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The excitation of vagal mechanoreceptors located in the stomach wall directly
contributes to satiation. Thus, a loss of gastric innervation would normally be expected
to result in abrogated satiation, hyperphagia, and unwanted weight gain. While Roux-
en-Y-gastric bypass (RYGB) inevitably results in gastric denervation, paradoxically,
bypassed subjects continue to experience satiation. Inspired by the literature in
neurology on phantom limbs, I propose a new hypothesis in which damage to the
stomach innervation during RYGB, including its vagal supply, leads to large-scale
maladaptive changes in viscerosensory nerves and connected brain circuits. As a result,
satiation may continue to arise, sometimes at exaggerated levels, even in subjects with a
denervated or truncated stomach. The same maladaptive changes may also contribute
to dysautonomia, unexplained pain, and new emotional responses to eating. I further
revisit the metabolic benefits of bariatric surgery, with an emphasis on RYGB, in the light
of this phantom satiation hypothesis.
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INTRODUCTION

Satiation in Health and Obesity
A wide range of sensations can be evoked from the gastrointestinal (GI) tract including, but
not limited to, pain and warmth (Cervero, 1994; Mulak et al., 2008). However, the sensation
that is most frequently experienced in healthy subjects is satiation (Stevenson et al., 2015).
Satiation corresponds to the sensation of epigastric fullness (without pain) which accompanies meal
termination (Benelam, 2009; Bellisle et al., 2012). In the human literature, the term of satiation also
commonly refers to the subjective feeling of satisfaction toward the end of a meal (Benelam, 2009;
Bellisle et al., 2012). Because satiation directly leads to meal termination, it is a contributing factor
to maintaining a normal feeding behavior (de Graaf et al., 2004). To avoid confusion, I will refrain
from using the term of fullness because it is inconsistently used to refer either to the feeling of gastric
distention or to the persistent lack of hunger between meals, which should correctly be referred to
as satiety (Bellisle et al., 2012; Andermann and Lowell, 2017). The mechanical deformation of the GI
tract is a primary event responsible for satiation. Interestingly, as early as 1911, studies in conscious
humans with externalized fistulas established that a feeling of gastric distension can specifically
arise from the mechanical deformation of the GI muscularis (but not of its mucosa) (Hertz, 1911;
Boring, 1915; Wolf and Wolff, 1943; Nathan, 1981). Likewise, human subjects fed by parenteral
means, for which nutrients bypass the GI tract, often complain of not feeling satiation to the same
extent as after eating and drinking (Stratton and Elia, 1999). Satiation can be assessed in human
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subjects during the ingestion of a test meal either by quantifying
food intake or by assessing self-reported appetite levels (Benelam,
2009). Admittedly, there are technical difficulties in measuring
self-reported levels of satiation in humans including considerable
variability between individuals (Bellisle et al., 2012; Gibbons
et al., 2019; Nielsen et al., 2019; Gero, 2020). While this
article is primarily concerned with human biology, I will
consider laboratory animal and human studies in parallel. In
laboratory animals, food intake can be measured post hoc as an
indirect indicator of satiation and appetite levels. For example,
the inflation of a gastric balloon in rats significantly reduces
spontaneous food intake and leads to early meal termination
(Geliebter et al., 1986; Phillips and Powley, 1998).

Satiation can be modulated by many factors including
nutritional, sociocultural, genetic, and environmental factors. It
is beyond the scope of this article to examine all the physiological
factors that influence satiation and additional information on the
topic can be found in review articles (Warwick, 1996; Benelam,
2009; Keenan et al., 2015; Hetherington et al., 2018; Kral et al.,
2018; Rogers, 2018; Gibbons et al., 2019; Thornhill et al., 2019).
However, obesity deserves a special mention. Subjects with a
weaker satiation response to fatty foods are predisposed to
excessive weight gain and obesity (Blundell et al., 2005) and
children who spontaneously eat larger meals tend to gain more
weight (Syrad et al., 2016). On the other hand, currently available
human data are inherently correlative and complicated by the
fact that obtaining accurate measurements of caloric intake and
energy expenditure remains challenging. In laboratory animals,
many studies have shown that meal size increases in response
to a high-fat diet (Farley et al., 2003; Melhorn et al., 2010; la
Fleur et al., 2014; Treesukosol and Moran, 2014). The observed
increase in meal size tends to occur soon after switching animals
to a high-fat diet when they are not yet obese, consistent
with the view that diminished satiation may precede excessive
weight gain. However, considering the wide range of nutritional
and environmental factors that can modulate satiation, the
mechanisms responsible for altered satiation in obesity are not
known with certainty. One possible mechanism may involve
altered gut-brain communication with reduced sensitivity to
postprandial cues (Kentish et al., 2012). Another non-exclusive
possibility may involve exaggerated hedonic responses to an
obesogenic diet (Berthoud, 2012; Licholai et al., 2018).

Brief Overview of the Neurobiology of
Satiation
Vagal Afferents
The vagus nerve is a mixed nerve containing both efferent
and afferent fibers (Berthoud and Neuhuber, 2019). The latter
correspond to the vagal neurons carrying sensory information
from the GI tract to the brainstem. Vagal afferents responding
to stimuli arising from the GI tract are specifically connected
to the medial portion of the nucleus of the solitary tract
(Saper, 2002). The stomach itself is innervated by two gastric
branches of the subdiaphragmatic vagus nerve that enter the
gastric wall at the level of the lower esophageal sphincter before
sending smaller offshoots throughout most of the muscularis

and mucosa (Wang and Powley, 2007). Within the periphery,
afferent endings responding to mechanical events are highly
enriched in the muscularis at the levels of the stomach and
upper intestines (Ozaki et al., 1999; Fox et al., 2000; Williams
et al., 2016). At least two types of specialized vagal terminals
known as intramuscular arrays and intraganglionic laminar
endings are involved in detecting mechanical events in the
stomach (Berthoud et al., 1997; Fox et al., 2000; Powley
et al., 2016). In addition to the stomach wall, these specialized
vagal mechanoreceptors are present at lower densities in the
esophagus and duodenum (Wang and Powley, 2000; Wang
et al., 2012). Electrophysiological recordings have established
that vagal mechanoreceptors rapidly and linearly respond to
the application of varied mechanical stimuli to the stomach
wall including stretch and tension (Peles et al., 2003; Kentish
et al., 2014). Gastric distension suppresses feeding in a vagally-
dependent manner in rats (Phillips and Powley, 1998) and,
furthermore, mutant mice lacking vagal mechanoreceptors eat
larger meals (Fox et al., 2001; Fox, 2006). Conversely, the
selective excitation of vagal mechanoreceptors supplying the
muscularis elicits meal termination in genetically engineered
mice (Bai et al., 2019). As a remark, the same study found that
selective mucosal afferents stimulation does not modify feeding.
Hence, there is ample evidence that vagal mechanoreceptors
supplying the stomach wall are both required and sufficient for
eliciting satiation. At the same time, the sensory integration
of postprandial cues at the level of vagal afferents is more
complex than often appreciated. In particular, mechanoreceptors
activity is modulated by many chemical signals including, most
notably, the gut peptide cholecystokinin (CCK) (Gibbs and
Smith, 1977; Schwartz et al., 1995; Williams et al., 2016). Thus,
the excitability of mechanoreceptors is modulated by numerous
factors and researchers are just beginning to understand how
GI signals are integrated at the level of vagal endings (Egerod
et al., 2019). Finally, communication between the stomach and
the brain involves more than just vagal afferents, but also
a complex network of enteric and spinal neurons (Furness,
2006; Udit and Gautron, 2013; Sharkey et al., 2018; Spencer
et al., 2018). Although subsets of spinal afferents respond to
a wide range of noxious and innocuous stimuli in the GI
tract (Grundy, 1988; Spencer et al., 2016), their contribution
to the postprandial regulation of feeding is not well-known
(Berthoud and Neuhuber, 2019).

