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Abstract: High-level exposure to arsenic, a known carcinogen and endocrine disruptor, is associated
with prostate cancer (PCa) mortality. Whether low-level exposure is associated with PCa
aggressiveness remains unknown. We examined the association between urinary arsenic
and PCa aggressiveness among men in North Carolina. This cross-sectional study included
463 African-American and 491 European-American men with newly diagnosed, histologically
confirmed prostate adenocarcinoma. PCa aggressiveness was defined as low aggressive (Gleason
score < 7, stage = cT1–cT2, and PSA < 10 ng/mL) versus intermediate/high aggressive (all
other cases). Total arsenic and arsenical species (inorganic arsenic (iAsIII + iAsV), arsenobetaine,
monomethyl arsenic, and dimethyl arsenic)) and specific gravity were measured in spot urine
samples obtained an average of 23.7 weeks after diagnosis. Multivariable logistic regression was
used to estimate the covariate-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for
PCa aggressiveness in association with arsenic tertiles/quantiles overall and by race. The highest
(vs. lowest) tertile of total arsenic was associated with PCa aggressiveness ORs of 1.77 (95% CI =

1.05–2.98) among European-American men, and 0.94 (95% CI = 0.57–1.56) among African-American
men (PInteraction = 0.04). In contrast, total arsenic and arsenical species were not associated with
PCa aggressiveness in unstratified models. Low-level arsenic exposure may be associated with PCa
aggressiveness among European-Americans, but not among African-Americans.

Keywords: prostate; cancer; environmental arsenic; inorganic arsenic

1. Introduction

Prostate cancer (PCa) is the most frequently diagnosed non-skin cancer and the second leading
cause of cancer-related death among men in the United States (US) [1]. In 2020, an estimated 190,000 men
will be diagnosed with PCa and 33,000 men will die from the disease [1]. PCa incidence rates declined
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in the last decade [2], in part due to decreased screening since the US Preventive Services Task Force
recommended against the use of prostate-specific antigen (PSA) testing in 2008 [3] and 2012 [4], but racial
disparities in PCa persist. African-American men have the highest PCa burden of any racial or ethnic
group [5] and are more likely to be diagnosed at younger ages [6], present with a more aggressive form
of the disease [7], and have greater mortality rates [5] than European-American men. Few modifiable
risk factors have been identified [8,9] despite substantial research aimed at understanding the etiology
of PCa and the determinants of these disparities [10]. However, accumulating epidemiologic and
laboratory evidence indicates that arsenic may play a role in the pathogenesis of PCa among highly
and chronically exposed men [11]. Whether low-level chronic arsenic exposure is associated with PCa
aggressiveness remains unknown.

Arsenic is a metalloid that occurs naturally in different oxidation states and as toxic
inorganic (e.g., arsenate (iAsV) and arsenite (iAsIII)) and non-toxic organic (e.g., arsenobetaine (Ab))
compounds [12]. Among the general US population, exposure to iAs, an established carcinogen [13]
and endocrine disruptor [14], occurs primarily through drinking water [15]. In North Carolina (NC),
iAs is naturally occurring originating from the bedrock of the slate belt and private drinking wells
have been found to have iAs levels that exceed the Environmental Protection Agency drinking water
standard of 10 ppb [16]. This is of public health concern given that about 2.4 million North Carolinians
rely on groundwater as their primary drinking water source [17].

Once ingested, iAs is absorbed from the gastrointestinal tract and distributed throughout the
body where it may undergo biotransformation in the liver and other tissues by methylation [18].
Methylated intermediates including monomethyl arsenic (MMA) and dimethyl arsenic (DMA) have
potential carcinogenic and tumor-promoting effects [19], although iAs and methylated metabolites
are excreted in urine within 4–5 days and have relatively low rates of bioaccumulation [20]. Urine is,
therefore, the most common and reliable biological matrix for the assessment of arsenic exposure in
epidemiologic studies.

