment planning systems to produce reliable, predictive and robust dose
distributions. Beam shaping devices (applicators) and protective gear such as disk-shaped
shields to use downstream the electron beam interfere with imaging devices and pose
dosimetric issues due to their high-Z chemical composition [2].

On the other hand, IORT is administered in one single fraction so no inter-fraction
modifications occur, thus eliminating the need for inter-fraction treatment adaptation
and simplifying the whole process. Intrafraction motion is also radically reduced com-
pared to EBRT: another potential advantage over treatment planning systems designed for
fractionated external irradiation.

Treatment planning for kilovoltage X-ray based IORT [3] is relatively simple compared
to high-energy electron techniques. However, due to the radically different irradiation
geometry and dosimetric characteristics of X-ray IORT systems, several difficulties encoun-
tered in electron beam techniques apply to the former type of equipment as well.

The time is probably ripe for a change. Availability of accurate dose calculation
algorithms for clinical use, such as real-time Monte Carlo calculation [4–6], the prospected
coming of radically new irradiation schemes such as FLASH therapy [7], and the possibility
to use in-room imaging [8] call for an evolution of treatment planning systems in IORT.

In the following sections, after an analysis of currently available technology, an attempt
will be made to focus on the needs and foresee the possible evolution of treatment planning
systems and strategies dedicated to intraoperative radiation therapy in the near future.

2. Current Technology

Dedicated IORT systems have seen a continuous technological evolution in recent
years. However, there has been no dramatic change in the general scheme of operation of
IORT equipment, and treatment planning systems could therefore be adapted accordingly.

Nonetheless, dose calculation algorithms in current systems may lack the accuracy
that characterizes analogous devices dedicated to EBRT. Monte Carlo dose calculation
is currently implemented in treatment planning systems dedicated to electron-beam
IORT [4–6,9,10]. However, most systems still employ suboptimal, simplified algorithms
that cannot guarantee a dosimetric accuracy at the same level of systems developed for
advanced photon-beam modulated techniques. The same can be said for optimization
strategies implemented in treatment planning systems: the relatively simple and standard-
ized irradiation schemes in IORT did not push manufacturers to implement advanced
optimization algorithms. For example, while in EBRT commercially available planning
software includes multicriteria optimization and advanced autoplanning [11,12], direct
planning is still largely in use in IORT.

In-room imaging systems are not routinely used in intraoperative radiation therapy.
Several studies can be found in the literature that propose imaging tools aimed at capturing
the real-time anatomical situation and therefore adapt treatment planning online [13], but
none of them has reached a wide clinical use yet.

All these aspects (new operational schemes, calculation accuracy, optimization strate-
gies, and adaptation based on in-room imaging) may need a sudden change, for the reasons
outlined in the following paragraphs.

3. Needs and Opportunities

Matching the dosimetric accuracy of EBRT is probably the most compelling need
in modern IORT. Inaccuracy due to the irregular anatomical environment, dynamically
evolving e.g., due to fluid filling of cavities, and complex scattering phenomena demand
fine modelling, accuracy of dose calculation and fast adaptation [14]. Dose distributions
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expected to be regular and flat may present hot and cold spots due to the scatter produced
by sharp irregularities on the irradiated surface [15].

The availability of in-vivo dosimetry in IORT [16] will probably be subject to further
development, also because of regulatory requirements. For example, the adoption in the Eu-
ropean Community of the basic safety standards dictated by directive 2013/59 EURATOM
has led to national regulations requiring explicit patient-based dosimetric verification in
case of non-standard and high-dose procedures. However, the most important reason why
in-vivo dosimetry will most likely evolve at a higher level compared to current implemen-
tations is its capability of offering the basis for real-time treatment adaptation [17,18]. Of
course, this must be paralleled by the development of treatment planning capabilities, both
for fast and accurate dose calculation accuracy and for readily available optimization tools.

