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ABSTRACT
A model-based framework is presented to predict monoclonal antibody (mAb) pharmacokinetics (PK) in 
humans based on in vitro measures of antibody physiochemical properties. A physiologically based 
pharmacokinetic (PBPK) model is used to explore the predictive potential of 14 in vitro assays designed 
to measure various antibody physiochemical properties, including nonspecific cell-surface interactions, 
FcRn binding, thermal stability, hydrophobicity, and self-association. Based on the mean plasma PK time 
course data of 22 mAbs from humans reported in the literature, we found a significant positive correlation 
(R = 0.64, p = .0013) between the model parameter representing antibody-specific vascular to endothelial 
clearance and heparin relative retention time, an in vitro measure of nonspecific binding. We also found 
that antibody-specific differences in paracellular transport due to convection and diffusion could be 
partially explained by antibody heparin relative retention time (R = 0.52, p = .012). Other physiochemical 
properties, including antibody thermal stability, hydrophobicity, cross-interaction and self-association, in 
and of themselves were not predictive of model-based transport parameters. In contrast to other studies 
that have reported empirically derived expressions relating in vitro measures of antibody physiochemical 
properties directly to antibody clearance, the proposed PBPK model-based approach for predicting mAb 
PK incorporates fundamental mechanisms governing antibody transport and processing, informed by 
in vitro measures of antibody physiochemical properties, and can be expanded to include more descrip-
tive representations of each of the antibody processing subsystems, as well as other antibody-specific 
information.
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Introduction
The ability to predict the pharmacokinetics (PK) of monoclonal 
antibodies (mAbs) in humans during the early screening of drug 
candidates would contribute significantly to the efficient develop-
ment of therapeutic antibodies. The various factors that determine 
the disposition of mAbs in humans continue to be the subject of 
extensive investigation.1,2 Recent studies have reported empirically 
derived relationships between antibody clearance and experimen-
tally determined mAb physiochemical properties.3–6 In this report, 
we propose a model-based approach for predicting mAb PK that 
incorporates the fundamental mechanisms that govern antibody 
transport and processing, coupled with in vitro assay measures of 
antibody physiochemical properties.

The in vivo disposition of antibodies is governed largely by 
their nonspecific off-target binding, affinity for neonatal Fc 
receptor (FcRn-IgG interaction), and target-mediated drug 
disposition (TMDD).7 Among these antibody-specific factors, 
FcRn-IgG interaction has been characterized by surface plas-
mon resonance (SPR), immunoassays, cell-based approaches, 
and solution-based methods among others.3,8 Given that anti-
bodies with common crystallizable fragment (Fc) regions and 
no TMDD display different PK behaviors,9 a number of 
approaches have been developed to screen antibodies for 
their nonspecific interactions. The approaches have included 

binding poly-specificity reagent (PSR), baculovirus particles 
(BVP), heparin, HEK293 cells, chaperone proteins, and cross- 
interaction chromatography.1,10

Several groups have proposed empirically derived relation-
ships relating antibody clearance to the aforementioned in vitro 
assays of physiochemical properties.3–5 Avery et al.5 found the 
combination of biophysical assays assessing nonspecific inter-
actions, self-association, and FcRn binding can be used to 
differentiate antibodies with lower and higher clearances. 
Goulet et al.4 proposed that FcRn binding together with ther-
mal stability could predict in vivo half-life and clearance based 
on an analysis of eight antibodies. The study by Kraft et al.3 

further delineated the role of nonspecific cell-surface interac-
tion on in vivo clearance of IgG, using heparin chromatogra-
phy as an in vitro surrogate. Grinshpun et al.11 investigated 12 
in vitro assays, of which several in combination were found to 
be able to categorize the clearance of 64 antibodies as slow or 
fast. Although the results reported in these studies have 
demonstrated predictive ability to characterize the clearance 
or half-life of mAbs as slow or fast, they cannot predict the full 
mAb PK time course in plasma or tissues of interest.

The ability of physiologically based pharmacokinetic 
(PBPK) models to describe the disposition of mAbs in humans 
and other species is now well established.12–14 PBPK models of 
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therapeutic antibodies that include subsystems representing 
the fundamental mechanisms responsible for antibody trans-
port such as paracellular exchange, nonspecific binding, FcRn 
interaction and transcytosis, can be informed by in vitro assays 
designed to characterize these interactions and processes. The 
resulting models can be used to predict the plasma and tissue 
disposition of antibodies. For example, Jones and colleagues14 

associated an affinity-capture self-interaction nanoparticle 
spectroscopy (AC-SINS) assay with a model parameter that 
represents nonspecific interaction affinity between mAbs and 
the cell membrane. In our previous study, an in silico-based 
metric representing the positive charge in antibody comple-
mentarity-determining region (PPC) was incorporated into 
a PBPK model for predicting antibody PK in humans.15

In the work reported herein, a PBPK modeling framework is 
used to explore the predictive potential of 14 in vitro assays 
designed to measure various antibody physiochemical proper-
ties, including nonspecific cell-surface interactions, FcRn bind-
ing, thermal stability, hydrophobicity, and self-association. The 
model is developed using mean plasma PK time course data of 
22 mAbs from humans reported in the literature. For each 
antibody, model parameters related to paracellular transport, 
nonspecific binding, and FcRn interaction are then estimated. 
Potential relations between estimated model parameters and 
the different in vitro assay results for the 22 antibodies are 
explored. The established relations between antibody-specific 
parameters and in vitro assays are then used to conduct PBPK 
model-based predictions of the plasma PK time course of each 
antibody. The results demonstrate the utility of the proposed 
model-based framework that integrates physiochemical char-
acteristics of antibodies to predict PK profiles in humans, with 
the goal of facilitating antibody screening and engineering in 
early development stages.

Results

The PBPK model used in this study is depicted in Figure 1 and 
described in detail in the Materials and Methods section.

Antibody-FcRn dissociation constant at pH = 6.0 (K6:0
d )

The following exponential relation between K6:0
d and 

hFcRn_RT was determined based on the data from 37 
mAbs:5 K6:0

d ¼ K06:0
d � e

� λ�hFcRn RT , where K06:0
d = 1136, λ= 0.52 

with R = 0.79 (Figure 2). Based on this relationship, the values 
for K6:0

d for the 22 mAbs (Table 1) that are subject of this study 
were calculated and are listed in Table 2.