In this study, we examined the associations between urinary levels of total arsenic as well as
the arsenical species iAs, DMA, MMA, and PCa aggressiveness overall by race among NC men
who participated in a population-based study. We hypothesized that PCa aggressiveness would be
associated with greater urinary As levels given the tumor-promoting effects of arsenic metabolites
and that African-American men would have higher arsenic levels since they have been historically
excluded from regulatory water services and are, therefore, more likely to rely on individual water
sources such as wells [21], and thus have a greater proportion of aggressive prostate cancer.

2. Materials and Methods

2.1. Study Population

This cross-sectional study used resources from the North Carolina-Louisiana Prostate Cancer
Project (PCaP), a population-based cohort study designed to examine racial differences in PCa outcomes
between African-American and European-American men [22]. This study focused on NC men enrolled
in PCaP. From 2004 to 2007, 472 African-American men and 501 European-American men from
NC with a new diagnosis of histologically confirmed prostate adenocarcinoma between the ages of
40 and 79 years at diagnosis were identified by the University of North Carolina (UNC)–Lineberger
Comprehensive Cancer Center and the NC Central Cancer Registry Rapid Case Ascertainment
Core Facility. Participants were visited in their home or another location of their choice by a trained
registered nurse an average of 23.7 weeks after diagnosis (median = 19.7 weeks, range = 6.1–119.6 weeks).
Written informed consent and permission for medical record release was obtained. A structured
questionnaire was administered by a trained nurse in order to collect information on demographics
and PCa risk factors. The nurse then made anthropometric measurements including weight and height.
Participants who did not have a urinary catheter in place provided 20 mL urine samples. In this study,
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we included 463 African-American and 491 European-American men with available urine samples in
which arsenical species were measured.

All PCaP protocols and materials were approved by Institutional Review Boards (IRBs) at UNC
Chapel Hill and Louisiana State University Health Sciences Center, by the Department of Defense
Human Subjects Research Review Board, and by IRBs at other institutions and hospitals as required.

2.2. Outcome Assessment

The main outcome of interest in this study, PCa aggressiveness at diagnosis, was determined
from several clinical measures abstracted from medical records, which included clinical Gleason
grade and stage, and diagnostic PSA. PCa aggressiveness was categorized as (1) low aggressive
(Gleason score < 7 and clinical T categories (cT) cT1 (clinically inapparent tumor that is not palpable)
or cT2 (tumor is palpable and confined within prostate), and PSA < 10 ng/mL), versus (2) intermediate
or high aggressive (all other cases). Men with low aggressive PCa served as the reference group in
all analyses.

2.3. Arsenic Assessment

Urinary arsenic measurements were made using an Agilent (Santa Clara, CA, USA) 7500cx
inductively-coupled plasma mass spectrometer (ICPMS) from 2015 to 2017 at the University of
North Carolina (UNC) Biomarker Mass Spectrometry Core Facility. Helium was flowed through the
octopole collision/reaction cell at 4 mL/min to remove argon chloride matrix interferences. An Agilent
Bio-Inert Liquid Chromatography (HPLC) system was used for chromatographic separations of
arsenic metabolites. Total arsenic measurements followed the methods of Heitland and Köster [23].
A 7-fold dilution of 400 µL urine with 1% nitric acid was quantified against an external calibration
curve. Tellurium was used as an internal standard and added through a T-connection. The recovery
of quality control (QC) standards (n = 61) was 98 ± 12%. Arsenical species were separated on a
PRPX-100 (5 µm, 150 × 4.1 mm) anion exchange column (Hamilton Company, Reno, NV, USA) using
a gradient elution [24]. Mobile phases A & B consisted of A-ammonium carbonate and TRIS at pH
8.7, and B-ammonium carbonate, TRIS, and ammonium sulfate at pH 8.0. The column eluent was
plumbed directly into the ICPMS. Inorganic arsenic injected post-column was used as an internal
standard. Standard recoveries (n = 37) were Ab = 99 ± 16%, iAsIII = 101.6 ± 22%, iAsV = 98 ± 16%,
DMA = 99 ± 17%, and MMA = 95 ± 24%. Spike recoveries (n = 22) were Ab = 93 ± 9%, iA III = 95 ± 9%,
iAsV = 87 ± 9%, DMA = 92 ± 9%, and MMA = 100 ± 10%. Coefficients of variation (CVs) were total
As = 12.2%, Ab = 16.2%, iAsIII = 16.3%, iAsV = 21.7%, DMA = 17.2%, and MMA = 25.3%. Limits of
detection (LOD) were 0.175 ppb for total arsenic and 0.800 ppb for arsenical species. The proportions
of samples <LOD were 0.1% for total As (n = 1), 23.9% for Ab (n = 228), 59.6% for iAs (n = 567),
8.3% for DMA (n = 79), and 74.4% for MMA (n = 708). Only 118 participants had iAs, MMA,
and DMA measurements >LOD, which precluded us from considering arsenic methylation efficiency.
For analyses using continuous measures, observations below the LOD were set to the lowest observed
value for that arsenical species. Specific gravity (SG), which was used to adjust samples for urine
dilution using the formula As value × (mean SG-1)/(individual SG-1) [25], was measured using the
Reichert TS400 Total Solids Refractometer (Reichert Inc., Depew, NY, USA).

