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For the normal model with a known mean, the Bayes estimation of the variance parameter
under the conjugate prior is studied in Lehmann and Casella (1998) and Mao and Tang
(2012). However, they only calculate the Bayes estimator with respect to a conjugate prior
under the squared error loss function. Zhang (2017) calculates the Bayes estimator of the
variance parameter of the normal model with a known mean with respect to the conjugate
prior under Stein’s loss function which penalizes gross overestimation and gross
underestimation equally, and the corresponding Posterior Expected Stein’s Loss
(PESL). Motivated by their works, we have calculated the Bayes estimators of the
variance parameter with respect to the noninformative (Jeffreys’s, reference, and
matching) priors under Stein’s loss function, and the corresponding PESLs. Moreover,
we have calculated the Bayes estimators of the scale parameter with respect to the
conjugate and noninformative priors under Stein’s loss function, and the corresponding
PESLs. The quantities (prior, posterior, three posterior expectations, two Bayes
estimators, and two PESLs) and expressions of the variance and scale parameters of
the model for the conjugate and noninformative priors are summarized in two tables. After
that, the numerical simulations are carried out to exemplify the theoretical findings. Finally,
we calculate the Bayes estimators and the PESLs of the variance and scale parameters of
the S&P 500 monthly simple returns for the conjugate and noninformative priors.

Keywords: Bayes estimator, variance and scale parameters, normal model, conjugate and noninformative priors,
Stein’s loss

1 INTRODUCTION

There are four basic elements in Bayesian decision theory and specifically in Bayesian point
estimation: The data, the model, the prior, and the loss function. In this paper, we are interested
in the data from the normal model with a known mean, with respect to the conjugate and
noninformative (Jeffreys’s, reference, and matching) priors, under Stein’s and the squared error
loss functions. We will analytically calculate the Bayes estimators of the variance and scale
parameters of the normal model with a known mean, with respect to the conjugate and
noninformative priors under Stein’s and the squared error loss functions.
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The squared error loss function has been used by many
authors for the problem of estimating the variance, σ2, based
on a random sample from a normal distribution (see for instance
(Maatta and Casella, 1990)). As pointed out by (Casella and
Berger, 2002), the squared error loss function penalizes
overestimation and underestimation equally, which is fine for
the location parameter with parameter spaceΘ � (−∞,∞). For a
variance or scale parameter, the parameter space is Θ � (0,∞)
where 0 is a natural lower bound and the estimation problem is
not symmetric. In these cases, we should not choose the squared
error loss function, but choose a loss function which penalizes
gross overestimation and gross underestimation equally, that is,
an action a will incur an infinite loss when it tends to 0 or ∞.
Stein’s loss function has this property, and thus it is
recommended to use for the positive restricted parameter
space Θ � (0,∞) by many authors (see for example (James
and Stein, 1961; Petropoulos and Kourouklis, 2005; Oono and
Shinozaki, 2006; Bobotas and Kourouklis, 2010; Zhang, 2017; Xie
et al., 2018; Zhang et al., 2019; Sun et al., 2021)). In the normal
model with a knownmean μ, our parameters of interest are θ � σ2

(a variance parameter) and θ � σ (a scale parameter). Therefore,
we will select Stein’s loss function.

The motivation and contributions of our paper are
summarized as follows. For the normal model with a known
mean μ, the Bayes estimation of the variance parameter θ � σ2

under the conjugate prior which is an Inverse Gamma
distribution is studied in Example 4.2.5 (p.236) of (Lehmann
and Casella, 1998) and Example 1.3.5 (p.15) of (Mao and Tang,
2012). However, they only calculate the Bayes estimator with
respect to a conjugate prior under the squared error loss. (Zhang,
2017) calculates the Bayes estimator of the variance parameter θ �
σ2 of the normal model with a known mean with respect to the
conjugate prior under Stein’s loss function which penalizes gross
overestimation and gross underestimation equally, and the
corresponding Posterior Expected Stein’s Loss (PESL).
Motivated by the works of (Lehmann and Casella, 1998; Mao
and Tang, 2012; Zhang, 2017), we want to calculate the Bayes
estimators of the variance and scale parameters of the normal
model with a known mean for the conjugate and noninformative
priors under Stein’s loss function. The contributions of our paper
are summarized as follows. In this paper, we have calculated the
Bayes estimators of the variance parameter θ � σ2 with respect to
the noninformative (Jeffreys’s, reference, and matching) priors
under Stein’s loss function, and the corresponding Posterior
Expected Stein’s Losses (PESLs). Moreover, we have calculated
the Bayes estimators of the scale parameter θ � σ with respect to
the conjugate and noninformative priors under Stein’s loss
function, and the corresponding PESLs. For more literature on
Bayesian estimation and inference, we refer readers to (Sindhu
and Aslam, 2013a; Sindhu and Aslam, 2013b; Sindhu et al., 2013;
Sindhu et al., 2016a; Sindhu et al., 2016b; Sindhu et al., 2016c;
Sindhu et al., 2017; Sindhu et al., 2018; Sindhu andHussain, 2018)

The rest of the paper is organized as follows. In the next
Section 2, we analytically calculate the Bayes estimators of the
variance and scale parameters of the normal model with a known
mean, with respect to the conjugate and noninformative priors
under Stein’s loss function, and the corresponding PESLs. We

also analytically calculate the Bayes estimators under the squared
error loss function, and the corresponding PESLs. The quantities
(prior, posterior, three posterior expectations, two Bayes
estimators, and two PESLs) and expressions of the variance
and scale parameters for the conjugate and noninformative
priors are summarized in two tables. Section 3 reports vast
amount of numerical simulation results of the combination of
the noninformative prior and the scale parameter to support the
theoretical studies of two inequalities of the Bayes estimators and
the PESLs, and that the PESLs depend only on the number of
observations, but do not depend on the mean and the sample. In
Section 4, we calculate the Bayes estimators and the PESLs of the
variance and scale parameters of the S&P 500 monthly simple
returns for the conjugate and noninformative priors. Some
conclusions and discussions are provided in Section 5.