Antibody-specific scale factors for pinocytosis (Spino) and 
diffusion-convection (Sdiff � conv)

Using the plasma concentration-time data for each of the 22 
mAbs resulted in estimates of the two antibody-specific model 
parameters Spino and Sdiff � conv listed in Table 2 for each anti-
body. The estimates of Spino ranged from 0.614 to 1.454 and 
those of Sdiff � conv between 0.475 to 1.24. The two parameters 
were estimated with good precision (RSE% < 20%) as indicated 
in Table 2. Figure 3 provides plots of the fitted concentration- 

time profiles, demonstrating good agreement between 
observed plasma concentrations and model predictions (R > 
0.94 for all antibodies), indicating that the PBPK model can 
describe the plasma concentration time courses observed fol-
lowing the administration of these antibodies.

Biophysical determinants of antibody-specific model 
parameters

The results of the linear regression analyses relating the esti-
mated values of Spino for each antibody to each of the in vitro 
physiochemical properties individually found that a significant 
relationship was obtained with only heparin relative retention 
time (Hep_RT) as shown in Figure 4a (R = 0.64, p = .0013). The 
p values for the other in vitro assays evaluated individually 
ranged from 0.093 to 0.93 (see Supplemental Material). 
Similarly, Sdiff � conv was found to be significantly associated 
only with heparin relative retention time (Figure 4b, r = 0.52, 
p = .012), but not with any of the other physiochemical proper-
ties (individual p ranges from 0.13 to 0.82, see Supplemental 
Material). Multiple regression relations were explored via step-
wise regression, but no significant associations were identified 
with the addition of other physiochemical properties. For 
example, when “Slope for Accelerated Stability” was added to 
Hep_RT to describe the values of Spino obtained from the 22 
antibodies, its regression coefficient was 0.99, with a standard 
error of 0.59 (p = .11). The addition of “HEK titer” in the 
regression to predict Sdiff � conv yielded its regression coefficient 
as −0.00067, with standard error of 0.00074 (p = .37).

We note that Hep_RT also shows a significant but weaker 
positive association with several assays for nonspecific interac-
tion (e.g., PSR, R = 0.47, p < 10−3; enzyme-linked immunosor-
bent assay (ELISA), R = 0.40, p < 10−3), as well as for self- 
association (AC-SINS, R = 0.37, p < 10−3), based on the values 
reported,10 indicating the concurrence between these in vitro 
assays.

Model-based prediction of antibody PK

Using the identified regression relations between Spino, Sdiff � conv 
and Hep_RT (Figure 4), each antibody’s Hep_RT, hFcRn_RT 
and molecular weight (MW) were used with the PBPK model 
to perform a population simulation of the plasma concentra-
tion for each of the 22 antibodies. Figure 5 shows the predic-
tions for four antibodies with the smallest (Olokizumab) and 
largest (Fulranumab) Hep_RT values, as well as two with 
values of Hep_RT near the near the mean heparin relative 
retention times (Ozanezumab, Trastuzumab) of the 22 anti-
bodies studied. The mean (±standard deviation) of Spino of 
these four antibodies (Fulranumab, Olokizumab, 
Ozanezumab, and Trastuzumab) are 1.21 (±0.16), 0.69 
(±0.18), 1.01 (±0.15), and 1.03 (±0.15), respectively. In addi-
tion, the corresponding mean (±standard deviation) of 
Sdiff � conv of these four antibodies are 1.01 (±0.20), 0.50 
(±0.20), 0.82 (±0.20), and 0.84 (±0.20), respectively. As indi-
cated in the figure, the 5th–95th percentile ranges of the model- 
based PK predictions include the observed plasma concentra-
tions of these antibodies.
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Internal validation of model parameter-assay correlation

The results of an internal validation using the heparin 
relative retention times of randomly selected subsets of 18 
mAbs to construct new Spino and Sdiff � conv regression mod-
els are as follows. Of the 100 regression relations, 94 
resulted in a significant association (p < .05) between Spino 
and Hep_RT, while 74 were found to yield a significant 
association between Sdiff � conv and Hep_RT. These results 
suggests that our finding of a significant association 

between Spino and Hep_RT and between Sdiff � conv and 
Hep_RT is likely independent of the specific antibodies 
within the subset of the 22 antibodies tested.

Discussion
Previous studies have established that stronger nonspecific 
antibody binding leads to increased pinocytotic uptake, result-
ing in greater lysosomal degradation of mAbs.3,7 Consistent 
with these findings, we found a significant positive correlation 

Figure 1. Schematic of the whole-body PBPK model for mAbs following IV administration. (a) overall circulatory model. (b) Organ-level structure of a typical tissue, 
including vascular space, endothelial space, interstitial space, and cell space. Paracellular transport via convection and diffusion through pores is depicted along with 
endothelial transport and process. (c) Endosomal subcompartments, showing the competition between endogenous IgG and mAb for FcRn at a specific pH value. Long 
Description: Whole-body PBPK model diagrams. (a) An overall flow diagram with separate boxes representing different organs (such as lung, heart, liver), central venous 
plasma, central arterial plasma, lymph node, and lymphatic vessels. They are connected using solid lines via plasma flows and lymph flows anatomically. An arrow into 
central venous plasma labels an intravenous dose. In addition, dashed arrows drawn from muscle and skin point to a peripheral sampling site. (b) A box is divided into 
different spaces labeled as vascular space, endothelial space, interstitial space, cell space from top to bottom. Arrows labeled with Q and Q-L flow into and out of 
vascular space, respectively. Two solid flow arrows labeled with convection move from vascular space to interstitial space through a large pore and a small pore 
between endothelial space. Besides each of them is a dashed flow arrow labeled as diffusion, moving bi-directionally between vascular and interstitial spaces. Within 
endothelial space, three ellipses indicated as “Early pH 7.4a,” “Late pH 6.0,” and “Recycling pH 7.4b” are connected sequentially from left to right, with a recycling arrow 
from the last ellipse to the first one and an elimination arrow from the second ellipse. There are two arrows labeled as Spino·CLpino into the first ellipse from vascular space 
and interstitial space, respectively. From the last ellipse there are two arrows flowing into vascular space and interstitial space. Lastly, a flow termed as L moves out of 
interstitial space. (c) A zoomed ellipse of endothelial endosomal space. On the top within the ellipse, there are FcRn, plus sign, IgG on the left side of bi-directional 
arrows and IgG-FcRn on the right side. The arrow going from left to right is labeled with kon

pHx and the reverse arrow labeled with koff
pHx. On the bottom within the 

ellipse, there is same arrangement with FcRn, mAb, and mAb-FcRn.
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(R = 0.64, p = .0013) between the model parameter represent-
ing antibody-specific vascular to endothelial clearance (Spino) 
and heparin relative retention time (Hep_RT), an in vitro 
measure of the nonspecific binding. We also found that anti-
body-specific differences in paracellular transport due to con-
vection and diffusion (Sdiff � conv) could be partially explained by 
Hep_RT (R = 0.52, p = .012). Paracellular convection is deter-
mined by the vascular to tissue hydrostatic gradient and the 
sieving effect, with the latter dependent on pore physiology, as 
well as the size, shape, and charge shape of antibodies.16 This 
observed positive correlation, could be a consequence of the 
longer heparin retention time that results from the stronger 
binding of the more positively charged antibodies to the nega-
tive charges of the heparin column.

