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Abstract

Previous studies have reported that motor behavior is affected by short-term physical inac-

tivity using cast immobilization; however, the effects of inactivity on postural sway are not

well-understood. This study aimed to investigate the effects of short-term lower limb disuse

on postural sway in the upright position after cast removal. Twenty-two healthy young adults

were enrolled, and each participant’s lower limb on one side was fixed with a soft bandage

and medical splint made from metal and soft urethane for 10 h. Fluctuations in the center of

pressure (COP) were measured before and after immobilization; the total trajectory length,

mean velocity, COP root mean square (RMS) area, mean medial-lateral (M-L) COP, and

mean anterior-posterior (A-P) COP were selected as evaluation parameters. Compared

with the postural sway before cast application, we noted an increase and shift (from the

fixed to the nonfixed side) in the postural sway after cast removal. Our results therefore sug-

gest that short-term disuse may cause acute changes in COP movements during quiet

standing. Moreover, patients may maintain their standing posture by adopting a compensa-

tory strategy involving lateral control, similar to individuals with stroke and patients who

have undergone total knee arthroplasty.

Introduction

The human body is not completely stationary, and the bipedal upright stance is unstable

owing to a small base of support and high center of mass [1]. To maintain a stable standing

position and to stand with as little sway as possible, the center of pressure (COP) must be con-

tinuously corrected. Disease (i.e., stroke) and injury (i.e., fracture) often impair the stability of

the standing position [2–4]. Several studies have suggested that a decline in postural control

leads to balance deficits and increases the risk of falling [5–7]; therefore, for several decades,

many researchers have focused on the mechanisms underlying postural instability. Under-

standing the factors that can impact postural control is necessary for developing more effective

rehabilitation strategies.
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Body joints are actively involved in maintaining posture; furthermore, for the ability to

stand with as little sway as possible, multiple joints of the body must be coordinated to increase

stability [8,9]. However, when part of the body is artificially rendered inactive, it may not be

able to perform smooth, efficient, and precisely coordinated movements. Several studies have

examined the kinematic effects on the upper limb after physical inactivity imposed by casts,

splints, bandages, cotton slings, and similar devices. Moisello et al. observed changes in inter-

joint coordination and drifting of the movement onset point during upper limb movement

[10], while Scotto et al. reported that pointing movements on a personal computer delayed

movement time while maintaining accuracy [11]. Other studies have shown an increase in the

total duration of reaching movements and modified anticipatory postural adjustments of the

elbow and shoulder [12,13]. Interestingly, these results were obtained in healthy adults and

were induced by physical inactivity of only 10–24 h.

As demonstrated in previous studies, interjoint coordination may therefore change after a

short period of physical inactivity, resulting in a different strategy to achieve a stable standing

posture. However, to the best of our knowledge, although some studies have examined body

sway in the upright position during joint restraint, none have performed such evaluations after

physical inactivity [14,15]. In clinical practice, rehabilitation for stroke in the chronic phase of

recovery includes constraint-induced movement therapy (CIMT), which involves restraint of

the unaffected limb and forced use of the affected limb [16]. This technique is performed for a

limited amount of time during the day, and there are reports that several weeks of intervention

can improve balance [17,18]. Knowledge concerning the immediate effects of physical inactiv-

ity may not only clarify the acute adverse effects of inactivity, but also contribute to our under-

standing of the mechanisms by which CIMT results in recovery.

This study aimed to investigate the effects of 10 h of lower limb physical inactivity on pos-

tural sway in an upright stance after cast removal (when compared with postural sway before

cast application) in healthy adults, using the minimum duration of restraint mentioned in a

previous study of upper extremity kinematics as a reference [10]. We hypothesized that pos-

tural sway would be greater after cast removal than before cast application.

Methods

Participants

The study was approved by the ethics committee of the International University of Health and

Welfare (16-Ifh-041) and was performed in accordance with the Declaration of Helsinki for

human participants, and there were no foreseeable risks to the participants. No personal infor-

mation was collected; written informed consent was obtained; and the participants themselves

provided background information.

The required total sample size was calculated using G�Power software (version G�Power

3.1.9.7) [19] with the following parameters: Wilcoxon’s signed rank test, power of 0.95, signifi-

cance level of 0.05, effect size of 0.96. This resulted in an estimated minimum sample size of 17

participants. Therefore, 22 healthy young male adults (mean age ± standard deviation [SD],

21.2 ± 0.8 years; height, 170.7 ± 5.3 cm; weight, 64.0 ± 6.7 kg), all of whom were enrolled at the

International University of Health and Welfare, participated in the current study. Females

were excluded because postural sway is greater during ovulation, during which ankle muscle

tension and stiffness are decreased, and these factors have been reported to be associated with

one another [20]. None of the participants had a history of significant medical, neurological,

or psychiatric diseases. Potential participants with a history of ligament injuries or lower limb

fractures were excluded.
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Experimental conditions

For each participant, the lower limb on one side was fixed with a soft bandage and medical

splint made from metal and soft urethane, from just above the knee to the proximal phalanx

with the ankle held in a neutral position. The non-dominant leg was selected as the immobili-

zation side in this study. The question, “Which leg do you choose to kick the ball?” was used to

identify the dominant leg [21,22], enabling the selection of the symmetrical side as the immo-

bilization leg (non-dominant leg), which performs the stabilizing role [21]. The fixed limb was

the left leg in all the participants.