2.4. Covariate Assessment

Covariates associated with PCa incidence were identified from the PCa epidemiologic
literature [9,26]. Potential confounders obtained from the interviewer-administered questionnaire
included age (40–54, 55–75, or >75 years), race (European-American or African-American),
education (<high school; high school graduate; vocational, technical, some college; or college graduate),
marital status (married or unmarried), smoking status (never, former, or current smoker), and residence
(urban or rural, based on Census 2010 county classifications [27]). Alcohol intake and seafood
consumption in the 12 months prior to diagnosis were assessed using the National Institutes of Health
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Diet History Questionnaire and estimated using the Diet*Calc Analysis Software [28]. Frequency
and amount of intake of beer, wine, and liquor were assessed using 8 items. Alcohol intake was
categorized into tertiles using the following cut-points: ≤0.04, 0.05–7.09, or ≥7.10 g. Frequency and
amount of consumption of fried fish, unfried shellfish, dark meat fish, and fresh tuna were assed
using 8 items. Seafood consumption, which is associated with higher levels of organic arsenic [29],
was categorized into tertiles using the following cut-points: ≤0.29, 0.30–0.68, or >0.68 oz. Body mass
index (BMI, <25, 25–29.9, 30–39.9, and ≥40 kg/m2) was calculated from measured height and weight.
Receipt of androgen deprivation therapy or radiotherapy (yes or no) prior to urine sample collection
was determined by medical chart abstraction.

2.5. Statistical Analysis

Because the distributions of SG-adjusted urinary arsenical species were right skewed, we used
non-parametric Wilcoxon signed-rank tests to evaluate the differences in the distributions of
Ab-corrected total As (calculated as the average total As over repeated measures minus Ab, hereafter
referred to as total As), ΣAs (calculated as the sum of iAsIII, iAsV, DMA, and MMA), and DMA by PCa
aggressiveness and by race. We did not evaluate the differences in the distributions of iAs and MMA
by PCa aggressiveness given the high proportions of men below the LOD for these arsenical species. In
multivariable analyses, we examined tertiles of SG-adjusted total arsenic, DMA, MMA, and ΣAs. For
iAs and MMA, men with non-detectable levels were categorized into the lowest exposure group and men
with detectable levels were categorized into quantiles at the medians. In the analysis using total arsenic,
we excluded 60 men with negative values, which indicated more arsenic from food/fish than from water.
In sensitivity analyses, in which we included these 60 men as a separate group, interpretations were
not materially different (results not shown). We used multivariable logistic regression to estimate the
odds ratios (ORs) and 95% confidence intervals (CIs) for the associations between tertiles or quantiles
of total arsenic or arsenical species and PCa aggressiveness. We also examined log-linear trends
(PTrend) using ln-transformed SG-adjusted arsenic levels. Logistic regression models were adjusted for
age (i.e., age-adjusted model) and then adjusted for additional covariates including race, education,
marital status, smoking status, body mass index, residence, alcohol consumption, and seafood
consumption (i.e., multivariable-adjusted). We examined effect measure modification by stratifying
the fully-adjusted logistic regression models by race (European-American vs. African-American).
We evaluated multiplicative interactions (PInteraction) using likelihood ratio tests that compared models
with interaction terms for categorical arsenical species-by-race interactions against reduced models
without the interaction terms.