The results from 12 physiochemical property assays for 
nonspecific interaction, thermal stability, hydrophobicity 
and antibody self-association reported by Jain et al.10 for 
each of the 22 antibodies examined in our study were 
considered (see Supplemental Material), both individually 
and in combination, for their ability to predict the model- 
based estimates of Spino and Sdiff � conv. These included assays 
related to cross-interaction (e.g. PSR, ELISA, BVP, CIC) 
and self-association (AC-SINS), which were reported10 to 
be predictive of clearance. None of these 12 assays, how-
ever, was found to be a significant predictor of either Spino 
or Sdiff � conv for the 22 antibodies we investigated. For 
example, although PSR had the strongest association with 
Spino, among the 12 assays, it was not significant (R = 0.37, 
p = .095). Similarly, AC-SINS was not found to be asso-
ciated with Spino (R = 0.101, p = .63) or with Sdiff � conv (R = 
0.19, p = .40). Interestingly, several of these assays were 

positively correlated with Hep_RT (e.g., PSR, R = 0.47, p < 
10−3; ELISA, R = 0.40, p < 10−3; AC-SINS, R = 0.37, p < 
10−3), but unlike Hep_RT their association with the anti-
body-specific model parameters did not rise to the level of 
significance. ELISA and other assays measure direct inter-
actions for heterogeneous surrogates, focusing on various 
non-covalent interactions with different degrees of involve-
ment of charge and hydrophobicity interactions that do not 
appear to have the sensitivity to adequately describe cellular 
events. On the other hand, heparin chromatography isolates 
heparin as a homogenous surrogate for relevant cell sur-
face-based component interaction, thus facilitating 
increased sensitivity to be connected to parameters such 
as Spino, which are also focused on cellular events. In 
another study, Avery et al. used DNA- and insulin- 
binding assays to characterize nonspecific interactions and 
also considered FcRn interaction using SPR and column 
chromatography assays.5 However, since only four of the 
antibodies in our study were investigated by Avery et al., 
a predictive statistical analysis is not warranted.

Structure-based in silico metrics have previously been consid-
ered as predictors of PK during antibody screening. Accordingly, 
we also assessed 23 in silico metrics from the Molecular Operating 
Environment (MOE)17 and five from the Therapeutic Antibody 
Profiling (TAP) platform18 for their potential association with the 
estimates of the model-based pinocytosis and diffusion- 
convection parameters for the 22 antibodies in our study (see 
Supplemental Material). Only one in silico measure related to 
hydrophobicity was found to be a significant predictor of Spino 
(R = 0.74, p = .0053) for 12 of the antibodies in common between 
the two sets. In a further analysis of those antibodies reported with 
known Hep_RT values and in silico measures from MOE and TAP 
platforms (n = 59), we found that Hep_RT was positively asso-
ciated with several charge-related and hydrophobicity-related 
metrics. In particular, Hep_RT was found to be associated with 
the charge-related metric pI_3D in combination with the hydro-
phobicity descriptor asa_hph (R = 0.82, p < 10−13). This suggests 
that Hep_RT may represent the combined effects of electrostatic 
and hydrophobic factors, as fundamental determinants of anti-
body-specificity.19 We note that a comprehensive investigation of 
various in vitro and in silico properties of 64 antibodies identified 
charge and hydrophobicity as important predictors of nonspecific 
antibody clearance based on statistical and machine learning 
analyses.11

Physiologically based pharmacokinetics models have 
been used to predict disposition of mAbs in humans 
based on antibody physiochemical properties assessed via 
in vitro assays and in silico methods. In a study of 12 
antibodies, an in vitro self-association score (AC-SINS) 
was used to predict antibody-specific binding affinity with 
cell membrane within a PBPK model.14 In our modeling 
analysis, however, we did not find a significant relationship 
between the values of AC-SINS reported by Jain et al.10 and 
the estimated pinocytosis scaling parameter (Spino) values 
for the 22 antibodies considered (R = 0.109, p = .63). Since 
self-association interactions are mechanistically more 
directly related to the solubility, viscosity and opalescence 
of the antibody formulation than to nonspecific antibody 

Figure 2. Observed and modeled relationship between FcRn K6:0
d and FcRn 

relative retention time (hFcRn_RT). The dots represent available assay results of 
37 antibodies.5 The line indicates the nonlinear regression relationship: 
K6:0

d ¼ 1136 � e� 0:52�hFcRn RT , R = 0.79. ALT Text: A scatter plot with 37 points and 
a decaying fitting curve. Most points locate around the curve with four points 
away from it. The x axis is labeled with hFcRn_RT with a range of 0.0 to 10.0. The 
y axis has a title of “FcRn Kd

6.0 (nM)” ranging from 0 to 2000.
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interactions that occur in vivo, it may be more difficult to 
identify any potential associations between AC-SINS and 
PBPK model-based parameters characterizing nonspecific 
interactions.20 Further PBPK studies using additional anti-
bodies would be needed to explore AC-SINS as a model- 
based predictor of antibody PK in humans.

In our previous PBPK modeling work, a sequence-based 
in silico charge metric (patches of positive charge in the 
complementarity-determining region, PPC) was found to be 
positively associated with Spino in 16 mAbs (R = 0.73, p = 
.0013).15 The positive relation between Spino and the PPC 
metric is theoretically reasonable14 and consistent with 
other in vitro and in vivo studies.21,22 However, we found 
no significant relationship between Spino and the PPC 
metric in the larger set of 22 mAbs evaluated in this work 
(R = 0.24, p > .2). Pooling the distinct antibodies from our 
current and previous work (n = 28), a borderline but 

statistically significant association was found between Spino 
and PPC (R = 0.44, p = .02). Taken together, these results 
suggest local charge in the complementarity-determining 
region may inform the model-based estimate of antibody 
pinocytotic transport, but other antibody properties not 
incorporated in the modeling analysis may make it difficult 
to detect any contribution of this charged-based property.22

Although we found statistically significant associations 
between both the PBPK model parameters representing anti-
body nonspecific binding and that representing paracellular 
transport with an in vitro heparin chromatography assay, the 
resulting regression relationships involved notable variability 
as indicated by the regression line 95% confidence regions in 
Figure 4. Given that the modeling analysis was based on mean 
data reported for each of the 22 antibodies considered, we 
could not include subject specific factors that could account 
for some of the unexplained variability reflected in the 

