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The heterogeneous energy 
landscape expression of KWW 
relaxation
J. H. Wu1,3,4 & Q. Jia2

Here we show a heterogeneous energy landscape approach to describing the Kohlrausch-Williams-
Watts (KWW) relaxation function. For a homogeneous dynamic process, the distribution of free 
energy landscape is first proposed, revealing the significance of rugged fluctuations. In view of the 
heterogeneous relaxation given in two dynamic phases and the transmission coefficient in a rate 
process, we obtain a general characteristic relaxation time distribution equation for the KWW function 
in a closed, analytic form. Analyses of numerical computation show excellent accuracy, both in time and 
frequency domains, in the convergent performance of the heterogeneous energy landscape expression 
and shunning the catastrophic truncations reported in the previous work. The stretched exponential 
β, closely associated to temperature and apparent correlation with one dynamic phase, reveals a 
threshold value of 1/2 defining different behavior of the probability density functions. Our work may 
contribute, for example, to in-depth comprehension of the dynamic mechanism of glass transition, 
which cannot be provided by existing approaches.

The famous Kohlrausch-Williams-Watts (KWW) relaxation function or the stretched exponential relaxation 
function is an important observation in complex systems from the intricate behavior of liquids and glasses, the 
folding of proteins, to the structure and dynamics of atomic and molecular clusters, describing well the phenom-
ena of important time-dependent dynamic processes1–11. The ubiquitous character of the KWW relaxation has 
shown irreversibility on the atomic, molecular or electronic scale and the dynamic nature of irreversible processes 
can be scrutinized in the context of the H-theorem to equilibrium, with the glassy state highlighting the limiting 
non-equilibrium behavior1. The dynamics of protein conformational changes clearly follows the KWW relaxation 
modes2 and geometric frustration can happen once lattice structure averts simultaneous minimization of local 
interaction energies3. KWW related slow dynamics and internal stress relaxation in bundled cytoskeletal network 
is essential for the mechanical properties of living cells4, in contrary to the stretched relaxation of flux-freezing 
breakdown in high-conductivity magnetohydrodynamic turbulence5. Most often, phenomena of the KWW relax-
ation are typical of glass forming liquids and other complex fluids and have been extensively investigated in such 
a context1,10,12.

The function is described by the equation of

)(( ) = ( )− τ

β

f t e 1
t

KWW

for the stretching exponential β between 0 and 1 (β =  1 is the normal exponential function) and the time t from 0 
to  + ∞ (τKWW is the characteristic relaxation time)13–17.

Since there is no obvious mathematical means to analytically transform the function f (t) in spite of its simple 
form, so a proper resolution and understanding of the function imperatively relies on its relaxation time spectra, 
which is still evading due to the complexity of the function and non-closed analytic approaches used in the previ-
ous research. Nevertheless, attempts have been made to explicate the stretched exponential behaviour as a linear 
superposition of simple exponential decay13,14,
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∫ ρ τ τ( ) = ( ) ( )
τ∞ − /f t e d 2
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taking τKWW =  1 for brevity. Eq. 2 is an inhomogeneous Fredholm equation of the first kind, in which the problem 
is to get the function ρ(τ), provided the continuous kernel function τ− /e t  and the function f (t)18. ρ(τ) plays the 
role of the distribution of relaxation times as the probability density function of the relaxation modes. The solu-
tion of ρ(τ) can be computed from the series expansion14, ρ τ πβ β τ( ) = − ∑ ( )Γ( + )
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However, problems of oscillation and deviation arise due to truncations from calculating the series expansion in 
the non-closed form13,19,20. We shall use an alternative distribution, the modulus function τ( )G 17,18, defined in the 
way of ∫ τ τ( ) = ( ) τ∞ − /f t G e dlnt

0
. There is a simple relation between ρ τ( ) and τ( )G , τ τρ τ( ) = ( )G . The study 

of the KWW relaxation is turned into the computation of τ( )G ,
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Evidently, an accurate inverse transformation of the KWW function in a closed form is of importance in appli-
cations, particularly relevant to processing experimental data13,14,19,20, but it needs tremendous efforts. From the 
viewpoint of the dynamic free energy distributions and heterogeneity of relaxation as well as the characteristics 
of a rate process, here we present a heterogeneous energy landscape scheme to obtain the relaxation time distri-
butions of the dynamic modes of a dynamic process which is dependent on the stretching exponential. In this 
way, we put the stretched exponential function on a solid physical basis, resolving the dilemma that in spite of the 
widespread success in describing relaxation data, the function is by and large viewed as an expedient phenome-
nological approach short of fundamental significance.