Participants were instructed not to move their fixed limb during the 10 h period from 09:00

to 19:00. During the 10 h immobilization, the participants followed their everyday activities

while wearing the soft bandage and splint during all activities that required loading of the leg.

The tip of the hallux and the other toes remained visible to control any blood circulation restric-

tion or swelling. The participants were allowed to use their non-immobilized leg for daily living

activities during the immobilization period; therefore, they were provided with crutches and

trained in their use before cast application. During immobilization, the participants were regu-

larly checked for numbness or tingling in the leg. At the end of the immobilization period, the

experimenter removed the bandages and splints. The participants were subsequently instructed

not to use the immobilized leg until the end of the experimental session.

Recording and analysis

Postural sway was assessed based on fluctuations in the sway path of the COP. The COP was

measured using a single force plate (Twin Gravicorder G-6100; Anima Corp., Tokyo, Japan)

with a sampling frequency of 20 Hz; data were stored on a personal computer for subsequent

analysis. Participants were instructed to maintain a static, upright posture on the force plate

with their eyes open (EO) or closed (EC), their feet at an approximately 30˚ angle, barefoot,

arms resting vertically at both sides of the body, and to not move or speak during the test. Dur-

ing EO, participants were instructed to focus on a visual target placed 2 m in front of their eyes

at a visual angle of 1˚. The reason for conducting the experiment with EO or EC was to dem-

onstrate that COP sway is independent of visual information. The test started 5 s after partici-

pants stood on a single force plate to eliminate the influence of outliers. The recording time

was 60 s, starting after the posture of the participants had stabilized. COP was measured before

and after the 10 h immobilization period. The total trajectory length (cm), mean velocity (cm/

s), COP root mean square (RMS) area (cm2), mean medial-lateral (M-L) COP (cm), and mean

anterior-posterior (A-P) COP (cm) were selected as evaluation parameters. The total trajectory

length represented the distance traveled within the two-dimensional axes in the M-L and A-P

planes, observed over 60 s. The mean velocity was calculated by dividing the total distance by

the trail duration trial and was the average speed at which the COP travelled. The COP RMS

area was represented as a circle, with the radius calculated as the mean distance between the

COP and each point of the track; the COP RMS area indicated the COP range. The mean M-L

and A-P COP represented the mean of the fluctuations along the M-L and A-P axes from the

theoretical center position. For the M-L axis, a negative (−) value indicated left-sided displace-

ment (immobilization side), while a positive (+) value indicated right-sided displacement

(non-immobilization side). For the A-P axis, negative (−) and positive (+) values indicated

backward and forward displacements, respectively.

Statistical analysis

Statistical analysis was performed using SPSS software (version 26.0; SPSS Inc., Chicago, IL,

USA). First, a Shapiro-Wilk test was used to investigate whether the dependent variable
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conformed to a normal distribution, so that parametric testing could be undertaken. The

results of the Shapiro-Wilk test suggested that the dependent variable was not normally dis-

tributed. Therefore, Wilcoxon signed rank tests were used to compare the results after 10 h.

The alpha value was a priori set at p< 0.05 for all analyses. Effect sizes were examined using

Cohen’s d; Cohen’s d values of 0.2, 0.5, and> 0.8 indicate small, medium, and large effects,

respectively [23].

Results

There were no dropouts in this study. Fig 1 shows representative data from one participant,

demonstrating the total path followed by the COP during the trials.

The changes in the COP before and after cast removal are summarized in Fig 2. There was a

significant increase in the total trajectory length after cast removal when compared with that

before cast application in both the EO and EC conditions (EO: p< 0.01, d = 0.53; EC: p = 0.02,

d = 0.31). A similar increase in mean velocity was observed in both the EC and EO conditions

(EO: p < 0.01, d = 0.09; EC: p< 0.01, d = 0.07). There was no significant increase in the COP

RMS area after cast removal (EO: p = 0.68, d = 0.12; EC: p = 0.54, d = 0.15). The mean M-L

COP had significantly shifted from the immobilized to the non-immobilized side after cast

Fig 1. Total path followed by the center of pressure during the trials in one participant. EO: Eyes-open condition, EC: Eyes-closed condition.

https://doi.org/10.1371/journal.pone.0272969.g001
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removal (EO: p< 0.01, d = 0.79; EC: p = 0.02, d = 0.49), while the mean A-P COP demon-

strated no significant anterior or posterior displacement after cast removal (EO: p = 0.66,

d = 0.11; EC: p = 0.71, d = 0.08).