2 BAYES ESTIMATOR, PESL, IRSL, AND
BRSL

In this section, we will analytically calculate the Bayes estimator
δπ,θs (x) of the variance parameter θ � σ2 ∈ Θ � (0,∞) under
Stein’s loss function, the PESL at δπ,θs (x), PESLπ,θs (x), and the
Integrated Risk under Stein’s Loss (IRSL) at δπ,θs ,
IRSLπ,θs � BRSLπ,θ , which is also the Bayes Risk under Stein’s
Loss (BRSL) for π, θ. See (Robert, 2007) for the definitions of the
posterior expected loss, the integrated risk, and the Bayes risk. We
will also analytically calculate the Bayes estimator δπ,σs (x) of the
scale parameter σ ∈ Θ � (0,∞) under Stein’s loss function,
the PESL at δπ,σs (x), PESLπ,σs (x), and the IRSL at δπ,σs ,
IRSLπ,σs � BRSLπ,σ , which is also the BRSL for π, σ.

Suppose that we observe X1, X2, . . ., Xn from the hierarchical
normal model with a mixing variance parameter θ � σ2:

Xi|θ ∼iid N μ, θ( ), i � 1, 2, . . . , n,
θ ∼ π θ( ),{ (1)

where − ∞ < μ < ∞ is a known constant, N(μ, θ) is the normal
distribution with a known mean μ and an unknown variance θ,
and π(θ) is the prior distribution of θ. For the normal model with
a known mean μ, the Bayes estimation of the variance parameter
θ � σ2 under the conjugate prior which is an Inverse Gamma
distribution is studied in Example 4.2.5 (p.236) of (Lehmann and
Casella, 1998) and Example 1.3.5 (p.15) of (Mao and Tang, 2012).
However, they only calculate the Bayes estimator with respect to a
conjugate prior under the squared error loss. (Zhang, 2017)
calculates the Bayes estimator of the variance parameter θ �
σ2 with respect to the conjugate prior under Stein’s loss function,
and the corresponding PESL. Motivated by the works of
(Lehmann and Casella, 1998; Mao and Tang, 2012; Zhang,
2017), we want to calculate the Bayes estimators of the
variance parameter of the normal model with a known mean
for the noninformative (Jeffreys’s, reference, and matching)
priors under Stein’s loss function. The usual Bayes estimator
with respect to a prior π(θ) is to calculate δπ,θ2 (x) � E(θ|x) under
the squared error loss function. As pointed out in the
introduction, we should calculate and use the Bayes estimator
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of the variance parameter θ with respect to a prior π(θ) under
Stein’s loss function, that is, δπ,θs (x).

Alternatively, we may be interested in the scale parameter θ �
σ. Motivated by the works of (Lehmann and Casella, 1998; Mao
and Tang, 2012; Zhang, 2017), we also want to calculate the Bayes
estimators of the scale parameter θ � σ with respect to the
conjugate and noninformative priors under Stein’s loss
function, and the corresponding PESLs. Suppose that we
observe X1, X2, . . ., Xn from the hierarchical normal model
with a mixing scale parameter θ � σ:

Xi|σ ∼iid N μ, σ2( ), i � 1, 2, . . . , n,
σ ∼ π σ( ),{ (2)

where −∞ < μ <∞ is a known constant,N(μ, σ2) is the normal
distribution with a known mean μ and an unknown variance σ2,
and π(σ) is the prior distribution of σ. The usual Bayes estimator
with respect to a prior π(σ) is to calculate δπ,σ2 (x) � E(σ|x) under
the squared error loss function. As pointed out in the
introduction, we should calculate and use the Bayes estimator
of the scale parameter σ with respect to a prior π(σ) under Stein’s
loss function, that is, δπ,σs (x).

Now let us explain why we choose Stein’s loss function on
Θ � (0,∞). Stein’s loss function is given by

Ls θ, a( ) � a

θ
− log

a

θ
− 1, (3)

where θ > 0 is the unknown parameter of interest and a is an
action or estimator. The squared error loss function is given by

L2 θ, a( ) � a − θ( )2. (4)

The asymmetric Linear Exponential (LINEX) loss function
((Varian et al., 1975; Zellner, 1986; Robert, 2007)) is given by

LL θ, a( ) � ec a−θ( ) − c a − θ( ) − 1, (5)

where c ≠ 0 serving to determine its shape. In particular, when c >
0, the LINEX loss function tends to∞ exponentially, while when
c < 0, the LINEX loss function tends to ∞ linearly. Note that on
the positive restricted parameter space Θ � (0,∞), Stein’s loss
function penalizes gross overestimation and gross
underestimation equally, that is, an action a will incur an
infinite loss when it tends to 0 or ∞. Whereas, the squared
error loss function does not penalize gross overestimation and
gross underestimation equally, as an action a will incur a finite
loss (in fact θ2) when it tends to 0 and incur an infinite loss when
it tends to ∞. Similarly, the LINEX loss functions also do not
penalize gross overestimation and gross underestimation equally,
as an action a will incur a finite loss (in fact e−cθ + cθ − 1) when it
tends to 0 and incur an infinite loss when it tends to∞. Figure 1
shows the four loss functions on Θ � (0,∞) when θ � 2.