Central Viscerosensory Circuits
It is without saying that satiation requires more than the
excitation of vagal mechanoreceptors. Vagal afferents are
connected, in a multisynaptic manner, to brain networks
encompassing integrative cortices and subcortical areas (Min
et al., 2011; Hays et al., 2013; Andermann and Lowell, 2017;
Cao et al., 2017; Ly et al., 2017). Based on both animal studies
and human brain imaging, the regions involved in relaying
information of vagal origin to the cortex include, beyond
the nucleus of solitary tract, the parabrachial nucleus, and
ventrobasal thalamus (Saper, 2000, 2002; Craig, 2002). Without
entering into details, the aforementioned brain relays have
been linked to the regulation of satiation and meal size in
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laboratory animals (Dossat et al., 2013; Alhadeff et al., 2014;
Cavanaugh et al., 2015; Campos et al., 2016; Zafra et al., 2017).
As early as in the 1930’s, studies showed that the electrical
stimulation of the vagus nerve altered cortical electrograms
(Bailey and Bremer, 1938; O’Brien et al., 1971; Ito and Craig,
2003). Among integrative cortices involved in the processing of
gastric distension, vagal information is the insular cortex (Saper,
2002). For instance, based on electrical stimulation experiments
in conscious subjects, the stimulation of the human insular
cortex causes sensations that are secondary to changes in the
GI motility (Pool, 1954). Likewise, many recent brain-imaging
studies have described altered activity in the insular cortex in
association with the feeling of epigastric distension in humans
(Tataranni et al., 1999; Ladabaum et al., 2007; Wang et al.,
2008). Importantly, neurons of the insular cortex responding to
different visceral territories (stomach, heart, etc.) and sensory
modalities (stretch, taste, etc.) are topographically organized
(Saper, 2002). There are also insular neurons that can respond

to multiple sensory modalities of viscerosensory origin (Saper,
2002). In turn, insular neurons modulate GI functions (Levinthal
and Strick, 2020). In summary, one can rightfully conceive the
stomach wall as a sensory organ connected to a viscerosensitive
neural network specialized in responding to gastric volumetric
changes (Figure 1). A detailed knowledge of these brain circuits
is not needed to understand the hypothesis described later,
and more information can be found elsewhere (Saper, 2002;
Mulak et al., 2008; de Araujo et al., 2012; Frank et al., 2016;
Andermann and Lowell, 2017).

SATIATION WITHOUT A VAGUS NERVE

Experimental and Clinical Vagotomies
Vagotomy is a procedure that consists in denervating vagally-
innervated organs to varying extents (Phillips and Powley, 1998).
A deafferentation is a procedure consisting of interrupting or

FIGURE 1 | Schematic diagram depicting the phantom satiation hypothesis. According to the observations presented in this article, the metabolic benefits of
Roux-en-Y gastric bypass (RYGB) are mediated, at least in part, by a combination of aberrant changes in a complex viscerosensory neural circuit. A key event
following RYGB surgery is an unintentional gastric denervation (green box). Available data indicate that RYGB is associated with a gastric denervation (green dotted
lines indicate axotomized axons of vagal or spinal origins). The duodenum itself can be conceived as a functionally denervated, in the sense that duodenal afferents
cease to be directly stimulated by nutrients and mechanical stimuli. According to our hypothesis, partial vagotomy leads to widespread maladaptive changes in
peripheral nerves (red box and arrows) and in central viscerosensory circuits (brown box and arrows). In particular, in animal models of bariatric surgery, sympathetic,
parasympathetic, and nociceptive nerves behave as if they were hyperresponsive to a meal (red arrows). At the central level, altered connectivity in many cortical and
subcortical areas has been reported after RYGB using brain imaging technologies in human subjects. In addition, the entanglement of viscerosensory modalities
(dark blue arrows) may further participate to abnormal emotional and sensory responses to eating. Finally, the remapping of insular cortices involved in
gastrointestinal territories representation is likely to occur (purple box and arrows), thereby contributing to viscerosensory anomalies and referred sensations. This
neurobiological model, directly inspired by the literature on phantom limbs, predicts that subjects with RYGB may experience exaggerated satiation. Ultimately,
reduced meal size and perturbed eating patterns (blue box), among other postprandial anomalies, may contribute to weight loss. Hence, the “phantom satiation”
hypothesis reinterprets bariatric surgery as a type of injury—that is to say a procedure that inflicts irreversible anatomical and functional damage—even if an injury
with evident long-term health benefits. Abbreviations: cb, celiac branch; deaf., deafferentation; DMX, dorsal motor nucleus of the vagus; gb, gastric branch; hdb,
hepato-duodenal branch. NG, nodose ganglion; IML, intermediolateral column; X, vagus nerve.
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destroying the afferent fibers contained in a specific nerve or
organ, while minimally interfering with motor fibers (Walls et al.,
1995). The regrowth of vagal terminals after vagotomy is possible
in rats, but takes weeks and is incomplete (Phillips and Powley,
1998; Powley et al., 2005a). From their inability to feel completely
satiated, one would expect vagotomized animals to ingest larger
meals and overeat. In laboratory animals, vagotomies can result
in increased meal size, hyperphagia, and loss of responsiveness
to pharmacological CCK (Smith et al., 1981; Walls et al., 1995;
Phillips and Powley, 1998; Schwartz et al., 1999; Sclafani et al.,
2003; Powley et al., 2005a). At the same time, vagotomy-induced
overeating is often transient, presumably due to compensatory
changes at the central level (Walls et al., 1995; Chavez et al., 1997;
Phillips and Powley, 1998; Zafra et al., 2003; Reidelberger et al.,
2014). Instead, in normal-weight animals, long-term vagotomy
and deafferentation have been reported to result in animals eating
smaller meals, with some degree of anorexia and weight loss
(Mordes et al., 1979; Sclafani and Kramer, 1985; Kraly et al., 1986;
Erecius et al., 1996; Leonhardt et al., 2004; Powley et al., 2005a;
McDougle et al., 2020). Interestingly, eating smaller meals post-
vagotomy is often compensated by more frequent meals, further
suggesting significant brain adaptations (Powley et al., 2005a).
Likewise, in varied models of rodent obesity, vagotomy, and
deafferentation have repeatedly been shown to reduce feeding
and body weight gain (Cox and Powley, 1981; Ferrari et al., 2005;
Powley et al., 2005a; Stearns et al., 2012; Dezfuli et al., 2018).