These challenging points are even exacerbated in case of dose escalation protocols and
novel irradiation paradigms, e.g., flash therapy [7,19,20]. Since these treatment schemes are
often used within controlled clinical studies, dosimetric accuracy is of particular importance
in view of the clinical information that is expected to emerge from such experimental
treatment regimens. Flash therapy is characterized by tissue sparing capabilities whose
mechanism of action is not fully known so far. One of the most probable reasons is oxygen
depletion occurring in normal tissues due to the extremely high dose-rate in the initial part
of treatment [21]. Whatever the mechanism, however, there is a strong need for inclusion
of radiobiological modelling in the treatment planning systems. The biological effect
of radiation is dependent on multiple and complex factors, e.g., production of chemical
reactive species, inflammatory processes and the consequent recruitment of immune cells,
and altered acidic conditions throughout the irradiated volume [21]. Mechanisms of
repair at the subcellular level—strongly dependent on the dose rate and the chemical
environment—contribute heavily on the overall effect of ionizing radiation. It has been
shown in a range of studies that genetic damage is the primary mechanism of radiation
therapy [22]. Double-strand breaks (DSBs) of the DNA are responsible for tumour cell
lethality. Therefore, there is research ongoing attempting to model cross-sections of DNA
to use in advanced models (e.g., Monte Carlo) to provide accurate predictions of radiation
damage [23,24]. In view of the complexity described above, failing to include relevant
information may cause severe errors and potentially result in patient harm. The task is far
from simple, however: interplay between factors, patient-dependent response to treatment
and concomitant factors that may be yet unnoticed require a complex approach that would
need extensive validation before being introduced in the clinical practice.

IORT can be combined to external beam photon irradiation, which might be admin-
istered at different time points. In such cases, it is important to have a tool capable of
dose accumulation to calculate and visualize the dose distribution emerging from the
combination of treatments. This is probably one of the key points in an ideal treatment
planning system dedicated to IORT. The possible combination of IORT and EBRT or even
brachytherapy [25] in new treatment paradigms—especially those that include ultrahigh
dose rates with electron beams—demands dose accumulation capabilities implemented in
clinically-available TPSs. This would entail the availability of accurate deformable registra-
tion algorithms to map the dose distribution obtained with one treatment modality onto
the new anatomical situation (sometimes radically new) found at the time of the second
treatment. A direct opportunity to use advanced deformable registration comes from treat-
ment planning systems or treatment management software developed for EBRT [26,27]. No
special development would be necessary to translate these systems to the IORT scenario.

Beam modifiers and shields have been used since the very first experiences in IORT.
Nonetheless, the prospected use of 3-D printed beam modifiers and compensators [28] of-
fers the opportunity of delivering personalized treatments that might potentially overcome
the problems due to irregularity of surfaces and uncontrolled scatter in the treated area. Of
course, such devices should be properly modelled by treatment planning software to allow
real time adaptation of the treatment. Although 3-D printed objects do not involve high-Z
materials in general, their chemical composition might require a non-trivial dosimetric
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characterization or the use of Monte Carlo dose calculation to allow a sufficient dosimetric
accuracy to be obtained.

From the technological standpoint, a most important development would be the
availability of devices for in-room real-time imaging. This should be paralleled by ap-
propriate capabilities of the treatment planning system: seamless import of 3D datasets
(e.g., CBCT [29]), calculation of the dose distribution expected from the imaged anatomical
situation and the consequent real-time adaptation of treatment plans, and possibly tools for
in-vivo treatment verification. 3D datasets obtained by tomographic modalities may not be
strictly necessary, however: several studies proposed the use of surface matching [30], X-ray
projections, EM beacons or other surrogate signals for the task of treatment adaptation.
The concept of adapting a treatment plan to the anatomical situation described in real time
immediately before delivery is sometimes referred to with the term “intraplanning” [6],
a capability that should be standard equipment of the next-generation treatment planning
systems for IORT.