All analyses were conducted using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) and used a
critical alpha of 0.05.

3. Results

Approximately half (48.5%) of the men included in this study were African-Americans, 34.7% were
college graduates, and 75.4% reported being married or living as married (Table 1). The majority of men
reported being former (51.5%) or current (15.8%) smokers, and over one-third had a BMI ≥ 30 kg/m2.
Among men with intermediate or high aggressive PCa, 55.7% were African-American, 18.7% were
under the age of 55, and 17.9% reported being current smokers. The mean ages at diagnosis were
63.4 among men with intermediate/high aggressive PCa and 61.9 among men with low aggressive PCa.
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Table 1. Distribution of select characteristics among the Prostate Cancer Project (PCaP) men with
available estimates of urinary arsenic overall and by quantiles of specific gravity-adjusted total arsenic
(n = 954).

Overall

Prostate Cancer Aggressiveness

Low
Aggressive

Intermediate/High
Aggressive

n (%) n (%) n (%)

Race
African-American 463 (48.5) 204 (41.7) 259 (55.7)
European-American 491 (51.5) 285 (58.3) 206 (44.3)

Age at diagnosis, years
<55 197 (20.6) 110 (22.5) 87 (18.7)
55–75 699 (73.3) 360 (73.6) 339 (72.9)
>75 58 (6.1) 19 (3.9) 39 (8.4)

Education
<High school 162 (17.0) 65 (13.3) 97 (20.9)
High school graduate 238 (25.0) 126 (25.8) 112 (24.1)
Vocational, technical,

some college 222 (23.3) 113 (23.1) 109 (23.5)

College graduate 331 (34.7) 185 (37.8) 146 (31.5)
Missing 1 0 1

Marital status
Unmarried 234 (24.6) 106 (21.7) 128 (27.6)
Married 719 (75.4) 383 (78.3) 336 (72.4)
Missing 1 0 1

Smoking status
Never smoker 312 (32.8) 177 (36.3) 135 (29.1)
Former smoker 490 (51.5) 244 (50.0) 246 (53.0)
Current smoker 150 (15.8) 67 (13.7) 83 (17.9)
Missing 2 1 1

Body mass index, kg/m2

<25 173 (18.3) 90 (18.5) 83 (18.1)
25–29.9 403 (42.6) 217 (44.6) 186 (40.5)
30–39.9 328 (34.7) 164 (33.7) 164 (35.3)
≥40 42 (4.4) 16 (3.3) 26 (5.7)
Missing 8 2 6

Residence
Urban 719 (75.4) 376 (76.9) 343 (73.8)
Rural 235 (24.6) 113 (23.1) 122 (26.2)

Alcohol consumption (g)
≤0.04 335 (35.1) 172 (35.2) 163 (35.1)
0.05–7.09 299 (31.3) 148 (30.3) 151 (32.5)
≥7.10 320 (33.5) 169 (34.6) 151 (32.5)

Seafood consumption
(oz)
≤0.29 323 (33.9) 166 (33.9) 157 (33.8)
0.30–0.68 315 (33.0) 161 (32.9) 154 (33.1)
>0.68 316 (33.1) 162 (33.1) 154 (33.1)

Receipt of androgen
deprivation therapy or
radiotherapy prior to
urine sample collection

No 765 (80.2) 448 (91.6) 317 (68.2)
Yes 189 (19.8) 41 (8.4) 148 (31.8)
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SG-adjusted arsenic levels ranged from 0.0158–182 ppb (IQR = 2.20–7.59 ppb) for total As, 0.239–17.1
ppb (IQR = 2.39–7.65 ppb) for iAs, 0.509–62.1 ppb (IQR = 1.91–5.88 ppb) for DMA, and 0.288–2.94
ppb (IQR = 0.288–0.384 ppb) for MMA. Of note, not all arsenical species were selected from the
spectrometer results. Therefore, ΣAs was not equal to the total As and ranged from 0.244–64.0 ppb (IQR
= 2.32–7.10 ppb). In bivariate analyses, median levels did not differ between men with low aggressive
versus intermediate/high aggressive PCa for total arsenic (8.76 vs. 8.67 ppb; p = 0.49), ΣAs (3.80 vs.
4.14 ppb; p = 0.58), and DMA (3.20 vs. 3.51 ppb; p = 0.44). Median total arsenic levels were higher in
European-American men than in African-American men (4.51 versus 3.93 ppb; p = 0.03), but did not
differ by race for ΣAs (4.14 versus 3.87 ppb; p = 0.23), iAs (0.239 versus 0.239 ppb; p = 0.07), DMA (3.54
versus 3.14 ppb; p = 0.57), and MMA (0.289 versus 0.289 ppb; p = 0.09).