It must be stressed that truncal and gastric vagotomies used
to be safely performed in human subjects suffering from ulcers,
with or without obesity (Gortz et al., 1990; Wills and Grusendorf,
1993). In vagotomized subjects, dumping syndrome, malaise,
anemia, and digestive issues commonly occur. However, the latter
side effects were usually treatable and not directly correlated with
weight loss in many patients (Faxen et al., 1979; Irving et al.,
1985; Wills and Grusendorf, 1993). Instead, vagotomy has been
reported to induce weight-loss with reduced food intake and
modified food preference in obese subjects (Kral, 1978; Gortz
et al., 1990). In fact, vagotomized patients often self-reported a
lack of hunger (Sheiner et al., 1980; Kral et al., 2009; Plamboeck
et al., 2013). The time needed for severed axons to recolonize
the human stomach and become functional is unknown. Because
peptic ulcers rarely reoccur after vagotomy (Jordan and Thornby,
1987; Popiela et al., 1993), it is unlikely that regrown vagal
axons become functional again. Of note, humans treated with
truncal vagotomy often received a pyloroplasty to prevent gastric
stasis. Pyloroplasty itself exerts profound effects on appetite and
food intake that are closely resembling those of bariatric surgery
(Fraser et al., 1983; Chang et al., 2001; Dezfuli et al., 2018; Harada
et al., 2018). Nonetheless, subsets of patients with selective gastric
vagotomy without pyloroplasty also showed long-term weight
loss with some degree of dysphagia, early satiety and nausea
(Jordan and Thornby, 1987).

Unintentional Surgical Vagotomy
Certain types of obesity surgeries including, most notably, Roux-
en-Y gastric bypass (RYGB) result in a partial and unintentional
vagotomy. RYGB is a surgery that consists in dividing the
stomach into a small pouch and reconnecting it to the jejunum

(Stefater et al., 2012). In bypassed subjects, food travels from
the pouch to the lower intestines without traversing the stomach
remnant and duodenum (called Roux limb) (Figure 1). Several
investigators suggested that RYGB must be accompanied by
gastric denervation (Powley et al., 2005b; Berthoud, 2008;
Stylopoulos and Aguirre, 2009). Our own experimental data
have confirmed that bypassed mice show vagal denervation
at the levels of the gastric pouch, the bypassed stomach, and
sites of clipping and anastomosis (Gautron et al., 2013). In
contrast, vagal innervation remained largely intact in animals
that were unoperated on or sham-operated on. In agreement
with our observations, RYGB surgery in rats also causes rapid
neuronal damage in vagal afferents (Minaya et al., 2019). It is
also likely that the construction of a gastric pouch inevitably
results in some degree of spinal deafferentation. It is striking that
many of the aforementioned effects of RYGB are recapitulated
in vagotomized subjects (Brolin et al., 1994; Laurenius et al.,
2012; Stano et al., 2017). Moreover, bypassed individuals reach
satiation more quickly than expected and independently of side
effects such as dumping syndrome and related symptoms such
as nausea, cramps, and dizziness (Halmi et al., 1981; Nguyen
et al., 2016). Hence, RYGB has a direct impact on the innervation
of the stomach, which in turn may actively play a role in the
metabolic actions and side effects of gastric bypass. Of note, since
food travels directly into the jejunum of bypassed individuals,
this new configuration can be conceived as a functional duodenal
vagotomy, in the sense that duodenal afferents cease to be
directly stimulated by nutrients and mechanical stimuli during
the postprandial phase (Figure 1). Thus, RYGB is likely to
result in a partial loss of sensory input from the upper GI tract
including stomach and duodenum. Although counterintuitive,
when we consider the literature on intentional and unintentional
vagotomies as a whole, it appears that vagotomized animals and
human subjects eat less than they did prior to surgery.

Paradox of Satiation With Vagotomy
It has often been argued, with good reasons, that vagotomies,
especially when vagal (motor) efferents are involved, are difficult
to interpret because of secondary dysmotility, malaise, and
dyspepsia (Sclafani et al., 1981; McDougle et al., 2020). At
the same time, the latter factors could not entirely account
for reduced food intake and weight loss (Mordes et al., 1979;
Sclafani and Kramer, 1985). It is also true that vagotomies
are not entirely specific or complete (Browning et al., 2013a)
and that experiments consisting of administering exogenous
gut peptides, including CCK, lack in physiological relevance
(French et al., 1993; Baldwin et al., 1998). Hence, there
are numerous unresolved difficulties and discrepancies in the
vagotomy literature. Technical and interpretation difficulties
aside, one would expect vagotomized individuals to be unable
to fully experience satiation and eat more (McDougle et al.,
2020). On top of that, the rebound hyperphagia in individuals
losing weight when dieting is not seen in bypassed and
vagotomized subjects or animals (Berthoud, 2008; Hao et al.,
2016). Importantly, bypassed animals are able to overeat upon
a metabolic restriction (Stefater et al., 2010; Lutz and Bueter,
2014). This indicates that RYGB does not prevent animals from
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experiencing hunger but rather produces a state of exacerbated
satiation. Thus, subjects with a gastric vagotomy or a truncated
stomach likely continue to experience postprandial satiation,
if not at exaggerated levels. At first glance, satiation without
a gastric vagus is a phenomenon that challenges our current
understanding of gut-brain communication. RYGB is associated
with profound anatomical and physiological changes, the number
of which could contribute to perturbate normal eating patterns
(Hankir et al., 2018; Sandoval, 2019). For instance, it is possible
that RYGB-associated elevated gut peptides secretion contributes
to enhanced satiation, among other metabolic improvements.
Nonetheless, experts in the field have not reached a consensus on
what exactly contributes to altering eating behavior after bariatric
surgery (Hao et al., 2016; Sandoval, 2019). For example, RYGB
is effective in numerous mouse models lacking key hormones
and gut peptides (Mokadem et al., 2014; Morrison et al., 2016;
Hao et al., 2018; Boland et al., 2019). Below, I will propose a
novel and complementary explanation based on adaptations in
viscerosensory circuits.