As pointed out by (Zhang, 2017), the Bayes estimator

δπ,θs x( ) � 1

E 1
θ|x( )

minimizes the PESL, that is,

δπ,θs x( ) � argmin
a∈A

E Ls θ, a( )|x[ ],

where A � a(x): a(x)> 0{ } is an action space, a � a(x)> 0 is an
action (estimator), which is a function only of x, Ls(θ, a) given by
(Eq. 3) is Stein’s loss function, and θ > 0 is the unknown
parameter of interest. Note that Stein’s loss function has a nice
property that it penalizes gross overestimation and gross
underestimation equally, that is, an action a will incur an
infinite loss when it tends to 0 or ∞. Moreover, note that θ
may be the variance parameter σ2 or the scale parameter σ.

The usual Bayes estimator of θ is δπ,θ2 (x) � E(θ|x) which
minimizes the Posterior Expected Squared Error Loss. It is
interesting to note that

δπ,θs x( )≤ δπ,θ2 x( ), (6)

whose proof exploits Jensen’s inequality and the proof can be
found in (Zhang, 2017). Note that the inequality (Eq. 6) is a
special inequality in (Zhang et al., 2018). As calculated in (Zhang,
2017), the PESL at δπ,θs (x) � [E(θ−1|x)]−1 is

PESLπ,θ
s x( ) � E Ls θ, a( )|x[ ]|a� 1

E 1
θ
|x( ) � log E

1
θ
|x( ) + E log θ|x( ),

and the PESL at δπ,θ2 (x) � E(θ|x) is
PESLπ,θ

2 x( ) � E Ls θ, a( )|x[ ]|a�E θ|x( )

� E θ|x( )E 1
θ
|x( ) − log E θ|x( ) + E log θ|x( ) − 1.

As observed in (Zhang, 2017),

PESLπ,θ
s x( )≤PESLπ,θ

2 x( ), (7)

which is a direct consequence of the general methodology for
finding a Bayes estimator or due to δπ,θs (x) minimizes the PESL.

FIGURE 1 | The four loss functions on Θ � (0,∞) when θ � 2.
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The numerical simulations will exemplify (Eqs 6, 7) later. Note
that the calculations of δπ,θs (x), δπ,θ2 (x), PESLπ,θs (x), and
PESLπ,θ2 (x) depend only on the three expectations E(θ|x),
E(θ−1|x), and E(log θ|x).

2.1 Conjugate Prior
The problem of finding the Bayes estimator under a conjugate
prior is a standard problem that is treated in almost every text on
Mathematical Statistics.

The quantities and expressions of the variance and scale
parameters of the normal models (Eqs 1, 2) with a known
mean μ for the conjugate prior are summarized in Table 1. In
the table, α > 0 and β > 0 are known constants,

αp � α + n

2
, βp � 1

β
+ 1
2
∑n
i�1

xi − μ( )2⎡⎣ ⎤⎦−1,
ψ z( ) � Γ′ z( )

Γ z( ) �
d

dz
log Γ z( ) � digamma z( )

is the digamma function, and Γ(z) is the gamma function. In R
software (R Core Team. R, 2021), the function digamma(z)
calculates ψ(z). The quantities and expressions of the variance
parameter θ � σ2 for the conjugate prior are calculated in and
quoted from (Zhang, 2017). The calculations of the quantities and
expressions of the scale parameter θ � σ for the conjugate prior
can be found in the SupplementaryMaterial. We remark that the
calculations of the quantities and expressions in Table 1 are not
trivial, especially Eπc(log θ|x).

2.2 Noninformative Priors
Famous noninformative priors include the Jeffreys’s ( (Jeffreys,
1961)), reference ( (Bernardo, 1979; Berger and Bernardo, 1992)),
and matching ( (Tibshirani, 1989; Datta and Mukerjee, 2004))
priors. See also (Berger, 2006; Berger et al., 2015) and the
references therein.

The Jeffreys’s noninformative prior for θ � σ2 is

πJ θ( )∝ 1
θ
or πJ σ2( )∝ 1

σ2
.

See Part I (p.66) of (Chen, 2014), where μ is assumed known in
the normal model N(μ, θ). The Jeffreys’s noninformative prior
for θ � σ is

πJ σ( )∝ 1
σ
.

See Example 3.5.6 (p.131) of (Robert, 2007), where μ is
assumed known in the normal model N(μ, σ2).

Since μ is assumed known in the normal models, there is only
one unknown parameter. Therefore, the reference prior is equal
to the Jeffreys’s prior, and the matching prior is also equal to the
Jeffreys’s prior (see pp.130–131 of (Ghosh et al., 2006)). In
summary, when μ is assumed known in the normal models,
the three noninformative priors equal, that is,

πn θ( ) � πJ θ( ) � πR θ( ) � πM θ( )∝ 1
θ

and

πn σ( ) � πJ σ( ) � πR σ( ) � πM σ( )∝ 1
σ
,

where πn(·) stands for the noninformative prior.
Note that as in many statistics textbooks, the probability

density function (pdf) of θ ∼ IG(α, β) is given by

fθ θ|α, β( ) � 1
Γ α( )βα

1
θ

( )α+1
exp − 1

βθ
( ), θ > 0, α> 0, β> 0.

The conjugate prior of the scale parameter θ � σ is a Square
Root of the Inverse Gamma (SRIG) distribution that we
define below.

DEFINITION 1. Let θ � σ2 ∼ IG(α, β) with α > 0 and β > 0.
Then σ � �

θ
√

∼ SRIG(α, β) and the pdf of σ is given by

TABLE 1 | The quantities and expressions for the conjugate prior.