Figure 3. Model predicted and observed antibody plasma concentration versus time profiles following intravenous delivery. The solid lines are model predictions. The 
symbols represent digitized data at different dose levels from literature (Table 1). ALT Text: 22 scatter plots arranged into five rows, with different antibody names on the 
top of each plot. Within each plot there are dots of different shapes labeled as different doses. A solid line is plotted corresponding to dots of each dose, with good 
agreement. The x axis has a title of “Time (day)” and y axis is in log scale with a title of “Concentration (nM).”
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regression relationships. Moreover, differences in subject dis-
ease states and FcRn expression, as well as antibody-specific 
differences in physical sizes and glycosylation patterns were not 
investigated as additional explanatory predictors

of Spino and Sdiff � conv.23 It should be noted that the antibo-
dies selected have been approved or were evaluated in Phase 2 
or Phase 3 clinical trials, and have thus have been selected for 
their desirable PK properties. This de facto selection bias yields 
a set of antibodies with smaller differences in physiochemical 
properties, as measured by the in vitro assays, making it more 
challenging to quantify any relationships between model-based 
antibody transport processes and in vitro readouts. An addi-
tional limitation of the work is the relatively small number of 
antibodies considered, and further investigation that includes 
more antibodies with available plasma and tissue concentration 
time course data is required to assess the suitability of the 
proposed model-based approach for predicting antibody 
plasma and tissue PK in humans. In addition, the Hep_RT 
values of the 22 mAbs were adopted from Kraft et al.,3 in which 
the variable domains of different antibodies where grafted onto 
a common IgG1 Fc. Although six of the antibodies included in 
this study where IgG2 and IgG4 isotypes, the correlation 
between Spino and Hep_RT and Sdiff � conv and Hep_RT 
remained significant even after excluding these six non-IgG1 
mAbs (results not shown). Finally, the model represents anti-
body-specific differences in transport as linear scale factors, 
which may not represent these antibody-dependent processes 
with sufficient fidelity to reflect the full extent of any under-
lying differences in antibody disposition.

In contrast to other studies that have used empirically derived 
expressions to relate in vitro measures of antibody physiochem-
ical properties directly to antibody clearance, we propose a PBPK 
model-based approach for predicting mAb PK that incorporates 
the mechanisms that govern antibody transport and processing, 
which are in turn informed by in vitro measures of antibody 

physiochemical properties. The underlying premise of this work 
is that the fundamental mechanisms responsible for antibody 
transport (paracellular exchange, nonspecific binding, FcRn 
interaction, transcytosis) are more directly relatable to the 
in vitro assays designed to characterize these interactions and 
processes than is overall systemic clearance. Given its physiolo-
gical basis, the proposed PBPK model can be expanded to 
include more descriptive representations of each of the antibody 
processing subsystems such as TMDD in extracellular spaces, as 
well as other antibody-specific information.

Materials and methods

In vitro assay data

Results from a previously reported study by Kraft et al.3 were 
used to characterize antibody nonspecific cell-surface interac-
tion and FcRn interaction. As described,3 the variable regions 
of 131 antibodies approved or in clinical development were 
grafted onto the identical IgG1 Fc domain and their relative 
retention times in heparin (Hep_RT) and on human FcRn 
(hFcRn_RT) columns were measured. In addition, results 
from 12 physiochemical property assays designed to assess 
nonspecific interaction, thermal stability, hydrophobicity, and 
antibody self-association were obtained from the report of Jain 
et al.10 The results from these 14 assays from Kraft et al.3 and 
Jain et al.10 for the 22 antibodies used in this work (see below) 
are provided in the Supplemental Material.

To determine antibody-FcRn dissociation constant at pH 6.0 
(K6:0

d ) of the evaluated antibodies, measurements of antibody 
FcRn affinities (SPR assay) and human FcRn column retention 
time from 37 antibodies5 were used to construct an empirical 
relationship between K6:0

d and hFcRn_RT (data in Supplemental 
Material), from which the antibody-FcRn dissociation constants 
at pH 6.0 for the 22 antibodies in this study were calculated.

Figure 4. Association between the two estimated model parameters and antibody heparin relative retention time (Hep_RT). Estimated regression lines: (a) Spino ¼

0:75 � Hep RT þ 0:53 (R = 0.64, p = .0013, residual standard error = 0.148). (b) Sdiff � conv ¼ 0:73 � Hep RT þ 0:35 (R = 0.52, p = .012, residual standard error = 0.197). 
Shaded areas represent 95% confidence region for the line of means.
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Clinical study data

For each of the 131 antibodies reported in Kraft et al.3 and 
the 137 antibodies in Jain et al.,10 a literature and database 
search was conducted to identify those mAbs with available 
plasma concentration-time profiles following intravenous 
(IV) administration. ELISAs were used in these previous 
studies to measure the concentration of antibodies. We 
digitized the reported mean plasma concentration-time 
course plots for those mAbs with linear kinetics (no 
obvious TMDD) and with frequent sampling. The 22 anti-
bodies identified, of which 14 were approved, are listed in 
Table 1 along with their dosing, reported clearance, 
Hep_RT, hFcRn_RT and molecular weight. The PK data 
from 16 of these mAbs included two or more dose levels. 

Additional information (IgG subtype, mechanism of action, 
global status, and indications) about these 22 mAbs are 
provided in the Supplemental Material.

Model structure

The PBPK model used in this study (Figure 1) is based on that 
reported in our previous work,15 which itself extended and 
modified a mAb PBPK model reported by Glassman and 
Balthasar.14 Figure 1a depicts the whole-body circulatory system 
structure of the model, with antibody (and IgG) distribution to 
and from the indicated organs via convection shown by black 
lines and returned from the organs to the central venous plasma 
pool through convection via the lymphatic flow (gray lines).

Figure 5. Model-predicted and observed plasma concentrations of four antibodies: (a) fulranumab (hep_RT = 0.90), (b) olokizumab (hep_RT = 0.21), (c) ozanezumab 
(hep_RT = 0.64), and (d) trastuzumab (hep_RT = 0.66) for the indicated doses. Dots are mean concentrations from literature (Table 1). Solid lines indicate the predicted median 
concentration from the population simulations. Dash lines display the 5th and 95th percentiles of the predicted plasma concentrations from the population simulations.
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Figure 1b shows the model used to represent administered 
mAb and endogenous IgG disposition in each organ/tissue, and 
includes vascular, endothelial, interstitial, and cellular spaces, with 
transcapillary exchange via paracellular transport and pinocytosis. 
For generality, and to allow for future extension, a two-pore 
model was used to describe the paracellular transport of endo-
genous IgG and administrated mAbs as detailed in our previous 
report15 (following that presented by Li and Shah46). The follow-
ing mass balance equations describe the organ vascular space 
concentrations of endogenous IgG (CIgGOrgan

vasc ) and 
mAb (CmAbOrgan

vasc ): 