THE PHANTOM SATIATION HYPOTHESIS

Overview of Phantom Limbs Phenomena
Is it always the case that the denervation or removal of a
body part results in a loss of sensation from this body part?
The field of neurology teaches us the contrary. Indeed, many
amputees continue to feel the presence of their lost limb, a
phenomenon described as phantom limb (Ramachandran et al.,
2009; Collins et al., 2018; Makin and Flor, 2020). Even though
phantom pain syndromes have been first described 500 years
ago (Keil, 1990), the treatment of phantom limb syndromes has
remained challenging up to this day (Alviar et al., 2016). Briefly,
the sensations that can be evoked from a phantom limb can be
either non-painful (e.g., tingling), or excruciatingly painful, and
spontaneous or consecutive to the stimulation of other body parts
(referred sensations) (Aglioti et al., 1994; Ramachandran et al.,
2009; Collins et al., 2018). In other words, phantom sensations
are sensations felt from a body part that is either missing and/or
denervated. The prevalence of phantom pain is estimated at
50–80% of all amputees (Dijkstra et al., 2002). To the best of our
knowledge, there is no definitive consensus on how to explain
phantom sensations (Ortiz-Catalan, 2018). Among commonly
cited reasons for phantom sensations is that damaged sensory
fibers in the stump (or neuroma) remain chronically irritated.
Their erratic firing may evoke sensations and pain interpreted
as originating from the missing body part (Collins et al., 2018).
Another explanation involves localized cortical remapping (Flor
et al., 2013). The idea behind cortical remapping is that the
somatosensory cortical area corresponding to the amputated
body part is “invaded” by adjacent cortical areas representing
other body parts. Hence, stimuli applied to other body parts
may evoke sensations from what is perceived as the missing
limb (Hunter et al., 2003). In parallel, maladaptive remodeling
of the cortices would contribute to evoking unsolicited pain
along with a distorted body representation (Remple et al.,
2004). Other researchers have also proposed that large-scale

functional changes in brain connectivity beyond the cortex cause
phantom sensations (Makin et al., 2013). Lastly, according to
a recent theory, amputation renders the neural circuits not
normally connected to the missing body part prone to stochastic
entanglement with one another (Ortiz-Catalan, 2018). Broadly
speaking, the term of entanglement corresponds to the linking
of brain networks that do not normally fire together, thereby
resulting in unexplained sensations. A combination of all of the
above hypotheses, rather than a single mechanism, is likely to
account for the emergence of the variety of phantom sensations
encountered in amputees.

Phantom Internal Organs
Understandingly, the literature on phantom sensations focused
on limbs, but phantom sensations from internal organs have also
been occasionally reported (Roldan and Lesnick, 2014). These
organs include the eyes (Andreotti et al., 2014), rectum (Ovesen
et al., 1991), kidney (Roldan and Lesnick, 2014), pelvic organs
(Dorpat, 1971), and breast (Di Noto et al., 2013; Bjorkman et al.,
2017). Of note, Dorpat (1971) already discussed the case of what
is called “phantom stomach sensations” but without mentioning
satiation itself. In particular, this author mentioned patients
complaining of persisting ulcers symptoms after vagotomy or
gastrectomy, in spite of their ulcers being healed or removed.
Dorpat added that human subjects typically do not experience
the feeling of “having an internal organ,” but rather of having
sensations normally associated with the functioning of the organ
in question. For example, subjects without a rectum sometimes
experience the feeling of defecation (Dorpat, 1971; Ovesen et al.,
1991). Inspired by the above literature, I would like to propose
that satiation continue to arise after gastrectomy or gastric
vagotomy due to phantom sensations, which I called the phantom
satiation hypothesis. Before explaining it, let us note that our
hypothesis is speculative and not to be confused with phantom
fullness that has been used to refer to fullness not correlated
with caloric content in healthy individuals (Camps et al., 2016).
According to the hypothesis presented here, phantom sensations
of satiation are evoked when food is traversing GI segments above
and below the denervated or truncated stomach, including the
esophagus and lower intestines (Figure 1).

PREDICTIONS AND CONSISTENCY
WITH THE LITERATURE

Meal Size Reduction
If the hypothesis is correct, phantom satiation should durably
influence food intake regulation among bypassed subjects.
Accordingly, bypassed individuals report altered experience of
hunger and fullness in a qualitative manner (Halmi et al.,
1981; Miras and le Roux, 2013). Moreover, bypassed human
subjects eat smaller meals for at least two years post-surgery
(Laurenius et al., 2012). Overall, reduction in caloric intake
over a long period is an important determinant of weight loss
after RYGB in humans (Kenler et al., 1990; Odstrcil et al.,
2010; Miller et al., 2014). Similarly, meal size reduction was
reported in bypassed laboratory animals (Zheng et al., 2009;
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Mathes et al., 2015; Washington et al., 2016). Several authors
postulated that restricting the stomach volume is sufficient to
explain a reduced food intake and meal size (Warde-Kamar et al.,
2004; Langer et al., 2006). However, others have well explained
that gastric capacity is not correlated with reduced feeding
after bariatric surgery (Stefater et al., 2012; Sandoval, 2019;
Evers et al., 2020). As discussed earlier, gastric vagotomy also
causes a reduction in feeding without restricting gastric capacity.
Therefore, early satiation in bypassed subjects is highly unlikely
to occur because of gastric restriction per se, but rather due to
changes in the neural circuits normally involved in detecting
volumetric changes of the stomach.

Correlation With Vagal Trauma and
Irreversibility
While surgeons pay attention not to damage nerves during
bariatric surgery, axons near sites of surgical incision will
inevitably be severed. Another prediction is that the degree to
which bariatric surgery alters feeding behavior and body weight
should be correlated with the trauma to the vagus nerve across
different types of bariatric surgeries. For instance, different types
of obesity surgeries differently modify the stomach anatomy
(Stefater et al., 2012). The two types of surgeries that affect the
anatomy of the stomach (and therefore its innervation) the most
are RYGB and vertical sleeve gastrectomy (VSG) (Stefater et al.,
2010; Kizy et al., 2017). The degree of vagal damage after VSG
is poorly defined, but is expected to be extensive along the sites
of gastric resection. Interestingly, RYGB and VSG reduce feeding
to a comparable extent in humans and rats (Chambers et al.,
2011; Stemmer et al., 2013; Yousseif et al., 2014). However, RYGB
and VSG exert much more marked effects on feeding behavior
than does gastric banding (Korner et al., 2006; Scholtz et al.,
2014). One big difference is that gastric banding theoretically does
not damage the stomach anatomy or its innervation. Likewise,
surgeries associated with incision of gastric tissue produce
greater weight loss and reduction of feeding than surgeries only
consisting of reducing stomach capacity in the rat (Evers et al.,
2020). Following the same idea, because the stomach is more
richly innervated than lower GI segments, surgical operation of
the lower intestines should affect feeding to a lesser extent. For
instance, duodenal-jejunal exclusion, a procedure that leaves the
stomach intact, is significantly less effective at reducing feeding or
body weight in animals and humans (Geloneze et al., 2009; Kindel
et al., 2011; Alvarez et al., 2020). In further support of our model,
adding gastric vagotomy to gastrectomy does not produce further
weight-loss in laboratory rodents (Hankir et al., 2016; Dezfuli
et al., 2018). This is logical considering that gastric vagotomy
already occurred in bypassed subjects.