Results and Discussion
The concept of energy landscapes has been well explored in separate disciplines8,10. The spectrum of the KWW 
relaxation times implies a distribution of the free energies associating with the corresponding relaxation modes. 
In order to get such a distribution for a homogeneous process, we consider a global free energy random variable, 
∆F  in the reduced form of the free energy ∆G relative to the thermal energy k TB  or ∆ = ∆ /F G k TB  (kB 
the Boltzmann constant and T the temperature), of a system as the sum over infinite many energy random 
variables (fluctuations) around its mean value from a constant random energy variable, ∆F0, at different levels 
of stochastic cascading with exponential distributions21,22. Suppose ∆Fn (n =  1, 2, 3, …, m, m→ + ∞) are 
those independently, nonidentically distributed random variables, with the exponential distribution of 
(∆ ) =

α ε α ε∆+( − ) − +( − )g F e F
n

n 1
e

[ n 1 n, which is defined over the domain of [− ,+∞
α ε+( − )

1
n 1

] and zero elsewhere. 

The two parameters have the properties of α> 0 and ε> 0. Obviously, ∆Fn has the expectation of (∆ ) =E F 0n  
and a standard deviation σ (∆ )Fn  of 

α ε+( − )
1

n 1
. With the zero mean value and the limited magnitude of the stand-

ard deviation, ∆Fn represents a fluctuating contribution to the global energy quantity of the system. The rough-
ness strength of ∆Fn may be quantified through its standard deviation. As n increases, the measure of σ (∆ )Fn  
shows a harmonic-like dwindle.

We are interested in the limiting probability density distribution of the global energy variable ∆F defined as 
∆ = ∆ + ∑ ∆=F F F0 n 1

m
n as m→ + ∞. In the equation, the global energy variable ∆F has the same expectation, set 

to µ, as that of the constant random energy variable ∆F0 since (∆ ) = (∆ )E F E F0 . Moreover, ∆F has a finite 
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is divergent when m→ + ∞, so ∆F spreads over the domain (− ∞, + ∞). By some mathematical manipulation23,24, 
we are able to formulate the general probability density distribution function of the global free energy quantity 
∆F as
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where ( )ψ α
ε

 is the digamma function. α ε µ(∆ , , , )g F  is verified as the probability density function of the global 
free energy distribution for the homogeneous process with the three parameters α, ε, and µ.

In reality, relaxation is a rate process and the characteristic relaxation time is related to the corresponding free 
energy by the Arrhenius equation of τ τ= −∆ /e G k T

0
B  or τ τ= −∆e F

0  (τ0 is constant)25,26. As a result, the general 
probability density distribution function of the global free energy quantity in Eq. 4 is converted to the relaxation 
time spectrum by the expression of τ α ε τ( , , , , )=

α τ− ε
g a b a e b , with = ε
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Furthermore, the realization of relaxation may pass a transient state during the rate process, which can go 
forward to a relaxed state or move back to the initial state without relaxing25–27. The rates of the forward and back-
ward relaxation are probably correlated to the duration of dwelling on the transient state, which can be character-
ized by the corresponding relaxation time. Hence, the forward and backward transmission rate is assumed to have 
the form of = τR g ef f

h f  and = τR g eb b
hb  (g f , h f , gb, and hb are constants), respectively. The transmission coeffi-
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cient κ is then defined by the expression of κ =
+ τ+

1
1 ec d

, with the new constants of c and d. In consequence, the 
relaxation time spectrum for the homogenous process is given by τ α ε τ( , , , , , , )= α τ