The symbols used to represent concentration variables and 
parameters involved in modeling the transport processes 
are provided in the Supplemental Material. The first line 
of Eq. (1) represents IgG transport via blood perfusion, 
the second line accounts for IgG exchange via pinocytosis 
and exocytosis (discussed below), while the last two lines 
represent IgG’s paracellular transport via diffusion and con-
vection based on the two-pore model. A similar equation 
representing mAb exchange (Eq. (2)) includes scaling fac-
tors to represent antibody-specific differences in transport 

Table 1. List of included mAbs.

mAb (abbreviation) Dosing Reported clearance (ml/day) Hep_RT hFcRn_RT
Molecular weight 

(g/mol x 105) Reference

Adalimumab (Ada) 0.25–5 mg/kg 210 0.79 1.04 1.44 24

Atezolizumab (Ate) 1–20 mg/kg; 1200 mg 239 0.53 1.16 1.45 25

Bapineuzumab (Bap) 5 mg/kg 216 0.86 −0.02 1.49 26

Benralizumab (Ben) 0.3 mg/kg 261 0.71 0.99 1.46 27

Bevacizumab (Bev) 5 mg/kg 201 0.55 0.69 1.49 28

Canakinumab (Can) 1–3 mg/kg; 600 mg 161 0.55 0.32 1.45 29

Daclizumab (Dac) 200, 400 mg 286 0.84 0.02 1.43 30

Emibetuzumab (Emi) 700, 1400 mg 250 0.84 0.86 1.44 31

Enokizumab (Eno) 0.3–9 mg/kg 137 0.54 0.41 1.48 32

Farletuzumab (Far) 200, 400 mg/m^2 188 0.49 0.17 1.45 33

Figitumumab (Fig) 10, 20 mg/kg 164 0.77 1.39 1.46 34

Fulranumab (Ful) 3–30 mg 233 0.90 1.09 1.45 35

Gevokizumab (Gev) 0.01–3 mg/kg 175 0.63 0.4 1.45 36

Guselkumab (Gus) 0.03–10 mg/kg 338 0.87 1.24 1.44 37

Mepolizumab (Mep) 250 mg 157 0.60 −0.03 1.49 38

Olokizumab (Olo) 3 mg/kg; 10 mg/kg 116 0.21 0.14 1.5 39

Ozanezumab (Oza) 0.1–15 mg/kg 221 0.64 0.69 1.45 40

Pertuzumab (Per) 2–15 mg/kg 258 0.59 0.37 1.48 41

Tildrakizumab (Til) 0.1–10 mg/kg 154 0.55 0.23 1.47 42

Tralokinumab (Tral) 150 mg 168 0.68 0.63 1.44 43

Trastuzumab (Tras) 6 mg/kg 225 0.66 0.46 1.48 44

Ustekinumab (Ust) 0.1–5 mg/kg 148 0.68 0.13 1.49 45

VOrgan
vasc �

dCIgGOrgan
vasc

dt
¼ QOrgan � CIgGArterial

vasc � ðQOrgan � LOrganÞ � CIgGOrgan
vasc

� CLOrgan
pino � CIgGOrgan

vasc þ fIgGrecyc � CLOrgan
pino � CIgFcOrgan

recyc

� PSOrgan
L � ðCIgGOrgan

vasc � CIgGOrgan
inter Þ �

PeL

ePeL � 1
� PSOrgan

S � ðCIgGOrgan
vasc � CIgGOrgan

inter Þ �
PeS

ePeS � 1
� JOrgan

L � ð1 � σLÞ � CIgGOrgan
vasc � JOrgan

S � ð1 � σSÞ � CIgGOrgan
vasc

(1) 

VOrgan
vasc �

dCmAbOrgan
vasc

dt
¼ QOrgan � CmAbArterial

vasc � ðQOrgan � LOrganÞ � CmAbOrgan
vasc

� Spino � CLOrgan
pino � CmAbOrgan

vasc þ Spino � fIgGrecyc � CLOrgan
pino � CmAbFcOrgan

recyc

� Sdiff � conv � PSOrgan
L � ðCmAbOrgan

vasc � CmAbOrgan
inter Þ �

PeL

ePeL � 1
� Sdiff � conv � PSOrgan

S � ðCmAbOrgan
vasc � CmAbOrgan

inter Þ �
PeS

ePeS � 1
� Sdiff � conv � J

Organ
L � ð1 � σLÞ � CmAbOrgan

vasc � Sdiff � conv � J
Organ
S � ð1 � σSÞ � CmAbOrgan

vasc

(2) 
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relative to IgG, including a scaling term for pinocytosis 
(Spino) and a single term for diffusion and convection 
(Sdiff � conv), following the approach reported by Glassman 
and Balthasar14 and used in our previous work. These two 
antibody-specific scaling factors were estimated as described 
below.

The corresponding mass balance for the concentrations of 
mAb and endogenous IgG in the interstitial space (CmAbOrgan

inter 

and CIgGOrgan
inter ) yields: 

See Supplemental Material for definition of all symbols.
The model used for endosomal transit and processing 

(Figure 1b and 1c) is an updated version of that used in our 
previous work and is based on further insight into the physio-
logical processes governing IgG-FcRn interaction as reported 
by Ward and Ober.47 Three endosomal compartments were 
used to represent separate stages of IgG endosomal transit 
(Figure 1b): early endosome (pH 7.4a), late endosome (pH 

6.0) and cell membrane (pH 7.4b). Within each endosomal 
compartment, endogenous IgG or exogenous mAbs can inter-
act with FcRn in a pH-dependent manner,15 via mass action 
association and dissociation rate constants, kpHx

on and kpHx
off , as 

depicted in Figure 1c. Free IgG in the late endosome (pH 6.0) 
will be sorted to the lysosome for degradation (represented by 
“CL” term in Figure 1b), while FcRn-bound IgG is designated 
to the cell membrane compartment (pH 7.4b) for recycling or 

exocytosis. In the cell membrane compartment, a fraction of 
free IgG (fIgGrecyc) is recycled to the vascular space, while that 
bound to FcRn (FcRn-IgG complex) remains in the endosome 
(early endosome compartment). Free FcRn is assumed to move 
from the early endosome to subsequent compartments, with 
internalization from the last cell membrane compartment (pH 
7.4b) to the first early endosome compartment (pH 7.4a). Based 
on these assumptions, the following equations describe the 
concentrations of the species in the early endosome compart-
ment (CIgGOrgan

7:4a , CIgFcOrgan
7:4a , CmAbOrgan

7:4a , CmAbFcOrgan
7:4a 

and CFcRnOrgan
pH7:4a): 