Irreversibility
Without proper treatment, phantom pain can persist for years in
amputees. This may be because the neural changes brought about
by an amputation are hardly reversible. RYGB is a complicated
procedure that cannot easily be reversed in a laboratory animal.
However, reversal of RYGB is performed in patients with severe
complications such intractable vomiting, malnutrition or chronic

pain (Moon et al., 2015; Shah and Gislason, 2020). As one would
expect, reversal of RYGB is often followed by some degree of
weight regain consecutive to the correction of the debilitating
symptoms (Moon et al., 2015; Shah and Gislason, 2020). When
weight regain is observed, most patients do not regain their pre-
RYGB weight (Shoar et al., 2016) and, furthermore, a subset
of patients never regains any weight. This agrees with the view
that the metabolic benefits of RYGB persist to some extent after
reversal. Hence, the loss of gastric innervation is a factor that
correlate well with the known course of clinical outcomes after
bariatric surgery.

Indiscriminate Weight-Loss in the
Non-obese
Our hypothesis implies that a trauma to the upper GI tract
will invariably cause weight-loss even in non-obese individuals.
Because bariatric surgery is overwhelmingly prescribed for
clinically obese subjects, the literature on the impact of bariatric
surgery in non-obese is limited. One study in non-obese rats
demonstrated significant weight loss after RYGB and VSG (Xu
et al., 2015). In contrast, a recent study showed that RYGB
did not cause sustained weight loss in the non-obese mouse
(Mumphrey et al., 2019). However, RYGB was performed in
adolescent mice while they were still growing at a rapid pace. In
humans, there is increasing interested in using bariatric surgery
to treat diabetic patients without obesity. Several clinical studies
have clearly indicated that weight-loss follows RYGB and VSG
in non-obese or mildly obese subjects (Cohen et al., 2012; Noun
et al., 2016; Ferraz et al., 2019). It is also noteworthy that
gastrectomy done in non-obese subjects with gastric cancer also
results in sustained weight loss, loss of appetite and abdominal
discomfort (Adachi et al., 1999; Laffitte et al., 2015). Notably,
surgical reconstruction after various gastrectomies often include
Roux-en-Y like procedures, which means that their effects on
rate of intestinal nutrient entry and gut hormone secretion will
be similar. Hence, gastrectomy and various gastric surgeries
indiscriminately causes sustained weight loss.

Weight Loss and Brain Lesions
In the proposed model, phantom satiation arises following GI
denervation and ensuing maladaptive brain changes. One would
expect lesions in brain regions involved in processing vagal
sensory information including, but not limited to the insula,
to be associated with satiation and weight loss. While there is
little literature on satiation and brain lesions, neurologists have
reported that strokes often cause important weight loss in subsets
of patients (Scherbakov et al., 2019). The impact of stroke on body
weight differ between patients presumably due to differences in
the brain regions affected by the stroke. Taste deficits sometimes
manifest alongside post-stroke weight loss (Scherbakov et al.,
2011; Dutta et al., 2013), indicating that lesions in viscerosensory
brain sites cause weight loss. In one particular clinical case, a
patient with a lesion in the left posterior insular cortex, a region
that receives general viscerosensory input, showed involuntary
weight loss with sustained appetite loss over one year (Mak
et al., 2005). We do not dispose of enough evidence to say
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that exaggerated satiation is responsible for weight loss after
brain lesion in humans. Nonetheless, it was repeatedly observed
that experimental lesions of viscerosensory relays in non-obese
rats including, most notably, the parabrachial and dorsovagal
complexes can result in sustained weight loss with depressed
ingestive behaviors (Hill and Almli, 1983; Hyde and Miselis,
1983; Kott et al., 1984; Kenney et al., 1989; Dayawansa et al.,
2011). In agreement with the hypothesis presented in this article,
the aforementioned observations strongly support the idea that
derangements in the integrity of key brain sites involved in GI
viscerosensory processing can cause weight loss with reduced
food intake. In fact, deep brain stimulation for the treatment of
human obesity is an active area of research (Nangunoori et al.,
2016; Formolo et al., 2019), but is almost entirely focused on
brain regions involved in energy balance and reward. Based on
the hypothesis presented here, modulating brain regions directly
involved in satiation, including the insula and parabrachial
complex, may also be considered as an appropriate strategy
against obesity.

POTENTIAL MECHANISMS LEADING TO
PHANTOM SATIATION

Nerves Injury and Adaptations
Gastric Neuroma
The mechanisms underlying phantom satiation are unknown.
Nonetheless, I could invoke the same combination of peripheral
and central adaptations described in the case of phantom
limbs (Figure 1). The neuroma theory postulates that the
disorganized growth of damaged nerve terminals at the site of
injury can cause phantom sensations including, but not limited
to, unexplained pain (Buch et al., 2020). Our group previously
reported the presence of dystrophic and damaged vagal terminals
in the stomach of the bypassed mouse (Gautron et al., 2013).
Dystrophic terminals may correspond to degenerating and/or
regrowing axons. Of note, a generalized and persistent decrease
in excitability occurs after axotomy of vagal sensory neurons
(Scherbakov et al., 2019). Hence, gastric vagal fibers severed
during surgery probably become hyporesponsive. As explained
before, the vagal supply to the lower GI tract remains largely
intact after RYGB (Gautron et al., 2013). In contrast to gastric
afferents, the excitability of intact vagal fibers located in the
coeliac branches supplying the lower intestines may be enhanced
(Figure 1). Specifically, several experimental studies showed
that neuronal activation in the nucleus of the solitary tract is
greater in RYGB and VSG animals after eating a test meal
(Chambers et al., 2012; Mumphrey et al., 2016). Intrajejunal
nutrients cause greater satiating effects in bypassed rats (Bachler
et al., 2018). The latter findings indicate that vagal afferents that
supply the lower intestines behave as if they were hyperresponsive
to a meal. What causes the enhanced activity of intestinal
vagal fibers is uncertain. Many factors come to mind including
rapid gastric emptying, undigested food, excessive gut peptide
secretion, altered microbiome, or perturbed vago-vagal reflexes
(Sandoval, 2019).