In the box-and-whisker plot, the center line represents the median value, while the top and

bottom boxes represent the 75th and 25th percentiles, respectively. The whiskers indicate the

minimum and maximum data points in the range.

Discussion

The present study investigated changes in postural sway during quiet standing after 10 h of

lower limb physical inactivity. The COP measurement, performed while quiet standing, using

a force plate provides a highly reproducibility assessment of postural balance, unaffected by

circadian rhythms [24]. Therefore, it is unlikely that the postural sway is simply due to time

variation. To the best of our knowledge, the current study is the first to quantify postural stabil-

ity after physical inactivity. Most notably, an increase in COP movements was observed after

cast removal when compared with those before cast application, and the COP had shifted from

the fixed to the nonfixed side. As these significant differences were observed in healthy adults,

our findings suggest that changes in COP movements during quiet standing were caused by

physical inactivity rather than disease or injury.

The study that experimentally examined the effects of transient blockage of somatosen-

sory information, the COP was altered by dermal injection of a local anesthetic into the sole

Fig 2. Changes in postural sway during quiet standing after 10 h lower limb immobilization. White: Before, Gray: After 10 h. �p< 0.05. A-P:

Anterior-posterior, COP: Center of pressure, EO: Eyes-open condition, EC: Eyes-closed condition, M-L: Medial-lateral, RMS: Root mean square.

https://doi.org/10.1371/journal.pone.0272969.g002
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of the foot [25]. The COP movements increased with increasing severity of sensory loss dur-

ing standing after ischemic blockade [26]. Thus, previous studies have shown that somato-

sensory modalities in the lower extremities contribute to postural adjustment. In the

present study, as we included healthy participants without disease, we attributed these

changes to the deprivation of somatosensory and motor information caused by disuse. On

the contrary, certain interpretations suggest that increased standing postural sway reflects

an exploratory role by the central nervous system [27]. Thus, the increase in COP sway due

to nonuse may have been an exploratory strategy of several sensory sources to keep the body

in equilibrium.

In addition, several neurophysiological studies have examined the effect of limb nonuse on

sensorimotor representation in healthy persons [18–32]. Facchini et al. reported a decrease in

cortical excitability after 3–4 days of two-hand finger immobilization using transcranial mag-

netic stimulation [28]. Interestingly, several studies have demonstrated that arm immobiliza-

tion for only 8–12 h induces a decrease in both somatosensory and motor evoked potentials

and reduces the excitability of the somatosensory motor cortex [29–31]. These previous studies

suggested that short periods of limb nonuse may trigger synaptic depression in the somatosen-

sory motor cortex. Furthermore, another study has shown that the neural activity of peripheral

nerves in the somatosensory pathway changes after 10 h of cast immobilization [32]. There-

fore, increase in COP movements during quiet standing may be caused by modifications in

limb representation in the nervous system due to physical inactivity. Reversible changes in the

nervous system may inhibit the feedback or feed-forward processes necessary for posture

maintenance [33].

The second main observation was that the postural sway shifted from the fixed side to the

nonfixed side after cast removal. Researchers have observed that, among those with unilateral

lower limb disorders, COP sway in the M-L axis is greater among patients with stroke and

those who have undergone total knee arthroplasty [34,35]. Therefore, the results of this study

suggest that after 10 h of cast immobilization, healthy participants may have maintained their

standing posture by adopting a compensatory strategy consisting of lateral control, similar to

that adopted in disease states. Conversely, the A-P axis was not affected, which may be why the

COP RMS area did not expand.

Abdullahira et al. have argued that the effects of lower limb CIMT may be overestimated

and that gait may be negatively affected by the asymmetry caused by unilateral limb restraint

[36]. Our results may support this claim.

The present study had some limitations. First, the participants were allowed to use the non-

immobilized leg for daily activities and were not restricted from full activity during the period

of immobilization. Recent studies suggest that muscle fatigue increases postural asymmetry

during quiet standing [37]. Thus, it is possible that the condition of the nonfixed limb affected

COP sway. Second, we did not collect subjective stability outcomes in this study. Third, the

effect sizes observed in this study were not large. Further studies are required to verify our

findings while accounting for these limitations.

Conclusions

The current findings indicated that after 10 h of lower limb physical inactivity, healthy adults

exhibited an increase in COP movements and a shift of the COP from the fixed to the nonfixed

side during quiet standing. These results indicate that short-term disuse may cause acute

changes in COP movements during quiet standing. Future studies should investigate the fun-

damental mechanisms underlying static postural control after inactivity.
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