+
−

τ

ε

+g a b c d ea b
1 ec d

.
We turn to consider the fact that the heterogeneous dynamics in glasses and other complex systems is attrib-

uted to the transitory coexistence of two dynamical sub-processes (phases) characterized by a fast and a slow 
relaxation rate in general10,28. In this scenario, the two sub-processes or dynamic phases contribute to the total 
relaxation, probably separating during relaxation and mixing afterwards. Therefore, the modulus function τ( )G  
is composed of such two heterogeneous dynamic phases,
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where α ε, , , , ,a b ci i i i i  and di are constants for the dynamic phases i (i =  1 and 2), under the conditions that the 
parameters α ε, , ,ai i i  and biare positively valued but no such constraints on ,ci  and di. For β= / ,1 2  there exists an 
exact solution of the modulus function τ τ( ) =

π

τ/ − /
G e1

2
1 2 4

, implicitly validating the expression of τ( )G 14.
For a given β, search is attempted (refer to Methods), based on the numerical data from Eq. 3 compared to Eq. 

5, to find an optimized set of the parameters in the parameter space, as summarized in Table 1 for τ( )G , with the 
correlation coefficient reported to be 1. Fig. 1 shows the outcomes from the analyses of the numerical computa-
tion for β between 0.05 and 0.95. The modulus function τ( )G  in Fig. 1a gives a strong dependence on the 
stretched parameter β. For the same β, the function reveals the monotonic trend of initial increasing, attaining 
the maximum and then decline. Moreover, a tighter distribution is found for a larger value of β than 1/2 versus 
the more spread distribution of β less than 1/2. The evaluation proves the accurate consensus between the numer-
ical calculation by Eq. 3 and the derived results based on Eq. 5. In the supplemental Figure S1 we show the validity 
of τ( )G  over a broader range of relaxation time. The analyses substantiate the proposition of dynamic phase 
coexistence in the KWW relaxation course10. Reviewing the parameters obtained, the transmission coefficient κ 
has a different weight for different values of β, less independence on the relaxation time τ for small β but bigger 
reliance large β, hinting a threshold value of β =  1/2.

The probability density distribution ρ τ( ) is more revealing in the exposition of the heterogeneous dynamic 
behavior of the KWW relaxation. The computation results are summarized in and Table 2 for ρ τ( ), with the cor-
relation coefficient recorded to be 1 (refer to Methods for the detailed computation procedure). Furthermore, the 
integration of ρ τ( ) over τ is automatically normalized, confirming the property of the probability density func-
tion and unambiguously demonstrating the self-consistence and effectiveness of our approach including the accu-
racy of the numerical calculation and the validity of the equations derived. Fig. 1b shows the probability density 
function ρ τ( ) dependent on the stretched exponential β. The dissimilar heterogeneous behavior is evidently 
manifested with a larger β than 1/2 which shows a phenomenon of an initial decrease followed by an increase and 
then drop off after reaching the maximum, in contrast to the monotonic decline of the distributions with a smaller 
β than 1/2.

The behavior of the probability density function ρ τ( ) as a function of the stretched exponential becomes more 
distinctive if we plot the data in the log-log scale, as shown in Fig. 2a. In the figure, the numerical data calculated 
from Eq. 3 and the derived results based on Eq. 5 coincide over a broader range of relaxation time, showing the 
rationality of the approach adopted in this work in a closed, analytic form of the relaxation time spectra of the 
KWW relaxation. As already manifested in Fig. 1, ρ τ( ) or τ( )G  becomes more and more peaked around τKWW 
when β approaches 1. This limiting behavior turns out to more distinguishing by re-plotting the data in the nor-
mal coordinates, as demonstrated in Fig. 2b for the probability density function ρ τ( ).