Quantities Expressions for θ = σ2 ,
the varianceparameter

Expressions for θ = σ,
the scale parameter

πc(θ) IG(α, β) SRIG(α, β)
πc(θ|x) IG(αp , βp) SRIG(αp , βp)
Eπc(θ|x) 1

(αp−1)βp, for α
p >1 Γ(αp−1

2)
Γ(αp)βp12

, for αp > 1
2

Eπc(1θ|x) α*β* Γ(αp+1
2)βp

1
2

Γ(αp )
Eπc(log θ|x) −log βp − ψ(αp) −1

2 log βp − 1
2ψ(αp)

δπc ,θs (x) 1
αpβp

Γ(αp )
Γ(αp+1

2)βp
1
2

δπc ,θ2 (x) 1
(αp−1)βp, for α

p >1 Γ(αp−1
2)

Γ(αp)βp12
, for αp > 1

2

PESLπc ,θs (x) log αp − ψ(αp) log Γ(αp + 1
2) − log Γ(αp) − 1

2ψ(αp)
PESLπc ,θ2 (x) 1

αp − 1
+ log(αp − 1) − ψ(αp),

for αp >1

Γ(αp − 1
2)Γ(αp + 1

2)
Γ2(αp) − 1 − log Γ(αp − 1

2)

+log Γ(αp) − 1
2ψ(αp), for αp > 1

2
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fσ σ|α, β( ) � 2
Γ α( )βα

1
σ

( )2α+1
exp − 1

βσ2
( ), σ > 0, α> 0, β> 0.

Definition 1 gives the definition of the SRIG distribution,
which is the conjugate prior of the scale parameter θ � σ of the
normal distribution. Because the SRIG distribution can not be
found in standard textbooks, so we give its definition here.
Moreover, Definition 1 is reasonable, since

fσ σ|α, β( ) � fθ θ|α, β( ) θ′ σ( )| |

� 1
Γ α( )βα

1
σ2

( )α+1
exp − 1

βσ2
( ) · 2σ

� 2
Γ α( )βα

1
σ

( )2α+1
exp − 1

βσ2( ).
We have the following proposition which gives the three

expectations of the SRIG(α, β) distribution. The calculations
needed in the proposition can be found in the Supplementary
Material. We remark that the calculations of E(σ) and E(σ−1) are
straightforward by utilizing a simple transformation of θ � σ2 and the
integration of an IG(α, β) distribution. However, the calculations of
E(log σ) is skillful by first a transformation ofy � 1/(βσ2) and then a
change of the order of integration and differentiation.

PROPOSITION 1. Let σ � �
θ

√
∼ SRIG(α, β) with α > 0 and β >

0. Then

E σ( ) �
Γ α − 1

2
( )
Γ α( )β1

2
, for α> 1

2
and β> 0,

E
1
σ

( ) �
Γ α + 1

2
( )β1

2

Γ α( ) , for α> 0 and β> 0,

E log σ( ) � −1
2
log β − 1

2
ψ α( ), for α> 0 and β> 0.

The relationship between the two distributions IG(α, β) and
SRIG(α, β) are given in the following proposition whose proof
can be found in the SupplementaryMaterial. We remark that the
proof of the proposition is straightforward by utilizing monotone
transformations θ � σ2 and σ � �

θ
√

.

PROPOSITION 2. θ � σ2 ∼ IG(α, β) if and only if
σ � �

θ
√

∼ SRIG(α, β), where α > 0 and β > 0.
The posterior distributions of θ and σ for the noninformative

priors are given in the following theorem whose proof can be
found in the Supplementary Material.

THEOREM 1. Let X|θ ∼ N(μ, θ) and X|σ ∼ N(μ, σ2) where μ is
known and θ � σ2 is unknown, π(θ)∝ 1

θ, and π(σ)∝ 1
σ. Then

π θ|x( ) ∼ IG ~α, ~β( ) and π σ|x( ) ∼ SRIG ~α, ~β( ),
where

~α � n

2
and ~β � 2∑n

i�1 xi − μ( )2. (8)

We have the following two remarks for Theorem 1.

Remark 1. Let θ � σ2. In the derivation of π(σ|x), if we derive it in
this way,

fσ σ( ) � π σ|x( )

∝
1
σ

( )n+1
exp − 1

2σ2
∑n
i�1

xi − μ( )2⎛⎝ ⎞⎠

� 1
σ2

( )n+1
2

exp − 1

2σ2 ∑n
i�1

xi − μ( )2⎛⎝ ⎞⎠

� 1
θ

( )n+1
2

exp − 1
2θ

∑n
i�1

xi − μ( )2⎛⎝ ⎞⎠ � fθ θ( )

∼ IG ~α1, ~β( ),
where

~α1 � n − 1
2

and ~β � 2∑n
i�1 xi − μ( )2,

then by Proposition 2, fσ(σ) � π(σ|x) ∼ SRIG(~α1, ~β), which is
different from SRIG(~α, ~β). In fact, the above practice is equivalent
to the derivation of the pdf of θ in terms of the pdf of σ by
fθ(θ) � fσ(σ), ignoring the |σ′(θ)| term, which is obviously
wrong. Therefore, the above derivation which is a pitfall for
incautious users is wrong. ‖

Remark 2. The two posterior distributions in Theorem 1,
π(θ|x) ∼ IG(~α, ~β) and π(σ|x) ∼ SRIG(~α, ~β), follow Proposition
2 by accident. We have

fθ θ( ) � π θ|x( )∝f x|θ( )π θ( )∝f x|θ( ) 1
θ
∼ IG ~α, ~β( )

and

fσ σ( ) � π σ|x( )∝f x|σ( )π σ( )∝f x|θ( ) 1
σ
∼ SRIG ~α, ~β( ).