In the multivariable logistic regression analyses, total arsenic and arsenical species were not
strongly associated with PCa aggressiveness (Table 2). The highest (vs. lowest) tertile of total arsenic
was associated with an OR for PCa aggressiveness of 1.26 (95% = 0.89–1.80), and a one-ln unit increase
in total As was associated with an OR of 1.00 (95%C = 0.88–1.13; PTrend = 0.96) in fully-adjusted models.
By race, the highest (vs. lowest) tertile of total arsenic was associated with an OR of 1.77 (95% CI
= 1.05–2.98) among European-American men, and with an OR of 0.94 (95% CI = 0.57–1.56) among
African-American men (PInteraction = 0.04) in fully-adjusted models (Table 3). Race did not modify
the associations between ΣAs (PInteraction = 0.89), iAs (PInteraction = 0.79), DMA (PInteraction = 0.71),
and MMA (PInteraction = 0.64) and PCa aggressiveness.

Table 2. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) for the associations
between quantiles of specific gravity-adjusted urinary arsenic concentrations and prostate cancer
aggressiveness among PCaP men, (n = 954).

Arsenical
Species,

ppb a

Median,
ppb

Intermediate/High
vs. Low

Aggressive

Age-Adjusted Multivariable-Adjusted

OR (95% CI)
b PTrend

c
OR (95% CI)

d PTrend
c

Total As
≤2.83 1.56 140/156 1.00 1.00

2.83–6.02 6.01 135/161
0.93
(0.67–1.29) 1.02

(0.72–1.44)
≥6.03 10.01 155/143 1.23

(0.89–1.70)
1.26
(0.89–1.80)

Ln(Total
As) 1.01

(0.90–0.13)
0.85 1.00

(0.88–1.13)
0.96

ΣiAs e

<2.82 1.71 159/158 1.00 1.00

2.82–5.71 3.97 145/170
0.85
(0.62–1.17) 0.89

(0.64–1.25)
≥5.72 9.19 159/159 1.02

(0.75–1.40)
0.97
(0.69–1.37)

Ln(ΣAs) 1.03
(0.92–1.17)

0.59 1.03
(0.90–1.17)

0.72

iAs f

<LOD <LOD 289/277 1.00 1.00

≥LOD–0.922 0.619 84/107
0.76
(0.54–1.06) 0.76

(0.54–1.09)
≥0.923 1.74 90/103 0.86

(0.62–1.19)
0.84
(0.59–1.19)

Ln(iAs) 0.96
(0.84–1.11)

0.59 0.97
(0.84–1.12)

0.67

DMA
<2.34 1.41 150/167 1.00 1.00
2.34–4.73 3.30 155/160 1.08

(0.79–1.48)
1.16
(0.83–1.63)

≥2.74 7.59 158/160 1.12
(0.82–1.53)

1.09
(0.77–1.55)

Ln(DMA) 1.06
(0.92–1.21)

0.42 1.04
(0.89–1.21)

0.65
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Table 2. Cont.