Fig. 3 gives the decomposed dynamic phases of the probability density distribution ρ τ( ) for several represent-
ative β values. The value of β =  1/2 has a defining property, of which the two dynamic phases merge to have the 
same behavior. On the basis of analyzing the parameters as acquired in Table 2 and the features of the curves, the 

β  a1 α 1 b1 ε 1 c1 d1 a2 α 2 b2 ε 2 c2 d2

0.05 0.09694 0.05 1.10387 0.05028 0 0 0.01349 0.10229 1.05334 0.05008 0 0

0.1 0.18681 0.09996 1.17828 0.10281 0 0 0.04987 0.21331 1.10258 0.10074 0 0

0.2 0.33774 0.19926 1.19601 0.22829 0 0 0.16483 0.49152 1.21457 0.20609 0 0

0.3 0.54552 0.29706 0.99587 0.28223 0.03954 1.51629 0.1755 0.30231 0.49313 0.41286 − 0.0369 − 1.1461

0.4 0.72599 0.39667 0.37684 0.6248 0.01294 0.90472 0.19037 0.41549 1.01676 0.33299 0.02505 0.73563

0.5 0.14105 0.5 0.25 1 0 0 0.14105 0.5 0.25 1 0 0

0.6 0.37566 0.5999 0.17446 1.54857 0.35527 − 0.9415 0.14323 1.19636 0.06925 1.68446 0.36855 − 0.999

0.7 0.57003 0.70038 1.37293 0.50175 1.45002 0.35285 0.63084 1.24618 0.06321 2.58004 0.62518 − 1.1133

0.8 0.18253 0.8022 1.98138 1.20762 3.79886 − 3.5633 0.62092 1.81685 0.03528 4.48449 1.83817 − 3.9468

0.9 1.07662 0.93241 0.08628 8.00733 − 1.4811 2.50965 8.8024 0.8329 0.03668 9.05358 − 3.6567 6.15082

0.95 0.78903 0.94749 0.84632 7.50918 − 2.2397 2.76605 43.6189 0.8594 0.01708 19.2492 − 7.2066 10.6458

Table 1.  Derived parameters of the function G(τ). Note: τ τ( ) = ∑ α τ
= +

−
τ

ε

+G ea b
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1 e
i
ci di

i i
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function ρ τ( ) switches from the scenario that the probability densities of the two dynamic phases share analogous 
monotonic decrease with the relaxation time for β below 1/2 to the observation that the two dynamic phases 
present a more complicated pattern for β above 1/2.

In Fig. 4, we provide detailed decomposition analyses of heterogeneity of the probability density function ρ τ( ) 
for β =  0.3, β =  0.8 and β =  0.95. In general, two dynamic phases mix for small β, but for large β the major phase 
dominates while the minor phases diminishes. The limiting feature is evidently manifested in the variation of the 
curves from β =  0.3 to β =  0.95, that is, the bimodal feature is rapidly diminishing as β approaches 1, with the fast 
growing magnitude of the major phase against the quick weakening contribution of the minor phase.

Fig. 5 reports the verification of accuracy in the reverse computation outcomes of the KWW relaxation func-
tion ( )f t  applying the formulation of ∫ τ τ( ) = ( ) τ∞ − /f t G e dlnt

0
 or ∫ ρ τ τ( ) τ∞ − /e dt

0
, using the parameters from 

Fig. 1 for β between 0.05 and 0.95 versus the theoretical curves (refer to Methods). The precise performance of the 
assessment is clearly exposed in the consistency of the computed data with the analytic results.

In order to analyze the KWW function in the domain of frequency, a Fourier transform is needed to explain 
dynamic susceptibilities and scattering experiments from the perspective of linear response theory13,14,19,20. 
Absent of analytical expression for the transform, nevertheless, previous numerical methods suffer from prob-
lems originating from approximations and truncations which yield undesired oscillations13,14,19,20. Our approach 
shuns the cutoff effects and scrubs out oscillations. The results of the Fourier transformation using the derived 
parameters from Fig. 1 are presented in Fig. 6 (refer to Methods). The susceptibilities, real part ε′ (Fig. 6a) and 
imaginary part ε′′ (Fig. 6b) as well as the loss tangents δtan  (Fig. 6c) demonstrate the relevant properties of 
well-defined smoothness with respect to the frequency domain and strong dependence on the stretching param-
eter β. The Cole-Cole plots in Fig. 6d illustrate the susceptible relation of the relaxation, indicating a robust β 
dependence.