Note that σ � �
θ

√
, and thus

fσ σ( ) σ ′ θ( )| |∝f x|θ( ) 1
σ

1

2
�
θ

√ � f x|θ( ) 1�
θ

√ 1

2
�
θ

√

� f x|θ( ) 1
2θ

∝fθ θ( ), (9)

which is the reason why π(θ|x) � fθ(θ) and π(σ|x) � fσ(σ)
follow Proposition 2. Note that the posterior distributions depend
on the prior distributions. If the prior distributions π(θ) and π(σ)
are selected different from 1

θ and
1
σ, then the relationship (Eq. 9)

may not be satisfied, and thus π(θ|x) and π(σ|x) may not follow
Proposition 2. ‖

2.2.1 The Quantities and Expressions of the Variance
Parameter
In this subsubsection, we will calculate the expressions of the
quantities (three posterior expectations, two Bayes estimators,
and two PESLs) of the variance parameter θ � σ2.
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Now we calculate the three expectations E(θ|x), E(θ−1|x), and
E(log θ|x) for the variance parameter θ � σ2. By Theorem 1,
π(θ|x) ∼ IG(~α, ~β), and thus

E θ|x( ) � 1

~α − 1( )~β, ~α> 1 and E 1
θ
|x( ) � ~α~β.

From (Zhang, 2017), we know that

E log θ|x( ) � −log ~β − ψ ~α( ).
It is easy to see that, for ~α> 1,

δπ,θs x( ) � 1

E 1
θ|x( ) � 1

~α~β
< 1

~α − 1( )~β � E θ|x( ) � δπ,θ2 x( ),

which exemplifies (Eq. 6). From (Zhang, 2017), we find that

PESLπ,θ
s x( ) � log~α − ψ ~α( ), for ~α> 0,

and

PESLπ,θ
2 x( ) � 1

~α − 1
+ log ~α − 1( ) − ψ ~α( ), for ~α> 1.

It can be directly proved that PESLπ,θs (x)≤PESLπ,θ2 (x) for
~α> 1, which exemplifies (Eq. 7), and its proof which exploits the
Taylor series expansion for ex can be found in the Supplementary
Material. Note that PESLπ,θs (x) and PESLπ,θ2 (x) depend only on
~α � n/2. Therefore, they depend only on n, but do not depend on
μ and x. Numerical simulations will exemplify this result.

The IRSL at δπ,θs or the BRSL for θ � σ2 is (similar to (Robert, 2007))

IRSLπ,θ
s � BRSLπ,θ � r π, δπ,θs( )

� Eπ R θ, δπ,θs( )[ ]
� ∫

Θ
R θ, δπ,θs( )π θ( )dθ

� ∫
Θ
∫

X
L θ, δπ,θs x( )( )f x|θ( )dxπ θ( )dθ

� ∫
X
∫

Θ
L θ, δπ,θs x( )( )f x|θ( )π θ( )dθdx

� ∫
X
∫

Θ
L θ, δπ,θs x( )( )π θ|x( )dθmπ,θ x( )dx

� ∫
X
PESLπ,θ a x( )|x( )∣∣∣∣a�δπ,θs

mπ,θ x( )dx
� ∫

X
PESLπ,θ

s x( )mπ,θ x( )dx
� ∫

X
log ~α − ψ ~α( )[ ]mπ,θ x( )dx

� log ~α − ψ ~α( )
� PESLπ,θ

s x( ),
since ~α does not depend on x, where

mπ,θ x( ) � ∫∞

0
f x|θ( )π θ( )dθ

is the marginal density of x with prior π(θ).

2.2.2 The Quantities and Expressions of the Scale
Parameter
In this subsubsection, we will calculate the expressions of the
quantities (three posterior expectations, two Bayes estimators,
and two PESLs) of the scale parameter θ � σ.

Now let us calculate δπ,σs (x), δπ,σ2 (x), PESLπ,σs (x), and
PESLπ,σ2 (x) for the scale parameter σ. To calculate these
quantities, we need to calculate the three expectations E(σ|x),
E(σ−1|x), and E(log σ|x). Since π(σ|x) ∼ SRIG(~α, ~β) by Theorem
1, from Proposition 1, we have

E σ|x( ) �
Γ ~α − 1

2
( )
Γ ~α( )~β

1
2
, for ~α> 1

2
and ~β> 0, (10)

E
1
σ
|x( ) �

Γ ~α + 1
2

( )~β1
2

Γ ~α( ) , for ~α> 0 and ~β> 0, (11)

E log σ|x( ) � −1
2
log ~β − 1

2
ψ ~α( ), for ~α> 0 and ~β> 0. (12)

It can be proved that, for ~α> 1
2,

δπ,σs x( ) � 1

E 1
σ|x( ) � Γ ~α( )

Γ ~α + 1
2( )~β1

2
<
Γ ~α − 1

2( )
Γ ~α( )~β

1
2
� E σ|x( ) � δπ,σ2 x( ),

which exemplifies (Eq. 6), and the proof which exploits the
positivity of ψ′(x) can be found in the Supplementary Material.

Now we calculate PESLπ,σs (x) and PESLπ,σ2 (x) for the scale
parameter σ. From (Zhang, 2017), we know that the PESL at
δπ,σs (x) � [E(σ−1|x)]−1 is

PESLπ,σ
s x( ) � E Ls θ, a( )|x[ ]|a� 1

E 1
σ|x( ) � log E

1
σ
|x( ) + E log σ|x( ),

and the PESL at δπ,σ2 (x) � E(σ|x) is
PESLπ,σ

2 x( ) � E Ls θ, a( )|x[ ]|a�E σ|x( )

� E σ|x( )E 1
σ
|x( ) − 1 − log E σ|x( ) + E log σ|x( ).