The stomach is also densely innervated by spinal sensory
axons traveling through the splanchnic plexus (Spencer et al.,
2016). As mentioned before, RYGB surgery is likely to cause
spinal endings located in the stomach to be interrupted and
damaged. Spinal afferents are critical in visceral nociception
(Saper, 2000; Spencer et al., 2016, 2018), but whether irritated
spinal endings contribute to a gastric neuroma after bariatric
surgery remains to be determined. The hyperexcitability of spinal
nociceptors around sites of surgical anastomosis may be one
logical explanation of phantom pain, even though no direct
evidence is currently available to support this view. Moreover,
it is possible that a loss of gastric vagal signaling is indirectly
changing the activity of spinal afferent pathways. For example,
the electrical stimulation of the vagus nerve produces analgesia
by recruiting the antinociceptive descending pathway (Randich
and Gebhart, 1992; Janig et al., 2000). Conversely, vagotomy has
been associated with hyperalgesia in association with widespread
changes in pro-nociceptive pathways stimuli (Ammons et al.,
1983; Khasar et al., 1998; Furuta et al., 2009, 2012). Unexplained
pain is a key feature of phantom phenomena. In the context of
obesity surgery, painful complications with a known etiology can
arise (e.g., hernia, adhesion, dumping syndrome) (Iannelli et al.,
2006). However, bypassed patients can experience unexplained
pain not related to the complications of surgery (Groven et al.,
2010; Alsulaimy et al., 2017). For instance, bypassed patients
have anecdotally reported feeling general aching all over the
body or sharp pain in the stomach area (Groven et al., 2010).
At least two studies focusing entirely on the prevalence of post-
bariatric chronic abdominal pain revealed that approximately 7%
of bypassed patients report pain of unknown etiology (Pierik
et al., 2017; Mala and Hogestol, 2018). If unexplained pain
is reflective of phantom pain, then the incidence of phantom
pain is admittedly much lower after RYGB than after limb
amputation. On the other hand, unexplained pain may have
been underreported in the literature. According to one study,
mild or intermittent pain not requiring a medical follow-up may
be present in 80–95% of RYGB patients (Abdeen and le Roux,
2016). Interestingly, persistent abdominal pain occurs in subsets
of RYGB patients after reversal to a normal anatomy (Shoar
et al., 2016). At the same time, internal organs are less heavily
innervated by spinal afferents than limbs and one would expect
phantom pain from the upper GI tract to be less severe than
in the case of phantom pain from a limb. Finally, it must be
noted that the literature on visceral pain after bariatric surgery
is still very limited.

Dysautonomia
Vagal and spinal afferents are connected in a multisynaptic
manner to a complex circuit that exerts a descending excitatory
or inhibitory influence on varied autonomic reflexes and sensory
pathways (Saper, 2000; Craig, 2002; Travagli et al., 2003;
Berthoud et al., 2006). For instance, altered vagal afferents
activity may directly modulate vagal efferents pathways in a
reflex manner (Travagli et al., 2003). One study also showed
that RYGB in the rat leads to both changes in morphology
and membrane excitability of vagal (motor) efferents consistent
with hyperexcitability (Browning et al., 2013b). Both spinal and

Frontiers in Neuroscience | www.frontiersin.org 7 February 2021 | Volume 15 | Article 626085

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-626085 January 25, 2021 Time: 16:17 # 8

Gautron Bypass Surgery-Induced Neural Plasticity

vagal afferents also play an important role in modulating the
sympathetic outflow to cardiovascular and metabolic viscera
(Craig, 2002; Madden et al., 2017; Sabbatini et al., 2017;
Rajendran et al., 2019). In particular, the vagus nerve exerts
a tonic inhibition on sympathetically-driven thermogenesis in
obese rat (Madden and Morrison, 2016). Similarly, vagal afferent
signaling is involved in modulating the activity of splanchnic
nerves, several of which provide sympathetic innervation to the
GI tract, adrenals, and spleen (Sabbatini et al., 2017; Komegae
et al., 2018). In other words, gastric vagotomy is likely to
cause dysautonomia, a condition in which the parasympathetic
and sympathetic outflows to viscera are perturbed (Figure 1).
Interestingly, one study recently demonstrated that RYGB
significantly elevated the basal activity of sympathetic fibers
located in the mouse splanchnic nerve (Ye et al., 2020). The
same study also found that splanchnic denervation prevented
weight-loss and increase in energy expenditure that normally
accompanies RYGB in laboratory animals (Ye et al., 2020). In
summary, emerging evidence suggests widespread anatomical
and functional changes in sensory and autonomic pathways
following RYGB (Figure 1). It must be stressed that cortical
and sub-cortical brain regions are linked with autonomic
preganglionic and viscerosensory areas by bidirectional neural
pathways (Saper et al., 1976; Goto and Swanson, 2004).
There is also functional evidence that higher-order brain
regions exert top-down excitatory influence on presynaptic
vagal terminals (Browning, 2019). Therefore, the aforementioned
changes in central circuits and peripheral nerves should be
seen as intertwined rather than independent and parallel events
(Figure 1). Overall, researchers are just beginning to understand
how peripheral neurons are perturbed after bariatric surgery.

Brain Plasticity and Maladaptive
Changes
Cortical Remapping
Cortical plasticity has been studied in the context of injuries to
somatosensory rather than viscerosensory nerves (Mogilner et al.,
1993; Nordmark and Johansson, 2020). Nonetheless, structural
and functional changes are likely to occur after bariatric surgery
in viscerosensory cortical areas involved in evoking satiation. In
particular, after a partial loss of sensory input from the upper GI
tract, the area normally representing the denervated region may
be taken over by adjacent areas representing nearby innervated
GI segments, a phenomenon known as cortical remapping
(Figure 1). Whether cortical remapping occurs after bariatric
surgery remains unknown. Nerve injury can lead to altered
synaptic biology in the mouse insular cortex (Qiu et al., 2014).
Surgeries such as mastectomy and hysterectomy are suspected
to trigger cortical remapping (Di Noto et al., 2013). Thus, one
would expect to see structural and functional changes in the
insular cortex and connected integrative cortices after invasive
bariatric surgeries including, most notably, RYGB. Nonetheless,
studies on cortical remapping in relation to internal organs,
in general, and the GI tract, in particular, are very few. If
cortical remapping occurs after RYGB, it could explain what I
would like to call referred satiation. When food is traversing

their esophagus and lower intestines in bypassed subjects with
truncated and denervated stomach, they may experience a feeling
of satiation reminiscent of that normally evoked by gastric
distension. This is because the postprandial stimulation of the
cortical areas representing the esophagus and lower intestines
is interpreted as originating from the stomach after cortical
remapping (Figure 1). Perhaps, cortical remapping could explain
the exaggerated postprandial neuronal activation and satiation
observed in response to jejunum nutrients infusion (Chambers
et al., 2012; Mumphrey et al., 2016; Bachler et al., 2018).

Brain Dysconnectivity and Neural Entanglement
The altered functional connectivity of long-range subcortical
areas involved in viscerosensitivity and nociception may occur
(Figure 1). In particular, RYGB has been repeatedly associated
with altered functional connectivity in response to food image
or food ingestion (Frank et al., 2014; Hunt et al., 2016; Olivo
et al., 2017; Baboumian et al., 2019). In the case of food
image, brain activity was comparable in normal-weight and
RYGB subjects, thus making it difficult to distinguish the
contribution of body weight from that of the bypass surgery
(Frank et al., 2014). However, in response to food ingestion,
brain activity in RYGB patients was significantly different from
both normal-weight and obese individuals and weight loss
by diet (Hunt et al., 2016; Baboumian et al., 2019). Brain
areas differently activated after RYGB encompassed structures
distributed across the neuraxis including the hypothalamus,
brainstem, hippocampus, and cortex. This suggests that the
surgery itself is responsible for the reported changes in brain
functions. Many neuroimaging findings in RYGB subjects were
often associated with self-reported exaggerated fullness and lower
levels of appetite with altered food preferences (Ochner et al.,
2011; Hunt et al., 2016; Zoon et al., 2018; Baboumian et al.,
2019). Similar brain imaging observations made after VSG (Cerit
et al., 2019). Furthermore, widespread structural and functional
changes across the brain also take place after RYGB (Rullmann
et al., 2018) and VSG (Michaud et al., 2020). Without proving
our hypothesis, the above observations are compatible with the
idea that large-scale neuroplasticity and maladaptive changes,
in both the brain and peripheral nerves, may account for the
persistence of satiation and other food-related sensations and
emotional responses (Figure 1).