Figure 1.  Analyses of the computational results of the KWW relaxation time spectra for values of the 
stretching parameter β between 0.05 and 0.95. The computational data points from Eq. 3 are shown in 
symbols and the calculated results from Eq. 5 are given in continuous curves. a, Log-log plots of the modulus 
function τ( )G  for β values between 0.05 and 0.95. The results manifest a strong dependence on β, and for the 
same β, τ( )G  monotonically increases to attain a peak value and then decreases. b, Semi-log plots of the 
probability density function ρ τ( ) for β values between 0.05 and 0.95. The outcomes reveal quite different, strong 
dependence on β, which divides the β values in two ranges split by β =  1/2. For the same β below 1/2, ρ τ( ) 
shows the behavior of monotonic decrease, in contrary to the observation that for the same β above 1/2, ρ τ( ) 
gives a rapid initial decrease, then increases to attain a peak value and then decreases.
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Associated with the KWW relaxation is one important issue in condensed matter physics concerning glass 
transition of glass-forming materials, sharing the characteristics of free energy landscape, non-equilibrium, and 
heterogeneity10,17,29,30. The severe slow-down toward the glass transition temperature is linked to the decreasing β 

β  a3 α 3 b3 ε 3 c3 d3 a4 α 4 b4 ε 4 c4 d4

0.05 0.09694 − 0.95000 1.10387 0.05028 0 0 0.01349 − 0.89771 1.05334 0.05008 0 0

0.1 0.18681 − 0.90004 1.17828 0.10281 0 0 0.04987 − 0.78669 1.10258 0.10074 0 0

0.2 0.33774 − 0.80074 1.19601 0.22829 0 0 0.16483 − 0.50848 1.21457 0.20609 0 0

0.3 0.54552 − 0.70294 0.99587 0.28223 0.03954 1.51629 0.1755 − 0.69769 0.49313 0.41286 − 0.0369 − 1.1461

0.4 0.72599 − 0.60333 0.37684 0.6248 0.01294 0.90472 0.19037 − 0.58451 1.01676 0.33299 0.02505 0.73563

0.5 0.14105 − 0.5 0.25 1 0 0 0.14105 − 0.5 0.25 1 0 0

0.6 0.37566 − 0.40010 0.17446 1.54857 0.35527 − 0.9415 0.14323 0.19636 0.06925 1.68446 0.36855 − 0.999

0.7 0.57003 − 0.29962 1.37293 0.50175 1.45002 0.35285 0.63084 0.24618 0.06321 2.58004 0.62518 − 1.1133

0.8 0.18253 − 0.19780 1.98138 1.20762 3.79886 − 3.5633 0.62092 0.81685 0.03528 4.48449 1.83817 − 3.9468

0.9 1.07662 − 0.06759 0.08628 8.00733 − 1.4811 2.50965 8.8024 − 0.16710 0.03668 9.05358 − 3.6567 6.15082

0.95 0.78903 − 0.05251 0.84632 7.50918 − 2.2397 2.76605 43.6189 − 0.14060 0.01708 19.2492 − 7.2066 10.6458

Table 2.  Derived parameters of the function ρ (τ). Note: τ τ( ) = ∑ α τ
= +

−
τ

ε

+G ea b
i 3
4

1 e
i
ci di

i i
i.