Substituting (Eqs 10, 11, 12), into the above expressions, we
obtain

PESLπ,σ
s x( ) � log

Γ ~α + 1
2

( )~β1
2

Γ ~α( ) − 1
2
log ~β − 1

2
ψ ~α( )

� log Γ ~α + 1
2

( ) − log Γ ~α( ) − 1
2
ψ ~α( ),

for ~α> 0 and ~β> 0, and

PESLπ,σ
2 x( ) �

Γ ~α − 1
2

( )
Γ ~α( )~β

1
2

Γ ~α + 1
2

( )~β1
2

Γ ~α( ) − 1 − log
Γ ~α − 1

2
( )
Γ ~α( )~β

1
2

− 1
2
log ~β − 1

2
ψ ~α( )

�
Γ ~α − 1

2
( )Γ ~α + 1

2
( )

Γ2 ~α( ) − 1 − log Γ ~α − 1
2

( ) + log Γ ~α( ) − 1
2
ψ ~α( ),

for ~α> 1
2 and ~β> 0. It can be directly proved that

PESLπ,σs (x)≤PESLπ,σ2 (x) for ~α> 1
2 and

~β> 0, which exemplifies
(Eq. 7), and its proof which exploits the Taylor series expansion
for log u with u near 1 can be found in the Supplementary
Material. Note that PESLπ,σs (x) and PESLπ,σ2 (x) depend only on
~α � n/2. Therefore, they depend only on n, but do not depend on
μ and x. Numerical simulations will exemplify this result.
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The IRSL at δπ,σs or the BRSL for θ � σ is (similar to (Robert,
2007))

IRSLπ,σ
s � BRSLπ,σ � r π, δπ,σs( )

� Eπ R σ, δπ,σs( )[ ]
� ∫

Σ
R σ, δπ,σs( )π σ( )dσ

� ∫
Σ
∫

X
L σ, δπ,σs x( )( )f x|σ( )dxπ σ( )dσ

� ∫
X
∫

Σ
L σ, δπ,σs x( )( )f x|σ( )π σ( )dσdx

� ∫
X
∫

Σ
L σ, δπ,σs x( )( )π σ|x( )dσmπ,σ x( )dx

� ∫
X
PESLπ,σ a x( )|x( )|a�δπ,σs

mπ,σ x( )dx

� ∫
X
PESLπ,σ

s x( )mπ,σ x( )dx

� ∫
X

log Γ ~α + 1
2

( ) − log Γ ~α( ) − 1
2
ψ ~α( )[ ]mπ,σ x( )dx

� log Γ ~α + 1
2

( ) − log Γ ~α( ) − 1
2
ψ ~α( )

� PESLπ,σ
s x( ),

since ~α does not depend on x, where

mπ,σ x( ) � ∫∞

0
f x|σ( )π σ( )dσ

is the marginal density of x with prior π(σ).
The quantities and expressions of the variance and scale

parameters for the noninformative priors are summarized in
Table 2. In the table, ~α and ~β are given by (Eq. 8).

From Tables 1, 2, we find that there are four combinations of the
expressions of the quantities: conjugate prior and variance

parameter, conjugate prior and scale parameter, noninformative
prior and variance parameter, and noninformative prior and scale
parameter. The forms of the expressions of the quantities are the
same for the variance parameter under the conjugate and
noninformative priors, since they have the same Inverse Gamma
posterior distributions. Similarly, the forms of the expressions of the
quantities are the same for the scale parameter under the conjugate
and noninformative priors, since they have the same Square Root of
the Inverse Gamma posterior distributions.

The inequalities (Eqs 6, 7) exist in Tables 1, 2. In fact, there are
8 inequalities in Tables 1, 2 and 4 inequalities in each table. Since
the forms of the expressions of the quantities are the same in
Tables 1, 2, with the only difference of the parameters, there are
actually 4 different inequalities which are in Table 2. One
inequality of the four inequalities about the Bayes estimators is
obvious, and the proofs of the other three inequalities can be
found in the Supplementary Material.

3 NUMERICAL SIMULATIONS

In this section, wewill numerically exemplify the theoretical studies
of (Eqs 6, 7), and that the PESLs depend only on n, but do not
depend on μ and x. The numerical simulation results are similar for
the four combinations of the expressions of the quantities, and thus
we only present the results for the combination of the
noninformative prior and the scale parameter.

First, we fix μ � 0 and n � 10, and assume that σ � 1 is drawn
from the improper prior distribution. After that, we draw a
random sample

x � rnorm(n � n,mean � μ, sd � σ)
from N(μ, σ2).

To generate a random sample σ � (σ1, . . . , σk) with k � 1000
from

TABLE 2 | The quantities and expressions for the noninformative priors.

Quantities Expressions for θ = σ2 ,
the variance parameter

Expressions for θ = σ,
the scale parameter

πn(θ) 1
θ

1
σ

πn(θ|x) IG(~α, ~β) SRIG(~α, ~β)
Eπn(θ|x) 1

(~α−1)~β, for ~α>1 Γ(~α−1
2)

Γ(~α)~β
1
2
, for ~α> 1

2

Eπn(1θ|x) ~α~β Γ(~α+1
2)~β

1
2

Γ(~α)
Eπn(log θ|x) −log ~β − ψ(~α) −1

2 log
~β − 1

2ψ(~α)
δπn ,θs (x) 1

~α~β
Γ(~α)

Γ(~α+1
2)~β

1
2

δπn ,θ2 (x) 1
(~α−1)~β, for ~α>1 Γ(~α−1

2)
Γ(~α)~β

1
2
, for ~α> 1

2

PESLπn ,θs (x) log ~α − ψ(~α) log Γ(~α + 1
2) − log Γ(~α) − 1

2ψ(~α)
PESLπn ,θ2 (x) 1

~α − 1
+ log(~α − 1) − ψ(~α),

for ~α> 1

Γ(~α − 1
2)Γ(~α + 1

2)
Γ2(~α) − 1 − log Γ(~α − 1

2)

+log Γ(~α) − 1
2ψ(~α), for ~α> 1

2
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πn σ|x( ) � SRIG ~α, ~β( ),
we will adopt the following algorithm. First, compute ~α and ~β
from (Eq. 8). Second, generate a random sample

G � rgamma(n � k, shape � ~α, scale � ~β) ∼ G ~α, ~β( ).
Third, compute

IG � 1
G
∼ IG ~α, ~β( ).