VOrgan
inter

dCIgGOrgan
inter

dt
¼ ð1 � fIgGrecycÞ � CLOrgan

pino � CIgFcOrgan
recyc � CLOrgan

pino � CIgGOrgan
inter � LOrgan � CIgGOrgan

inter

þ PSOrgan
L � ðCIgGOrgan

vasc � CIgGOrgan
inter Þ �

PeL

ePeL � 1
þ PSOrgan

S � ðCIgGOrgan
vasc � CIgGOrgan

inter Þ �
PeS

ePeS � 1
þ JOrgan

L � ð1 � σLÞ � CIgGOrgan
vasc þ JOrgan

S � ð1 � σSÞ � CIgGOrgan
vasc

(3) 

VOrgan
inter

dCmAbOrgan
inter

dt
¼ Spino � ð1 � fIgGrecycÞ � CLOrgan

pino � CmAbFcOrgan
recyc � Spino � CLOrgan

pino � CmAbOrgan
inter � LOrgan � CmAbOrgan

inter

þ Sdiff � conv � PSOrgan
L � ðCmAbOrgan

vasc � CmAbOrgan
inter Þ �

PeL

ePeL � 1
þ Sdiff � conv � PSOrgan

S � ðCmAbOrgan
vasc � CmAbOrgan

inter Þ �
PeS

ePeS � 1
þ Sdiff � conv � J

Organ
L � ð1 � σLÞ � CmAbOrgan

vasc þ Sdiff � conv � J
Organ
S � ð1 � σSÞ � CmAbOrgan

vasc

(4) 

dCIgGOrgan
7:4a

dt
¼ ðCLOrgan

pino � CIgGOrgan
vasc þ CLOrgan

pino � CIgGOrgan
inter Þ=VOrgan

endo;sub

þ k7:4
off � CIgFcOrgan

7:4a � k7:4
on � CIgGOrgan

7:4a � CFcRnOrgan
7:4a �

1
τ
� CIgGOrgan

7:4a

(5) 

dCIgFcOrgan
7:4a

dt
¼ k7:4

on � CIgGOrgan
7:4a � CFcRnOrgan

7:4a � k7:4
off � CIgFcOrgan

7:4a þ
1
τ
� ðCIgFcOrgan

7:4b � CIgFcOrgan
7:4a Þ (6) 

MABS e2056944-9



dCmAbOrgan
7:4a

dt
¼ ðSpino � CLOrgan

pino � CmAbOrgan
vasc

þ Spino � CLOrgan
pino � CmAbOrgan

inter Þ=VOrgan
endo;sub

þ k7:4
off � CmAbFcOrgan

7:4a � k7:4
on � CmAbOrgan

7:4a

� CFcRnOrgan
7:4a �

1
τ
� CmAbOrgan

7:4a

(7) 

dCmAbFcOrgan
7:4a

dt
¼ k7:4

on � CmAbOrgan
7:4a � CFcRnOrgan

7:4a � k7:4
off � CmAbFcOrgan

7:4a þ
1
τ
� ðCmAbFcOrgan

7:4b � CmAbFcOrgan
7:4a Þ (8) 

dCFcRnOrgan
pH7:4a

dt
¼ k7:4

off � CIgFcOrgan
7:4a � k7:4

on � CIgGOrgan
7:4a

� CFcRnOrgan
7:4a 1mu1muþ k7:4

off � CmAbFcOrgan
7:4a

� k7:4
on � CmAbOrgan

7:4a � CFcRnOrgan
7:4a 1mu

þ
1
τ
� ðCFcRnOrgan

pH7:4b � CFcRnOrgan
pH7:4aÞ

(9) 

The following equations describe the concentrations of the different species in the late endosome compartment (pH 6.0): 

dCIgGOrgan
6:0

dt
¼ k6:0

off � CIgFcOrgan
6:0 � k6:0

on � CIgGOrgan
6:0 � CFcRnOrgan

6:0 þ
1
τ
� ðCIgGOrgan

7:4a � CIgGOrgan
6:0 Þ (10) 

dCIgFcOrgan
6:0

dt
¼ k6:0

on � CIgGOrgan
6:0 � CFcRnOrgan

6:0 � k6:0
off � CIgFcOrgan

6:0 þ
1
τ
� ðCIgFcOrgan

7:4a � CIgFcOrgan
6:0 Þ (11) 

dCmAbOrgan
6:0

dt
¼ k6:0

off � CmAbFcOrgan
6:0 � k6:0

on � CmAbOrgan
6:0 � CFcRnOrgan

6:0 þ
1
τ
� ðCmAbOrgan

7:4a � CmAbOrgan
6:0 Þ (12) 

dCmAbFcOrgan
6:0

dt
¼ k6:0

on � CmAbOrgan
6:0 � CFcRnOrgan

6:0 � k6:0
off � CmAbFcOrgna

6:0 þ
1
τ
� ðCmAbFcOrgan

7:4a � CmAbFcOrgan
6:0 Þ (13) 

dCFcRnOrgan
pH6:0

dt
¼ k6:0

off � CIgFcOrgan
6:0 � k6:0

on � CIgGOrgan
6:0 � CFcRnOrgan

6:0

þ k6:0
off � CmAbFcOrgan

6:0 � k6:0
on � CmAbOrgan

6:0 � CFcRnOrgan
6:0

þ
1
τ
� ðCFcRnOrgan

pH7:4a � CFcRnOrgan
pH6:0Þ

(14) 

Similarly, the following equations apply to the cell membrane compartment (pH 7.4b): 

dCIgGOrgan
7:4b

dt
¼ k7:4

off � CIgFcOrgan
7:4b � k7:4

on � CIgGOrgan
7:4b � CFcRnOrgan

7:4b � CLOrgan
pino � CIgGOrgan

7:4a =VOrgan
endo;sub (15) 

dCIgFcOrgan
7:4b

dt ¼ k7:4
on � CIgGOrgan

7:4b � CFcRnOrgan
7:4b � k7:4

off � CIgFcOrgan
7:4b þ

1
τ � ðCIgFcOrgan

6:0 � CIgFcOrgan
7:4b Þ (16) 

dCmAbOrgan
7:4b

dt
¼ k7:4

off � CmAbFcOrgan
7:4b � k7:4

on � CmAbOrgan
7:4b � CFcRnOrgan

7:4b � Spino � CLOrgan
pino � CmAbOrgan

7:4a =VOrgan
endo;sub (17) 

dCmAbFcOrgan
7:4b

dt
¼ k7:4

on � CmAbOrgan
7:4b � CFcRnOrgan

7:4b � k7:4
off � CmAbFcOrgan

7:4b þ
1
τ
� ðCmAbFcOrgan

6:0 � CmAbFcOrgan
7:4b Þ (18) 
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dCFcRnOrgan
pH7:4b

dt
¼ k7:4

off � CIgFcOrgan
7:4b � k7:4

on � CIgGOrgan
7:4b � CFcRnOrgan

7:4b

þ k7:4
off � CmAbFcOrgan

7:4b � k7:4
on � CmAbOrgan

7:4b � CFcRnOrgan
7:4b

þ
1
τ
� ðCFcRnOrgan

pH6:0 � CFcRnOrgan
pH7:4bÞ

(19) 