Figure 2.  Plotting of the probability density function as a function of the relaxation time for values of the 
stretching parameter β between 0.05 and 0.95. (a) Log-log plots of the probability density function ρ τ( ) for β 
values between 0.05 and 0.95. The outcomes reveal quite different, strong dependence on β, which divides the β 
values in two ranges split by β =  1/2. For the same β below 1/2, ρ τ( ) shows the behavior of monotonic decrease, 
in contrary to the observation that for the same β above 1/2, ρ τ( ) gives a rapid initial decrease, then increases to 
attain a peak value and then decreases. (b) Linear plots of the probability density function ρ τ( ) for β values 
between 0.05 and 0.95. For a small β, the two dynamic phases mix, but when β approaches 1, the major phase 
exclusively dominates with the minor phase disappearing, revealing the limiting behavior of ρ τ( ) as β 
approaches 1.
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value, corresponding to the wide-spread relaxation time distribution (Fig. 1). The relation between β and temper-
ature is interesting and has been examined by numerical simulations or experiments31, but a direct connection is 
still elusive. Indeed, we have tried to follow the direction to work out such a correlation between β  and tempera-
ture but it requires more efforts to reach a conclusive result. Nonetheless, it may be constructive to point out that 
bimodal or bimodal like distributions are observed, for example, in treating the dynamic order-disorder transi-
tion in atomistic models of structural glass formers32. The coexistence of the bimodal order parameter distribu-
tions is clearly related to the ordered and disordered phases. In our work, the bimodal like shape is observed in the 
density distribution of the relaxation time. A correlation could exist between the two, but it is recognizable that 
more work is of necessity to establish such a direct association between the dynamic order-disorder transition and 
the KWW relaxation.

Methods
This work reports a closed, analytic expression, Eq. 5, for describing the relaxation time probability density distri-
bution function which is numerically calculated according to Eq. 3. As described below, the parameters in Eq. 5 
are derived from the fit to the numerical data of Eq. 3. In this work, the fact that the two data sets coincide proves 
our approach, namely, Eq. 5 can excellently describe the relaxation time probability density distribution of the 
KWW relaxation. No other equations like Eq. 5 have been reported yet. In other words, to our knowledge, no 
equation other than Eq. 5 has been reported up to now to satisfactorily describe the numerical data from Eq. 3. 
We have performed the calculation with the help of the Mathematica and Origin software packages.

Based on Eq. 3 or the expression of

∑ρ τ
τ

β β τ( ) = −
π

(− )
!

(π )Γ( + ) ,β=
∞

k
k k1 1 sin 1k

k
k

1

the numerical data of the modulus function τ( )G  or the probability density function ρ τ( ) of the relaxation time 
distributions of the KWW relation were obtained via Mathematica for a fixed β value as a function of the relaxa-
tion time. Specifically, each data point of τ was computed up to 106 terms.

Then, we used Eq. 5 or the expression of

∑ρ τ τ( ) =
+ τ

α τ

=
+

− εa
1 e

ei
c d

b

i 3

4

i i

i i
i

(where α ε, , , , ,a b ci i i i i  and di are constants for the dynamic phases 1 and 2), via the Origin program to conduct 
nonlinear regression of the data from the above numerical computation for a given β. Search was repeated until 
an optimized set of the parameters in the parameter space was found, with the correlation coefficient reported to 
be 1. The results are summarized in Table 1 for τ( )G  and Table 2 for ρ τ( ).

Subsequently, the integration of ρ τ( ) over τ  was calculated, using the parameters recorded in Table 2. It is 
found that ρ τ( ) is normalized for all β values discussed in this work.

Figure 3.  Decomposition analyses of heterogeneity of the probability density function ρ τ( ) for 
representative values of the stretching parameter β between 0.1 and 0.9. The probability density function 
ρ τ( ) shows strong dependence on the stretched exponential β and consists of two component distributions 
corresponding to two different dynamic phases. The activities of the dynamic phases are quite dissimilar for β
>  1/2 and β<  1/2. The analyses are performed for the same β in the same color: The signs of the symbol-lines 
represent the computational data points from the equation of ρ τ πβ β τ( ) = − ∑ ( )Γ( + )

πτ
β

=
∞ (− )

!
k ksin 1k k

k1
1

1 k
 (in 

symbol) and the calculated results based on Eq. 5 in the continuous curve, with the thick curve for the dynamic 
phase 1 and the thin one for the dynamic phase 2. Data-points and curves: β =  0.1 in red circles, β =  0.5 in olive 
triangles, β =  0.8 in blue diamonds, and β =  0.9 in green discs.
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Figure 4.  Decomposition analyses of heterogeneity of the probability density function ρ τ( ) for 
representative values of the stretching parameter β between 0.1 and 0.95. The probability density function 
ρ τ( ) shows strong dependence on the stretched exponential β and consists of two component distributions 
corresponding to two different dynamic phases. The activities of the dynamic phases are quite dissimilar for β
>  1/2 and β<  1/2. The analyses are performed for the same β. The signs of the symbol-lines represent the 
computational data points from the equation of ρ τ πβ β τ( ) = − ∑ ( )Γ( + )