Fourth, compute

σ � ���
IG

√
∼ SRIG ~α, ~β( ).

Hence, σ is a random sample from the SRIG(~α, ~β) distribution.
Figure 2 shows the histogram of σ|x and the density estimation
curve of πn(σ|x). It is πn(σ|x) that we find δ

πn,σ
s (x) to minimize the

PESL. From the figure, we see that the SRIG(~α, ~β) distribution is
left peaked, right skewed, and continuous.

The Bayes estimators (δπn,σs (x) and δπn,σ2 (x)) and the PESLs
(PESLπn,σs (x) and PESLπn,σ2 (x)) are computed by the following
algorithm. First, compute ~α and ~β from (Eq. 8). Second, compute

E1 � E σ|x( ) �
Γ ~α − 1

2
( )
Γ ~α( )~β

1
2
,

E2 � E
1
σ
|x( ) �

Γ ~α + 1
2

( )~β1
2

Γ ~α( ) ,

E3 � E log σ|x( ) � −1
2
log ~β − 1

2
ψ ~α( ).

Third, compute

δπn,σs x( ) � 1
E2
,

δπn,σ2 x( ) � E1,

PESLπn,σ
s x( ) � log E2( ) + E3,

PESLπn,σ
2 x( ) � E1 × E2 − log E1( ) + E3 − 1.

Numerical results show that

δπn,σs x( ) � 0.7712483< 0.8152161 � δπn,σ2 x( )
and

PESLπn,σ
s x( ) � 0.0267013< 0.02826706 � PESLπn,σ

2 x( ),
which exemplify the theoretical studies of (6) and (7).

In Figure 3, we fix μ � 0 and n � 10, but allow the seed number
to change from 1 to 10 (i.e., we change x). From the figure we see
that the estimators and PESLs are functions of x. We see from the
left plot of the figure that the estimators depend on x in an
unpredictable manner, and δπn,σs (x) are unanimously smaller
than δπn,σ2 (x), and thus (Eq. 6) is exemplified. The two Bayes
estimators are distinguishable since we fix n � 10 to be a small
number. The right plot of the figure exhibits that the PESLs do not
depend on x, and PESLπn,σs (x) are unanimously smaller than
PESLπn,σ2 (x), and thus (Eq. 7) is exemplified.

Now we allow one of the two parameters μ and n to change,
holding other parameters fixed. Moreover, we also assume that
the sample x is fixed, as it is the case for the real data. Figure 4
shows the estimators and PESLs as functions of μ and n. We see
from the left plots of the figure that the estimators depend on μ
and n, and (Eq. 6) is exemplified. More specifically, the estimators
are first decreasing and then increasing functions of μ, and the
estimators attain the minimum when μ � 0. However, the
estimators fluctuate around some value when n increases. The
right plots of the figure exhibit that the PESLs depend only on n,
but do not depend on μ , and (Eq. 7) is exemplified. More
specifically, the PESLs are decreasing functions of n.
Furthermore, the two PESLs as functions of n are
indistinguishable, as the two PESLs are very close. In
summary, the results of the figure exemplify the theoretical
studies of (Eqs 6, 7).

Since the estimators δπn,σs (x) and δπn,σ2 (x) and the PESLs
PESLπn,σs (x) and PESLπn,σ2 (x) depend on ~α and ~β, where
~α> 1/2 and ~β> 0, we can plot the surfaces of the estimators and
the PESLs on the domain (~α, ~β) ∈ (0.5, 10] × (0, 10] � D via the R
function persp3d() in the R package rgl (see (Adler and Murdoch,
2017; Zhang et al., 2017; Zhang et al., 2019; Sun et al., 2021)). We
remark that the R function persp() in the R package graphics can
not add another surface to the existing surface, but persp3d() can.
Moreover, persp3d() allows one to rotate the perspective plots of
the surface according to one’s wishes. Figure 5 plots the surfaces of
the estimators and the PESLs, and the surfaces of the difference of
the estimators and the difference of the PESLs. From the left two
plots of the figure, we see that δπn,σs (x)< δπn,σ2 (x) for all (~α, ~β) onD,
which exemplifies (Eq. 6). From the right two plots of the figure, we
see that PESLπn,σs (x)<PESLπn,σ2 (x) for all (~α, ~β) on D, which

FIGURE 2 | The histogram of σ|x and the density estimation curve of
πn(σ|x).
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exemplifies (Eq. 7). In summary, the results of the figure exemplify
the theoretical studies of (Eqs 6, 7).

4 A REAL DATA EXAMPLE

In this section, we exploit the data from finance. The R package
quantmod ( (Ryan and Ulrich, 2017)) is exploited to download
the data ĜSPC (the S&P 500) during 2020-04-24 and 2021-07-02
from “finance.yahoo.com.” It is commonly believed that the
monthly simple returns of the index data or the stock data are
normally distributed. It is simple to check that the S&P 500
monthly simple returns follow the normal model. Usually, the
data from real examples can be regarded as iid from the normal
model with an unknown mean μ. However, the mean μ could be
estimated by prior information or historical information.
Alternatively, the mean μ could be estimated by the sample
mean. Therefore, for simplicity, we assume that the mean μ is
known. Assume that

μ � �x, α � 1, β � 1

for the S&P 500 monthly simple returns.
The Bayes estimators and the PESLs of the variance and scale

parameters of the S&P 500 monthly simple returns for the
conjugate and noninformative priors are summarized in
Table 3. From the table, we observe the following facts.