The lymph node compartment in Figure 1, representing all the 
body’s lymph nodes, collects the lymph drainage from all organs. 
The post-nodal lymph flow travels to a lumped lymphatic vessel 
(representing lymphatic trunk, thoracic duct and, cisterna chyli) 
before entering the central venous pool. The mass balance equa-
tions for the amounts and concentrations of endogenous IgG 
and exogenous mAbs in the lymph node and lymphatic vessel 
compartments are the same as our previous report.15

As reported in our previous modeling work,15 

a sampling site compartment was included to better reflect 
the skin and muscle contributions to antibody concentra-
tions at the peripheral sampling site, 
where CmAbPeri ¼ 0:7 � CmAbSkin

vasc þ 0:3 � CmAbMuscle
vasc .

The complete set of equations and definition of all symbols 
used in the model, including all organs, is provided in the 
Supplemental Material.

Model parameter values – fixed

Individual organ/tissue values
Values for organ/tissue volumes (vascular, interstitial, and cell) 
were obtained by combining information from various 
sources.12,48–51 The organ weights (without blood) for 
a representative 70-kg human were taken from the report by 
Sowby,48 while reported50 tissue densities were used to calcu-
late organ volumes. Previously reported interstitial volume 
fractions12 were adopted to calculate the interstitial volumes 
(VOrgan

inter ) and cell volumes (VOrgan
cell ) given in Table 3. Total 

plasma volume of 2906 ml was obtained assuming a blood 
mass of 5.6 kg, blood density of 1.06 g/ml, and hematocrit of 
45%. Based on reported blood distribution in the vascular 
system,48 total plasma volume was partitioned as follows: 
lung capillaries (2%), systemic organ/tissue capillaries (5%), 
central venous space (67%, including pulmonary artery, heart 
right chamber, large veins and organ veins), and arterial space 
(26%, including pulmonary vein, heart left chamber, large 
arteries, and organ arteries). The individual organ vascular 
volumes (VOrgan

vasc ) listed in Table 3 were calculated by partition-
ing the total capillary volume using the blood volume distribu-
tion in adults reported by Sowby et al.48

The total cardiac output of plasma (QTotal) was assumed to be 
5.148 × 106 ml/day, consistent with the values reported in different 
sources.48–50 Based on reported48 organ blood flow distribution 
values, the organ-specific plasma flow rates (QOrgan) listed in 
Table 3 were calculated. The lymph flow of each organ (LOrgan) 
given in Table 3 was assumed to be 0.078% of the corresponding 
plasma flow, to yield a total prenodal lymph flow of approximately 
8 L/day.52

Assuming central venous and arterial plasma occupy 
67% and 26% of the total plasma volume yields central 
venous and arterial volumes of 1947 and 755 ml, respec-
tively. The values for the lymphatic system parameters, 
including volumes and flows were determined as described 
in our previous work.15 The Supplemental Material pro-
vides a complete list of all model parameters and their 
values.

Endosomal processing and antibody-specific values
The basal values of FcRn concentration for each organ, listed in 
Table 3, were based on measurements reported in Li et al.53 or 
taken from Glassman et al.,13 as detailed in our previous work.15 

Parameter values related to the two-pore transport model depend 
on molecular weights, or organ lymph flow, or both. Values for 
these parameters were calculated as described previously15 and are 
listed in Table 4 along with other two-pore transport model para-
meter values.

The binding affinity to FcRn at pH6.0 was assumed to be 
antibody-specific and was determined for each of the 22 
antibodies in our study based on a relation derived between 
mAb equilibrium dissociation constant K6:0

d and hFcRn_RT. 
Using the K6:0

d and hFcRn_RT data from 37 mAbs as noted 
above, an exponential (decaying) relation was determined 
using the ID application (weighted least squares estimation) 
in the ADAPT software (version 5).55 The resulting rela-
tionship was used to determine K6:0

d for each of the anti-
bodies used in this study given their known measured 
hFcRn_RT. Assuming a value of k6:0

off of 573.1 day-1 for all 
antibodies,13 k6:0

on of each antibody was estimated 
as k6:0

on ¼ k6:0
off =K6:0

d .

Model parameter values – estimated

As indicated above, model equations describing endogen-
ous IgG and its interactions with FcRn were included into 
the model. Assuming an endogenous IgG production rate 

Table 2. Estimated antibody-specific parameters.

Abbreviation K6:0
d (nM) (RSE%) Spino (RSE%) Sdiff � conv (RSE%)

Ada 663 (49) 1.17 (3.5) 1.08 (4.5)
Ate 623 (52) 0.93 (7.5) 0.81 (6.4)
Bap 1148 (28) 0.99 (2.2) 1.16 (8.0)
Ben 680 (48) 1.31 (4.2) 0.98 (7.1)
Bev 795 (41) 1.14 (2.2) 0.68 (8.7)
Can 963 (34) 0.90 (1.1) 0.88 (4.1)
Dac 1125 (29) 1.26 (1.4) 1.06 (5.7)
Emi 727 (45) 1.09 (17.9) 0.87 (9.9)
Eno 919 (35) 0.86 (2.4) 0.76 (4.0)
Far 1041 (31) 1.14 (8.1) 0.48 (14)
Fig 552 (59) 0.94 (1.9) 0.92 (6.6)
Ful 646 (50) 1.15 (2.4) 1.24 (4.5)
Gev 924 (35) 0.84 (2.6) 0.69 (3.7)
Gus 597 (54) 1.45 (1.2) 1.13 (2.9)
Mep 1154 (28) 0.95 (2.5) 0.48 (8.5)
Olo 1057 (31) 0.61 (2.4) 0.88 (4.1)
Oza 795 (41) 1.10 (1.3) 0.93 (5.0)
Per 938 (35) 1.09 (7.7) 0.90 (6.8)
Til 1009 (32) 0.81 (1.0) 0.75 (4.0)
Tral 820 (40) 0.94 (3.6) 0.55 (9.4)
Tras 895 (36) 1.02 (11.2) 0.61 (12)
Ust 1062 (31) 0.84 (1.6) 0.51 (5.3)

K6:0
d : FcRn-mAb dissociation rate constant at pH = 6.0 

Spino
: scale factors for antibody-specific endothelial pinocytosis uptake rate 

Sdiff � conv : scale factors for antibody-specific paracellular transport rate
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(IgG0) of 1.540 × 104 nmol/day as reported in the ref.,56 

the whole-body pinocytosis rate (CLTotal
pino ) was then deter-

mined to achieve a steady state concentration of 12.1 mg/ 
ml.56 Individual organ pinocytosis rates were assumed to 
be in proportion to their individual total organ volumes 

and calculated as follows: CLOrgan
pino ¼ VOrgan

Total

.
VTotal

� �
�

CLTotal
pino (Table 3). The endosomal volume of each organ 

was then calculated using VOrgan
endo ¼ 2 � CLOrgan

pino � τ
57 

(Table 3).