πτ
β

=
∞ (− )

!
k ksin 1k k

k1
1

1 k
 (in symbol) and 

the calculated results based on Eq. 5 in the shadowed regions. The limiting behavior is revealed from the 
peaking when β approaches 1. a, β =  0.3. b, β =  0.8. c, β =  0.95. The bimodal feature is rapidly diminishing as β 
approaches 1, with the fast growing magnitude of the major phase against the quick weakening contribution of 
the minor phase, unveiling the limiting behavior of ρ τ( ) as β approaches 1.

Figure 5.  Comparison of the calculated relaxation outcome with the theoretical prediction of the KWW 
relaxation function ( )f t  for representative values of the stretching parameter β between 0.05 and 0.95. The 
reverse computation data (in symbols) accurately agree with the theoretical outcomes (in curves). Labeling of 
the same data set of the same β value: 0.05 (pink), 0.1 (magneta), 0.2 (violet), 0.3 (dark cyan), 0.4 (cyan), 0.5 
(olive), 0.6 (purple), 0.7 (green), 0.8 (orange), 0.9 (wine), and 0.95 (red).
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The reverse computation of the KWW relaxation function ( )f t  applied the formulation of 

( )∫ τ τ( ) = ∑ α τ τ∞
= +

− − /
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ε

+f t e e dlna b t
0 i 1

2
1 e

i
ci di

i i
i  or ( )∫ τ τ( ) = ∑ α τ τ∞
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4
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recorded in Tables 1 and 2 were used. To guarantee the accuracy of the computation, the integration was divided 
into segmental domains, say, [10−8, 10−7],…, [103, 104], and then summed up.

The  Four ier  t ransform was  p er formed according  to  the  express ions  ∫ε ω′( ) = +
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τ τ
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part, respectively. The parameters used in the expressions were recorded in Tables 1 and 2. To secure the precision 
of the computation, the integration was divided into segmental domains, say, [10−8, 10−7],…, [103, 104], and then 
summed up.

Conclusions
We have shown a heterogeneous energy landscape approach to describing the Kohlrausch-Williams-Watts 
(KWW) relaxation function in a closed, analytic form, which is effective both in time and frequency domains. 
The equations obtained ascribe the heterogeneous dynamics of the KWW relaxation to the transitory coexistence 
of two dynamic phases as well as the characteristics of a rate process. The relaxation time probability density 
distribution acquired in this way changes upon varying the stretched exponential and, in particular, it is found 
that β =  1/2 marks a crossover from a small β regime to a large β regime. Our work significantly advances the 
mechanism of the KWW relaxation which cannot be provided by existing schemes and offers physical insights 
into the dynamic processes of glass transition and other complex phenomena.

Figure 6.  Fourier transform of the calculated KWW relaxation function ( )f t  for values of the stretching 
parameter β between 0.1 and 0.95. (a) Semi-log plots of the real susceptibility ε′ over the frequency domain. ε′ 
shows strong dependence on β, larger initial amplitude plateaus from smaller β. (b) Semi-log plots of the 
imaginary susceptibility ε′′ over the frequency domain. ε′′ shows strong dependence on β, larger dissipation loss 
amplitudes from smaller β. (c) Semi-log plots of the dissipation loss δtan  as a function of frequency. The peak 
position of δtan  shifts right with increasing β, but the dissipation strength decreases. (d) Cole-Cole plots of the 
real susceptibility ε′ versus the imaginary susceptibility ε′′ for β values between 0.05 and 0.95. The semi-circle-
like expands outward with a decreasing value of β. Note: Some data are out of the graphs for smaller β due to the 
plotting range for lucidity.
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