If one applies the stochastic entanglement theory to
viscerosensory brain networks (Ortiz-Catalan, 2018), cortical
and subcortical regions normally involved in evoking satiation
may transition to a state of instability after loss of sensory
inputs. When in such a state, neurons belonging to separate
viscerosensory modalities may eventually become entangled and
fire together. The direct result of such a state of viscerosensory
entanglement may be postprandial sensations and emotional
responses that differ from before surgery. Accordingly, bariatric
patients often report new sensations and emotional responses
to eating (Hillersdal et al., 2017). Clinicians are also becoming
increasingly aware of the risk of new food-related behaviors after
bariatric surgery, including anorectic-like behaviors (Opozda
et al., 2016; Watson et al., 2020). Because of its stochastic nature
(Ortiz-Catalan, 2018), entanglement should be associated with a
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variability of outcomes after RYGB, both in terms of metabolic
benefits (e.g., maximal weigh loss) and side effects (e.g., severity
of nausea). In spite of receiving the same surgery, heterogeneity
of outcomes among RYGB patients is a well-documented
phenomenon (King et al., 2020). This inherent variability in
outcomes has complicated the task of determining which exact
physiological parameters drive weight-loss in bypassed humans
(e.g., feeding vs. energy expenditure). Similarly, in subsets of
bypassed subjects, the entanglement of viscerosensory circuits
may not occur, potentially leading to failure to lose weight.
Certain individuals fail to lose weight after RYGB, often due to
excessive eating and psychological issues (Dykstra et al., 2014),
with a failure rate estimated at 15–20% (Elnahas et al., 2014; Sima
et al., 2019). At first glance, individuals who do not reduce eating
after obesity surgery contradict our hypothesis, since the same
anatomical changes and degree of trauma to the vagus nerve
exist in unresponsive individuals. However, it is noteworthy
that phantom sensations, although common in amputees, are
not always present. Why certain individuals will not develop
phantom sensations, or only temporarily, remains unclear (Ortiz-
Catalan, 2018). Perhaps, failure to lose weight after bariatric
surgery is related to genetic polymorphisms affecting the neural
circuits involved in appetite regulation. A good example is the
melanocortin-4-receptor (MC4R), a brain and vagal receptor
involved in appetite regulation (Cone, 2006; Gautron et al.,
2010). Impaired MC4R signaling in both humans and animals is
associated with resistance to RYGB-induced weight loss (Hatoum
et al., 2012; Zechner et al., 2013). Gene variations involved in
neurotransmitters and gut peptides signaling have also been
linked to the outcome of RYGB (Matzko et al., 2012; Novais et al.,
2016). This further underscores the critical role that the nervous
system plays in the metabolic outcome of obesity surgeries.
Alternatively, the entanglement theory may also account for
the occasional failure of RYGB. While it remains a speculative
theory, the idea of entanglement of viscerosensory functions
fits remarkably well with a large body of clinical observations
pertinent to bypassed subjects.

PHANTOM SATIATION AND
WEIGHT-LOSS

Does Satiation Account for Weight-Loss
After RYGB?
One question to ask is whether phantom satiation can contribute
to sustained weight loss. It has been argued that reduced meal
size in bypassed laboratory animals is unlikely to drive weight
loss because, unlike in humans, they tend to consume the
same number of daily calories as experimental controls over
the long term (Zechner et al., 2013; Mokadem et al., 2014;
Arble et al., 2018). In fact, bypassed animals progressively
eat more meals in a compensatory manner (Zheng et al.,
2009). Instead, a combination of elevated energy expenditure
and malabsorption contribute to weight loss in animal models
of bariatric surgery (Bueter et al., 2010; Li et al., 2015; Ye
et al., 2020). Many biological and technical factors may possibly

account for species differences in the outcome of bariatric surgery
(Sandoval, 2019). In particular, the anatomical organization
of viscerosensory circuits may differ between primates and
rodents (Craig, 2002). Moreover, metabolic regulation differs in
significant ways between humans and laboratory rodents (Even
et al., 2017). Here, I suggest that phantom satiation can partially
contribute to weight loss, even in the case of unchanged total daily
food intake. Indeed, emerging evidence points to the fact that
meal size and feeding timing contribute to the etiology of human
obesity, independent of changes in total food intake (Berg et al.,
2009; Mattson et al., 2014; Baron et al., 2017; McHill et al., 2017).
Moreover, inherent circadian variations in central and peripheral
metabolic pathways exist (Hatori et al., 2012; Cedernaes et al.,
2019). Remarkably, constraining laboratory rodents to eating
small intermittent meals is sufficient to prevent hyperphagia
and diet-induced obesity even in association with unchanged
daily caloric intake (Licholai et al., 2018). Hence, it is plausible
that phantom satiation, by constraining meal size and patterns
throughout the day, may contribute to weight loss (Figure 1).
Our hypothesis is focused on satiation and feeding behavior
but, by no means, excludes the contribution of altered energy
expenditure to the health benefits of bariatric surgery. In fact,
food intake and energy expenditure are more intertwined than
often considered. For example, the simple act of sham feeding
(chewing followed by spitting) can raise energy expenditure in
human subjects (LeBlanc and Cabanac, 1989; LeBlanc and Soucy,
1996). The latter phenomenon has been described as a cephalic
thermic response to food. Thus, it may be that eating smaller meals
more often throughout the day also augments thermogenesis
and energy expenditure. That said, gastric denervation cannot
account for the entirety of the metabolic effects of bariatric
surgery because gastric vagotomy alone is less effective than
RYGB. However, this could also be because vagotomy alone does
not entirely recapitulate the impact of RYGB on the non-vagal
components of the stomach innervation. Lastly, the hypothesis
described in this article deliberately focused on satiation because
it is a well-known function of vagal signaling in the upper GI
tract (Bai et al., 2019). Nonetheless, the vagus nerve is involved
in modulating food-related sensations and feelings other than
satiation including, but not limited to, food reward, appetition,
learned taste avoidance, food preference, and nausea (Sclafani
and Kramer, 1985; Labouesse et al., 2012; Sclafani and Ackroff,
2012; Horn, 2014; Behary and Miras, 2015; Hankir et al., 2017;
Han et al., 2018; Shechter and Schwartz, 2018; Qu et al., 2019;
Sandoval, 2019; Fernandes et al., 2020; Zhang et al., 2020). It
is therefore conceivable that phantom sensations arising after
bariatric surgery may include phantom nausea and discomfort,
as well as taste disturbance and modified food preferences. In
apparent agreement with this view, food preference after bariatric
surgery shifts away from caloric and fatty food (Chambers
et al., 2012; Nielsen et al., 2019). Furthermore, using direct
measurements of food intake, human studies showed that weight
loss is correlated with a marked reduced preference for caloric
food after bariatric surgery, but only in certain individuals
(Sondergaard Nielsen et al., 2018). However, food preferences
are not significantly changed by surgery in most patients
(Sondergaard Nielsen et al., 2018) and, consequently, are unlikely
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to play a major role in the metabolic outcomes of either RYGB
or VSG in humans.