X-ray based IORT shares some of the above but has special needs. The extremely steep
dose gradient typical of kilovoltage systems (e.g., 50 kV) compared to electron beam IORT
requires a very high spatial accuracy. Furthermore, accounting for the actual tissue compo-
sition and the material of the applicators normally used with such sources requires high
dosimetric accuracy. In contrast, treatment planning systems provided by vendors typically
calculate dose distributions in water, without considering any of the heterogeneities present.
Deviations from intended dose prescription have been described, up to 34% in the case of
breast irradiation and larger than 300% in bone [31,32]. Therefore, dosimetric accuracy is
probably the most important need in kilovoltage-based IORT treatment planning. Studies
have been reported in the literature that show the improvement achievable by means of
Monte Carlo calculation [4], but no advanced dose calculation algorithm has been proposed
so far in commercially available treatment planning software.

4. Prospected Development and Possible Strategies

Developments will probably come both from the industry and academic research.
However, the wide adoption of advanced treatment planning tools would only be possible if
manufacturers chose to implement the most recent developments in commercially available
systems. Transfer of currently available technology used for EBRT should be a seamless
way to offer advanced TPS capacity in IORT.

Implementation of pure Monte Carlo dose calculation algorithms would require
higher computational capacity compared to current systems. The industry should be
aware that this is a critical aspect for treatment planning and consequently be prepared to
offer adequate tools. Stand-alone workstations may be replaced by cloud-based systems,
provided that stable network connection is guaranteed where needed.

A most important strategy to raise the quality level of IORT would be the adoption of
imaging devices in the operating room, dedicated to monitoring the anatomical situation
of the region to irradiate and to acquiring images and data for real-time adaptation of
the treatment plan. This includes portable imaging devices as well as dedicated fixed
systems [4,33]. Cone beam CT (CBCT) imaging systems might be the most suitable device
for intraoperative imaging [13]. They have the potential of providing excellent tomographic
imaging from both standpoints of geometric accuracy and dosimetric information (map of
attenuation coefficients to use for treatment planning): extensive experience in EBRT shows
that translation to the IORT setting should be sufficiently smooth to allow systems equipped
with CBCT capability to be rapidly introduced into clinical practice [34]. Availability of in-
room imaging systems would be an extremely important aspect to guarantee the necessary
level of accuracy for new treatment schemes, such as the use of ultrahigh dose rates.

Interoperability between existing system is necessary, for example to allow dose
accumulation estimates in case of multiple treatments that may include EBRT. This task
necessarily involves deformable registration, for example to map the dose distribution
administered in IORT to the anatomy at the time of a subsequent external beam treatment.
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Deformable image registration (DIR) shall also be used when pre-surgical imaging is
adapted to the situation in the operating room. Using DIR is a complex task that requires
skilled operators and robust algorithms: for example, balancing the amount of deformation
with the necessary regularization of the underlying spatial transformation is a critical aspect
that needs both experience and reliable algorithms to prevent errors. Special attention
should be put by manufacturers to the implementation of DIR: solutions already available
for EBRT treatment planning systems might be inadequate for the special needs of IORT.

Finally, it is desirable that the foreseen solutions would be implemented into a fully
integrated TPS with advanced image processing tools, including reliable DIR. Integration
guarantees that the workflow in the operating room does not suffer from weak points that
might represent increased factors of risk. The safe use of radiation sources for medical
applications requires that every step of the process is clearly defined and effectively con-
trolled: dealing with multiple, non-integrated systems is feasible and sometimes necessary,
but is not an optimal strategy as far as patient safety is concerned.

5. Conclusions

New treatment regimens such as ultrahigh dose rates and combination with multiple
treatment modalities, as well as the increasing availability of dedicated in-room imaging
systems, are the factors that will probably shape the next generation of treatment planning
systems in IORT. Interoperability between systems is also a key factor that should be
guaranteed in newly developed TPSs. Features should include reliable DIR and capability
of radiobiological planning, especially if unconventional irradiation schemes are used.

The need for dosimetric accuracy should encourage the implementation of fast yet
accurate Monte Carlo dose calculation algorithms, fast enough to be routinely used in the
clinical setting.

Finally, patient safety requires that the multiple features be integrated in a comprehen-
sive system in order to facilitate control of the process.
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