Arsenical
Species,

ppb a

Median,
ppb

Intermediate/High
vs. Low

Aggressive

Age-Adjusted Multivariable-Adjusted

OR (95% CI)
b PTrend

c
OR (95% CI)

d PTrend
c

MMA
<LOD <LOD 360/346 1.00 1.00

≥LOD–0.759 0.566 52/70 0.74
(0.50–1.09)

0.85
(0.56–1.28)

≥7.60 1.05 51/71 0.73
(0.49–1.08)

0.82
(0.54–1.24)

Ln(MMA) 0.80
(0.62–1.04)

0.09 0.90
(0.68–1.18)

0.44

As, arsenic; DMA, dimethyl arsenic; LOD, limit of detection; MMA, monomethyl arsenic; PPB, parts per billion;
SG, specific gravity. a Adjusted for urine SG = arsenic value x (mean SG − 1)/(individual SG − 1). b Adjusted
for age (40–54, 55–75, or 76–69 years). c PTrend based on ln-transformed specific gravity-adjusted arsenic levels.
d Adjusted for age (40–54, 55–75, or 76–69 years); race (European-American or African-American); education
(<High school, High school graduate, Vocational/technical/some college, or College graduate); marital status
(Married or Unmarried); smoking status (Never, Former, or Current smoker); body mass index (<25, 25–29.9, 30–39.9,
or ≥40 kg/m2); residence (Urban or Rural); alcohol consumption (≤0.04, 0.05–7.09, or ≥7.10 g); seafood consumption
(≤0.29, 0.30–0.68, or >0.68 oz); and receipt of androgen deprivation therapy or radiation therapy prior to urine
sample collection (no, yes). e ΣAs calculated as iAsIII+iAsV+DMA+MMA. f iAs = iAsIII+iAsV.



Int. J. Environ. Res. Public Health 2020, 17, 8364 8 of 13

Table 3. Race-stratified odds ratios (ORs) and corresponding 95% confidence intervals (CIs) for the associations between quantiles of specific gravity-adjusted urinary
arsenic concentrations and prostate cancer aggressiveness among PCaP men, (n = 954).

Arsenical
Species, ppb a

African-American (n = 463) European-American (n = 491)
PInteraction

d

Median, ppb Intermediate/High vs.
Low Aggressive

OR (95% CI)
b PTrend

c Median, ppb Intermediate/High vs.
Low Aggressive OR (95% CI) b PTrend

c

Total As 0.04
≤2.83 1.59 79/61 1.00 1.47 61/95 1.00

2.83–6.02 4.37 79/57 1.16
(0.69–1.94) 4.12 56/104 0.92 (0.56–1.50)

≥6.03 10.16 85/75 0.94
(0.57–1.56) 9.70 70/68 1.77 (1.05–2.98)

Ln(Total As) 0.95
(0.79–1.13) 0.55 1.04 (0.86–1.25) 0.68

ΣAse 0.89
<2.82 1.61 85/65 1.00 1.81 74/93 1.00

2.82–5.71 3.95 78/64 0.99
(0.60–1.63) 3.97 67/106 0.79 (0.49–1.26)

≥5.72 9.29 95/74 1.00
(0.61–1.63) 9.12 64/85 0.91 (0.55–1.52)

Ln(ΣAs) 1.03
(0.86–1.25) 0.73 0.99 (0.81–1.21) 0.93

iAs f 0.79
<LOD <LOD 156/112 1.00 <LOD 133/165 1.00

≥LOD–0.922 0.593 46/49 0.74
(0.45–1.22) 0.638 38/58 0.76 (0.46–1.26)

≥0.923 1.70 56/42 0.90
(0.54–1.49) 1.84 34/61 0.76 (0.46–1.25)

Ln(iAs) 1.05
(0.84–1.30) 0.69 0.89 (0.72–1.10) 0.27

DMA 0.71
<2.34 1.38 79/68 1.00 1.50 71/99 1.00

2.34–4.73 3.38 87/59 1.34
(0.81–2.22) 3.22 68/101 0.97 (0.60–1.55)

≥2.74 7.67 92/76 1.11
(0.68–1.83) 7.54 66/84 1.02 (0.61–1.70)

Ln(DMA) 1.02
(0.82–1.26) 0.86 1.03 (0.82–1.30) 0.80

MMA 0.64
<LOD <LOD 207/146 1.00 <LOD 153/200 1.00

≥LOD–0.759 0.544 25/28 0.69
(0.37–1.28) 0.574 27/42 0.97 (0.56–1.69)

≥7.60 0.994 26/29 0.76
(0.41–1.42) 1.13 25/42 0.89 (0.49–1.62)

