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Editorial on the Research Topic

Cardiomyocyte Maturation: Novel Insights for Regenerative Medicine

Mature cardiomyocytes (CMs) are terminally differentiated cells that exit the cell cycle. The lack
of adult CM progenitors makes it challenging to restore the loss of CMs caused by cardiac injury
and disease. Current strategies to repopulate damaged cardiac tissue include exogenous cell-based
or cell-free therapies (Chong et al., 2014) and reintroducing mature CMs into the cell cycle by
genetic approaches (Ptaszek et al., 2012). However, adverse effects, such as arrhythmia and teratoma
formation, were frequently observed in studies using pluripotent stem cell-derived CMs due to their
immature nature. On the other hand, the discovery of the regenerative capacity in neonatal mouse
CMs and the idea of rejuvenating mature CMs for therapeutic purposes sparked many studies to
dissect the mechanism driving the maturation of CMs. This Research Topic has collected the most
recent advances in the field of CMmaturation.

The development of a mammalian heart is a multi-step process that includes cardiac lineage
specification, morphogenesis, and maturation. CM maturation is initiated at mid-gestation and
continues until adulthood. Compared to mechanisms of cardiac fate commitment in early
embryonic development, the CMmaturation process is not as well-defined (Moskowitz et al., 2007;
Gupta and Poss, 2012; Del Monte-Nieto et al., 2018; Hu et al., 2018). To establish persistent and
efficient contractility, CMs exit their cell cycles and undergo changes in cell structure, metabolism,
and gene expression profile to reach maturation.

In mice, CM cell cycle exit occurs within the first postnatal week, while central
cell-cycle-promoting networks are tightly repressed (Porrello et al., 2011; Mohamed et al., 2018).
Cell cycle exit of mouse CMs is marked by polyploidization, resulting in karyokinesis without
cytokinesis during the final round of cell proliferative activity. This leads to most mature mouse
CMs containing two diploid nuclei (binucleation) (Li et al., 1996; Soonpaa et al., 1996). The
postnatal CMs then enter a stage of hypertrophic growth in which the sarcomeres expand and
reorganize to reach mature size. Furthermore, the reaction of developing CMs to pathological
conditions attracted growing attention in the field. Ding et al. established a pulmonary artery
banding (PAB) model in neonatal rats and mice. They showed that PAB accelerated the transition
of mononuclear CMs into multinucleated cells to promote hypertrophic growth in neonatal hearts.
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To propagate electrical activity into the CMs, transverse
tubules (T-tubules) invaginate into the cells during postnatal
development (Di Maio et al., 2007; Ziman et al., 2010). Unlike
embryonic CM or induced CMs (iCMs) from iPSCs, mature
ventricular CMs do not express HCN4 (hyperpolarization-
activated cyclic nucleotide-gated potassium channel 4) and
exhibit low automaticity (Kim et al., 2015). To establish
simultaneous contraction, juvenile mouse CMs form junctions
called intercalated discs (ICDs) between the ends of two CMs.
Key markers of ICDs, including Connexin 43 and N-cadherin,
are expressed in CMs from early development, specifically
localizing to ICDs postnatally (Vreeker et al., 2014). However, the
mechanisms of localizing ICD components to CM termini are not
fully elucidated.

Another milestone of CM maturation is the shift from
glycolysis to beta-oxidation to meet the high demand of ATP
for cell contraction. Mitochondrial biogenesis increases until
reaching a biomass that occupies 40% of the cell volume (Schaper
et al., 1985). Unlike immature CMs, mature mitochondria
contain densely organized cristae (Dai et al., 2017). This
metabolic transition is regulated by multiple pathways such as
Pparα and Nrf1/2 (Dorn et al., 2015; Uosaki et al., 2015).

The cellular microenvironment also plays a critical role in
CM maturation. Manipulating in vitro cell culture environment
and physical conditioning can promote CM maturation (Nunes
et al., 2013; Zhang et al., 2013; Ronaldson-Bouchard et al.,
2018). Evidence also revealed that subpopulations of non-CM
cell types, including cardiac fibroblasts, endothelial cells, and
macrophages, also drive CM maturation (Wang et al., 2020).
Recently, Zhao H. et al. took a high-throughput approach to
discover the critical transcription factors that induce cardiac
reprogramming directly from injury-derived cardiac fibroblasts,
providing a new recipe for the exciting field of cell-based therapy
in heart regeneration.Morphological and structural development
occurs along with the shift of key gene profiles such as isoform
switches of sarcomere proteins, suggesting that the orchestration
of multiple transcriptional regulatory pathways may control CM

maturation. In this Research Topic, Fang et al. reported that
T-Box Transcription Factor 20 (Tbx20) was activated in the
myocardial wound edge in zebrafish to promote injury-induced
CM proliferation. Tbx20 induced CM dedifferentiation, the loss
of CM cellular contacts, and the re-expression of immature gene
programs (Fang et al.). The authors also unexpectedly discovered
that myocardial Tbx20 had a cell non-autonomous effect on
endocardium expansion. In another study using zebrafish as a
regenerative model, Peng et al. found that unlike the inhibitory
function of the canonical Wnt pathway, wnt2bb-mediated non-
canonical Wnt signals positively regulate CM proliferation.

Furthermore, Qi et al. studied themechanism of inflammatory
response in a diabetic cardiomyopathy model. They found
that high glucose-induced lncRNA-MIAT is responsible for
proinflammatory IL-17 production in CMs (Qi et al.). Cell-free
therapy is another frontier in the field of heart regeneration and
repair. Lyu et al. discovered that the 3’-untranslated region of
Mcl1 transcript has a protective role in Ang II-induced cardiac
apoptosis, shedding light on these novel therapeutic strategies.

Finally, Zhao M-T et al. provided an overview of the
field, discussing how cardiac proliferation and maturation
are regulated during embryonic development and postnatal
growth, and exploring how patient iPSC-CMs could
serve as the future seed cells for cardiac cell replacement
therapy. Non-mammalian animals are particularly valuable
inspirations for studies in regenerative medicine. Xia
et al. reviewed the mechanisms of heart development
and regeneration that were discovered in these models,
highlighting the advantages of non-mammalian models as tools
for cardiac research.
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