• The two inequalities (Eqs 6, 7) are exemplified.
• Given the prior (conjugate or noninformative), the Bayes
estimators are similar across different loss functions (Stein’s
or squared error).

• Given the loss function, the Bayes estimators are quite
different across different priors. Therefore, the prior has
a larger influence than the loss function in calculating the
Bayes estimators.

More results (the data of the S&P 500 monthly simple returns,
the plot of the S&P 500 monthly close prices, the plot of the S&P
500 monthly simple returns, the histogram of the S&P 500
monthly simple returns) for the real data example can be
found in the Supplementary Material due to space limitations.

5 CONCLUSIONS AND DISCUSSIONS

For the variance (θ � σ2) and scale (θ � σ) parameters of the
normal model with a known mean μ, we recommend and
analytically calculate the Bayes estimators, δπ,θs (x), with respect
to the conjugate and noninformative (Jeffreys’s, reference, and
matching) priors under Stein’s loss function which penalizes
gross overestimation and gross underestimation equally. These
estimators minimize the PESLs. We also analytically calculate the
Bayes estimators, δπ,θ2 (x) � E(θ|x), with respect to the conjugate
and noninformative priors under the squared error loss function,
and the corresponding PESLs. The quantities (π(θ), π(θ|x),
Eπ(θ|x), Eπ(θ−1|x), Eπ(log θ|x), δπ,θs (x), δπ,θ2 (x), PESLπ,θs (x),
PESLπ,θ2 (x) ) and expressions of the variance and scale
parameters for the conjugate and noninformative priors are
summarized in Tables 1, 2, respectively. Note that Eπ(log θ|x),
which is essential for the calculation of PESLπ,θs (x) and
PESLπ,θ2 (x), depends on the digamma function.

Proposition 1 gives the three expectations of the SRIG(α, β)
distribution. Moreover, Proposition 2 gives the relationship
between the two distributions IG(α, β) and SRIG(α, β).

For the conjugate and noninformative priors, the posterior
distribution of θ � σ2, π(θ|x), follows an Inverse Gamma
distribution, and the posterior distribution of σ, π(σ|x),
follows an SRIG distribution which is defined in Definition 1.

We find that the IRSL at δπ,θs or the BRSL for θ � σ2 is

PESLπ,θ
s x( ) � log~α − ψ ~α( ).

FIGURE 3 | The estimators are functions of x (left) and the PESLs are also functions of x (right).
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In addition, the IRSL at δπ,σs or the BRSL for θ � σ is

PESLπ,σ
s x( ) � log Γ ~α + 1

2
( ) − log Γ ~α( ) − 1

2
ψ ~α( ).

The numerical simulations of the combination of the
noninformative prior and the scale parameter exemplify the
theoretical studies of (Eqs 6, 7), and that the PESLs depend
only on n, but do not depend on μ and x. Moreover, in the real
data example, we have calculated the Bayes estimators and the
PESLs of the variance and scale parameters of the S&P 500monthly
simple returns for the conjugate and noninformative priors.

Unlike in frequentist paradigm, if σ̂ is theMaximumLikelihood
Estimator (MLE) of σ, then σ̂2 is the MLE of σ2. In Bayesian

paradigm, we usually should estimate the variance parameter σ2

and the scale parameter σ separately. In Table 2, we find that

δπn,σ
2

s x( ) � 1

~α~β
and δπn,σs x( ) � Γ ~α( )

Γ ~α + 1
2( )~β1

2
.

It is easy to see that

δπn,σ
2

s x( ) ≠ δπn,σs x( )[ ]2.
Similarly,

δπn,σ
2

2 x( ) ≠ δπn,σ2 x( )[ ]2.

FIGURE 4 | Left: The estimators as functions of μ and n. Right: The PESLs as functions of μ and n.
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When there is no prior information about the unknown
parameter of interest, we prefer the noninformative prior, as
the hyperparameters α and β are somewhat arbitrary for the
conjugate prior.

We remark that the Bayes estimator under Stein’s loss function is
more appropriate than that under the squared error loss function, not
because the former is smaller, but because Stein’s loss function which
penalizes gross overestimation and gross underestimation equally is
more appropriate for the positive restricted parameter.

FIGURE 5 | The domain for (~α, ~β) isD � (0.5, 10] × (0, 10] for all the plots. a is for ~α and b is for ~β in the axes of all the plots. The red surface is for δπn ,σ2 (x) and the blue
surface is for δπn ,σs (x) in the upper two plots. (upper left) The estimators as functions of ~α and ~β. δπn ,σs (x)< δπn ,σ2 (x) for all (~α, ~β) on D. (upper right) The PESLs as
functions of ~α and ~β. PESLπn ,σs (x)<PESLπn ,σ2 (x) for all (~α, ~β) on D. (lower left) The surface of δπn ,σ2 (x) − δπn ,σs (x) which is positive for all (~α, ~β) on D. (lower right) The
surface of PESLπn ,σ2 (x) − PESLπn ,σs (x) which is also positive for all (~α, ~β) on D.

TABLE 3 | The Bayes estimators and the PESLs of the S&P 500 monthly simple
returns.

Conjugate prior Noninformative prior

θ = σ2 θ = σ θ = σ2 θ = σ

δπ,θs (x) 0.111474 0.338545 0.000408 0.020528

δπ,θ2 (x) 0.125408 0.348644 0.000467 0.021224

PESLπ,θs (x) 0.056583 0.014410 0.063800 0.016285

PESLπ,θ2 (x) 0.063800 0.014846 0.073126 0.016846
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