Ln(MMA) 0.88
(0.58–1.34) 0.55 0.91 (0.62–1.33) 0.63

As, arsenic; DMA, dimethyl arsenic; LOD, limit of detection; MMA, monomethyl arsenic; PPB, parts per billion; SG, specific gravity. a Adjusted for urine SG = arsenic value x (mean SG
− 1)/(individual SG − 1). b Adjusted for age (40–54, 55–75, or 76–69 years); education (<High school, High school graduate, Vocational/technical/some college, or College graduate);
marital status (Married or Unmarried); smoking status (Never, Former, or Current smoker); body mass index (<25, 25–29.9, 30–39.9, or ≥40 kg/m2); residence (Urban or Rural); alcohol
consumption (≤0.04, 0.05–7.09, or ≥7.10 g); and seafood consumption (≤0.29, 0.30–0.68, or >0.68 oz); and receipt of androgen deprivation therapy or radiation therapy prior to urine sample
collection (no, yes). c PTrend based on ln-transformed specific gravity-adjusted arsenic levels. d PInteraction derived from categorical arsenic quantile-by-race interactions in the logistic
regression models. e ΣAs calculated as iAsIII+iAsV+DMA+MMA. f iAs = iAsIII+iAsV.
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4. Discussion

The primary aims of this study were to examine the associations between total arsenic and arsenical
species and prostate cancer aggressiveness among African-American and European-American men
with PCa from NC, USA. Neither the total urinary arsenic nor the arsenical species were associated with
PCa aggressiveness when the entire cohort was considered. However, race-stratified analyses revealed
that the highest versus lowest tertile of total urinary arsenic was associated with a 70% increase in the
odds of intermediate or aggressive PCa among European-American, but not African-American, men.

Most studies of arsenic and PCa have been ecological and have focused on PCa mortality in
countries with water arsenic levels of up to 2500 ppb [11] and have thus largely not included African
Americans. However, previous studies have reported consistently strong dose-response associations
between high levels of arsenic in drinking water and PCa mortality [30–33]. Of note, these countries
with high exposure to arsenic report lower incidence of prostate cancer than developed countries such
as the US [34]; however, this may be due to a selection bias as arsenic is a multisite carcinogen and
thus men may die of arsenic-induced cancers such as cancers of the lung, bladder, kidney, or skin
before the development of aggressive prostate cancer. Thus, our hypothesis that low-level arsenic
exposure is associated with PCa aggressiveness is plausible. In the US, where there is low-level arsenic
exposure, at least three ecological studies have examined arsenic in drinking water in association with
PCa mortality [35], and one prospective study examined low-to-moderate urinary arsenic levels and
risk of PCa mortality [33]. In the study by Lewis et al., elevated PCa mortality rates were reported
among the Utah men exposed to drinking water arsenic levels <200 ppb [35]. Given that 90% of the
population in Utah is White or European [36], our results among European-American men may be
most comparable and are consistent with those by Lewis et al. In the study by Garcia-Esquinas et al.,
there was a 4-fold increase in the risk of PCa mortality among American-Indian men in highest versus
lowest tertiles of total urinary arsenic [33]; however, urinary arsenic levels in their study were higher
than those in our study with many more samples with detectable levels.

Growing epidemiologic evidence suggests that iAs may impact PCa risk, but the molecular
mechanisms by which arsenic may initiate or promote PCa are not understood well. In vitro
approaches including the use of the nontumorigenic human prostate epithelial cell line RWPE-1
have been instrumental for studying the molecular events in iAs-associated carcinogenesis. RWPE-1
cells continuously exposed to 5 µM arsenite have been shown to increase matrix metalloproteinase-9
(MMP-9) secretion (a marker of aggressive malignancies) two-fold compared with control, develop
androgen independence, and produce undifferentiated malignant epithelial tumors when inoculated
into nude mice [37]. The iAs-induced transformation is hypothesized to be mediated by decreased
DNA methyltransferase activity, genomic DNA hypomethylation, and unmutated K-ras oncogene
overexpression [38]. Methylation of arsenic facilitates urinary excretion; however, laboratory evidence
indicates that methylation may increase the toxicity and tumor-promoting effects of arsenical species [19].
Other hypothesized mechanisms of arsenic carcinogenic action include induction of oxidative
damage [39,40], stimulation of proliferation [41], and induction of chromosomal abnormalities [42].