As a side note, RYGB and VSG rapidly improves glucose
homeostasis in both human subjects and laboratory animals
(Bojsen-Moller, 2015; Arble et al., 2018). At first glance, the
hypothesis described in this article does not seem relevant to
glucose metabolism because the anti-diabetic actions of these
surgeries occur independently of weight-loss and reduced feeding
(Chambers et al., 2011; Laferrere and Pattou, 2018; Evers et al.,
2020). On the other hand, eating smaller meals may contribute
to improve glucose metabolism after RYGB in human subjects
(Stano et al., 2017). Moreover, peripheral nerves are known to
play a modulatory role in glucose metabolism (Gardemann et al.,
1992; Cardin et al., 2001; Razavi et al., 2006). For instance, gastric
vagotomy alone alters glucose homeostasis in humans (Akiyama
et al., 1984; Galewski et al., 1995; Plamboeck et al., 2013) and,
furthermore, an intact innervation to the portal vein is required
for the anti-diabetic actions of RYGB in mice (Troy et al., 2008).
Therefore, the hypothesis described in this article may also be
relevant to glucose metabolism after bariatric surgery.

Mimicking Phantom Satiation: A New
Weight-Loss Treatment?
The second question to ask is whether the phantom satiation
hypothesis could help design a new weight-loss treatment.
I concur with the view that a better understanding of the
biological changes taking place after bariatric surgery may
lead to the discovery of a novel and less invasive weight loss
treatment (Browning and Hajnal, 2014; Pucci and Batterham,
2019; Gimeno et al., 2020). If the phantom satiation hypothesis
is correct, the biological changes that accompany bariatric
surgeries are highly complex and widespread across the body
all the way up to integrative cortices (Figure 1). This level of
complexity may render difficult finding alternative strategy to
bariatric surgery, especially by pharmacological means. With
this in mind, a successful alternative to bariatric surgery may
consist in permanently silencing the nerves to the upper GI
tract, by device- or surgery-assisted means. In support of this
view, obese patients are already eligible for an FDA-approved
vagal neuromodulation procedure termed vBloc (Shikora et al.,
2015; Apovian et al., 2017). Neuromodulatory devices can be
laparoscopically implanted and electrodes attached to each vagal
trunk near the gastro-oesophaeal junction. The stimulation at
the high frequency of at least 500 Hz inhibits the axonal
conduction of both motor and sensory neurons (Camilleri
et al., 2008; Waataja et al., 2011). Its mechanisms of action
remain mysterious and one recent modeling study indicates
that vBloc is more likely to excite than inhibit vagal afferents
(Pelot et al., 2017). On the other hand, new data in rats also
indicate that electrodes chronically attached to the vagus nerve
produce significant damage to vagal efferent axons (Somann
et al., 2018). Patients can expect an average excess weight
loss of 22% over 18 months, which is admittedly not as
effective as RYGB. However, vBloc differs in significant ways
from bariatric surgery. First, vBloc only stimulates the vagus
nerve in an intermittent manner and, secondly, leaves spinal

nerves untouched. Regardless of technical details, the phantom
satiation hypothesis predicts that an effective alternative strategy
to bariatric surgery would consist in mimicking, as closely
as possible, the patterns of denervation and dysautonomia
observed after RYGB. In the anticipation of side effects, such
an alternative strategy should ideally be easily reversible and
adjustable in strength.

CONCLUDING REMARKS

To paraphrase Dr. David Horrobin, a hypothesis that is wrong
will attract no following and disappear (Horrobin, 2000). If
proven right, however, it can be the beginning of new fields
of knowledge. As of today, the phantom satiation hypothesis
appears consistent with a large body of literature and provides
a complementary explanation to already existing hypotheses
on how GI surgeries modify metabolism and behaviors. Many
researchers have stressed the key role played by the brain and
peripheral nerves in the outcome of bariatric surgery (Powley
et al., 2005b; Browning and Hajnal, 2014; Lasselin et al., 2014;
Li and Richard, 2017; Hankir et al., 2018; Sinclair et al., 2018;
Sandoval, 2019; Nota et al., 2020; Ye et al., 2020). Specifically,
they have proposed that microbial, hormonal, inflammatory and
autonomic changes may contribute, perhaps synergistically, to
alter brain functions after bariatric surgery. In turn, altered
brain activity may contribute to modified energy expenditure
with or without altered food intake. Together, the phantom
satiation hypothesis and related neurocentric hypotheses of
bariatric surgery invite us to consider the GI tract not merely as a
receptacle for food but as a complex sensory organ. Nonetheless,
the present hypothesis differs from other theories that convey
the idea that bariatric surgery “corrects” biological derangements
brought about by obesity. Yes, bariatric surgery is genuinely
effective, but it should not be touted as a “corrective procedure,”
considering that its mechanisms remain uncertain. In particular,
available data suggest that vagal and GI functions remain largely
normal in obesity (Lieverse et al., 1994; Klatt et al., 1997; Bluemel
et al., 2017). In other words, bariatric surgery is done on an
otherwise healthy GI tract, which inevitably deteriorates, rather
than improves, its functions. The best evidence is that gut
peptide secretion in bypassed subjects is very high compared to
that of normal-weight subjects (Laferrere et al., 2007; Dirksen
et al., 2013). Furthermore, the intestinal mucosa of bypassed
human subjects and animals becomes abnormally hypertrophic
(le Roux et al., 2010; Mumphrey et al., 2015). Hence, if the
phantom satiation hypothesis is correct, bariatric surgery is not
a procedure that returns obese individuals to some hypothetical
state of “normalcy” but rather that profoundly disrupts normal
GI viscerosensory and endocrine functions (Figure 1). To be
clear, the phantom satiation hypothesis should not be interpreted
as if humoral mechanisms are irrelevant to the outcome of
bariatric surgery. In particular, the receptors for many gut
peptides are expressed in brain regions involved in viscerosensory
functions (Honda et al., 1993; Zigman et al., 2006; Graham et al.,
2020). It is therefore conceivable that excessive gut peptides
secretion after bariatric surgery may contribute to exacerbate
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the aforementioned brain maladaptive changes observed after
vagal damage. Hence, further understanding of the mechanisms
underlying bariatric surgery will likely require a multidisciplinary
and integrated approach beyond the traditional boundaries of
the academic disciplines of endocrinology and metabolism.
In particular, one area in need of further research is how
bariatric surgeries perturbate interoceptive, nociceptive, and
autonomic pathways.
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