For each antibody listed in Table 1, the two antibody-specific 
scaling factors,Spino and Sdiff � conv, were estimated using on the 
plasma concentration time data described above (Table 2). The 
ADAPT software (version 5) was used for parameter estimation, 
with maximum likelihood estimation (additive plus propor-
tional error variance model).55 Model simulation was first con-
ducted to reach the steady state of endogenous IgG within the 
system before antibody IV administration. The naïve pool data 
(NPD) application was used for antibodies that were administer 
at more than one dose, while the ID application was used for 
antibodies given at one dose amount.

Table 4. Parameters values related to endosomal processing and two-pore transport of mAbs.

Parameter (unit) Value Description Ref.

All organs, tissues, and mAbs
τ (day) 0.00375 Transit time of IgG between endosomal sub-compartments 13

fIgGrecyc 0.7150 IgG recycling fraction of IgG-FcRn complex back to vascular space 54

k6:0
on (nM−1day−1) antibody-specific Association rate constant between IgG and FcRn at pH = 6.0 13

k6:0
off (day−1) 573.1 Dissociation rate constant between IgG and FcRn at pH = 6.0 13

k7:4
on (nM−1 day−1) 0.06336 Association rate constant between IgG and FcRn at pH = 7.4 13

k7:4
off (day−1) 573.1 Dissociation rate constant between IgG and FcRn at pH = 7.4 13

rS (nm) 4.440 Small pore radius 46

rL (nm) 22.85 Large pore radius 46

αS 0.9580 Fractional hydraulic conductance of small pores 46

αL 0.04200 Fractional hydraulic conductance of large pores 46

Adjusted for mAb MW (150 kDa IgG as an example); All organs and tissues
ae (nm) 4.810 Stokes Einstein radius 46

σS 0.9980 Small pore vascular reflection coefficient 46

σL 0.1800 Large pore vascular reflection coefficient 46

A=A0S 9.280 x 10–7 Fractional accessible pore size of small pore 46

A=A0L 0.3490 Fractional accessible pore size of large pore 46

PeS 9.820 Peclet number of small pores 46

PeL 4.480 Peclet number of large pores 46

Adjusted for mAb MW and individual organs and tissues (150 kDa IgG in liver as an example)
PSLiver

S (ml/day) 0.03229 Permeability-surface area product of small pores 46

PSLiver
L (ml/day) 20.10 Permeability-surface area product of large pores 46

JLiver
iso (ml/day) 99.18 Circular isogravimetric flow 46

JLiver
S (ml/day) 150.8 Lymph flow through small pores 46

JLiver
L (ml/day) 110.1 Lymph flow through large pores 46

Table 3. Values of the fixed physiological parameters of individual organs/tissues.

Organ/tissue Interstitial volume (ml)aVOrgan
inter Cell volume (ml) aVOrgan

cell Vascular volume (ml) aVOrgan
vasc Plasma flow (ml/day)QOrgan

Lung 151.2 325.0 58.11 5.148 × 106

Heart 47.67 272.7 2.571 2.059 × 105

Liver 382.5 1365 25.71 3.346 x 105

Spleen 32.59 110.3 3.600 1.544 × 105

GI Tract 335.1 1636 18.00 7.722 × 105

Kidney 46.85 248.4 5.143 9.781 × 105

Muscle 3702 24155 36.00 8.752 × 105

Skin 1099 2105 7.714 2.574 x 105

Other 4677 21479 46.54 1.570 × 106

Organ/tissue Lymph flow 
(ml/day)b LOrgan

FcRn 
(nM)cCFcRn

Vascular IgG clearance via pinocytosis (ml/day)d CLOrgan
pino Endosomal volume 

(ml) dVOrgan
endo

Lung 4.015 × 103 33000 1.083 8.120 × 10−3

Heart 1.606 × 102 20200 0.7286 5.460 × 10−3

Liver 2.610 × 102 33000 3.975 2.980 × 10−2

Spleen 1.205 × 102 33000 0.3249 2.430 × 10−3

GI Tract 6.023 × 102 4180 4.484 3.360 × 10−2

Kidney 7.629 × 102 33000 0.6714 5.036 × 10−3

Muscle 6.826 × 102 33000 63.36 4.751 × 10−1

Skin 2.008 × 102 33000 7.286 5.460 × 10−2

Other 1.225 × 103 33000 59.49 4.461 × 10−1

aBased on previous literature, as detailed in text. 
bFixed to be 0.078% of organ plasma flow, with a total prenodal lymph flow ~ 8000 ml/day as reported.52 

cFixed based on the FcRn concentration measured by Li et al.53 or from Glassman et al.13 

dCalculated, as detailed in text.
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Biophysical determinants of antibody-specific model 
parameters

Potential associations between the 14 assay readouts and 
each of estimated values of the two model parameters, 
Spino and Sdiff � conv, were explored via linear regression 
analysis using the “lm” (linear model) function in the 
“stats” package as part of R.58 The selection of significant 
biophysical assays was based on p values from the regres-
sion analysis.

Model-based prediction of antibody PK

As an illustration of the application of the developed 
PBPK model prediction framework, we incorporated the 
identified relationships between the two antibody-specific 
scale factors (Spino and Sdiff � conv) and the physiochemical 
properties identified as significant into the PBPK model, 
to conduct model-based predictions of plasma PK for each 
of the 22 antibodies. For each antibody, a population 
simulation was also conducted (n = 1000) using the SIM 
application in ADAPT,55 assuming a log-normal distribu-
tion of Spino and Sdiff � conv. Mean values for the parameter 
distributions were determined as the predicted values of 
Spino and Sdiff � conv obtained from the identified relation-
ship between these parameters and those physiochemical 
properties identified as significant. The standard errors of 
the linear regression model predictions were used as the 
standard deviation of Spino and Sdiff � conv in the population 
simulations.

Internal validation of model parameter-assay associations

As an internal validation of the identified model parameter- 
assay associations, we randomly selected 18 mAbs (approxi-
mately 80% of the total) and used these antibodies to determine 
new relationships between the model parameter scaling factors 
and the physiochemical properties determined to be significant 
as described above. This random selection was repeated (n = 
100) and the resulting and p values were summarized.
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