Our study revealed an association between the levels of the arsenical species and PCa
aggressiveness among European-American men, but not for African-American men. We propose
two potential explanations for this observation. First, biological differences in tumors between
African-American and European-American men may make European-American men more susceptible
to the effects of arsenic. For example, MMP-9 induction by arsenic, which is expressed at higher
concentrations in tumors of African-American than European-American men [43,44] may have
minimal additional influence among African-American men. Whereas in European-American men
with low basal MMP-9 levels, the As-MMP-9 induction may be sufficient to increase their risk.
Second, associations by race may be due to differences in efficiency of arsenic metabolism and clearance.
Research on genetic variants in As metabolism pathway genes in African Americans is limited, but
a recently published study examined candidate variants in arsenic (III) methyltransferase (AS3MT),
which catalyzes conversion of iAs to methylated products. Their study was underpowered to examine
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differences by race (n = 84 non-Hispanic whites and 56 African Americans), but slightly higher
minor allele frequencies were reported in African-Americans versus non-Hispanic Whites for the
three AS3MT single nucleotide polymorphisms [45]. Additional research aimed at elucidating the
biological mechanisms underlying these associations may be warranted if our findings reported here
are replicated in more methodologically rigorous studies.

Our study should be interpreted in light of its strengths and limitations. While an evaluation
of well-water arsenic exposure and PCa aggressiveness was not the original aim of the PCaP study,
our invaluable resource of well-characterized men with incident PCa, living in NC, a region with
high well water usage and known private well As contamination, along with a large biobank of urine
specimens collected near the time of PCa diagnosis, seemed an appropriate data set with which to
explore arsenic exposure in association with PCa. This study included a large sample of men with
equal proportions of African-American and European-American men, and used a urinary biomarker
measure of arsenic exposure, a comprehensive measurement of arsenical species, and a robust clinical
definition of PCa aggressiveness. This study, however, was limited by the cross-sectional design, which
limits the ability to make causal inferences. We measured arsenic in urine samples obtained after
PCa diagnosis and so it is unclear whether this exposure reflects levels during the relevant etiologic
time window of PCa development. Nonetheless, our results may still be relevant for understanding
disease progression and the cross-sectional design is an improvement on previous ecological studies
as we were able to control for individual-level confounding factors and examine differences by race.
Although we relied on a single measurement of urinary arsenic, total urinary arsenic shows fair to good
reproducibility over years, with reported intraclass correlations ranging from 0.66 to 78 [46]. Absorbed
arsenic has a biological half-life of four days [20]; therefore, urinary measurements reflect recent
exposures. However, ongoing steady exposure, as would be expected with exposure through drinking
water, should allow for a measured level to reflect chronic long-term exposure. We assumed this to be
the case in this population of NC men, since arsenic exposure from contaminated private domestic
wells in NC, especially along the Carolina terrane, is likely to remain constant over time [16]. In this
study, there were high proportions of men with arsenical species levels below the limits of detection
and high CVs due to the low levels of some arsenical species (though these CVs are consistent with
other studies [47,48]). This also precluded us from exploring arsenic methylation efficiency, which is of
established importance in the underlying susceptibility to arsenic toxicity. Thus, our interpretations
for the arsenical species may require caution. Last, although we considered many important potential
confounders, we did not collect information on the participants’ home water source or duration at that
address, consumption of bottled water or tap water, or consumption of filtered water, and we did not
measure arsenic levels in their home drinking water. However, prior studies in North Carolina indicate
that exposure to arsenic from contaminated private domestic wells is a public health concern [16].

5. Conclusions

More than two million people in NC drink water from unmonitored private wells [17], which have
been found to be contaminated with arsenic levels ranging from 1 to 800 µg/L [16]. Exposure to arsenic
as measured in urine was low in this cohort, but these levels may still negatively impact the health of
men residing in NC. Our finding of an increase in the odds of intermediate or aggressive PCa among
European-American men, but not among African-American men, requires further investigation as PCa
is a leading cause of morbidity and mortality among US men.
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