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Abstract

Background: To support a hypothesis that there is an intrinsic interplay between coronary artery disease (CAD) and
type 2 diabetes (T2D), we used RNA-seq to identify unique gene expression signatures of CAD, T2D, and coexisting
conditions.

Methods: After transcriptome sequencing, differential expression analysis was performed between each disordered
state and normal control group. By comparing gene expression profiles of CAD, T2D, and coexisting conditions, common
and specific patterns of each disordered state were displayed. To verify the specific gene expression patterns of CAD or
T2D, the gene expression data of GSE23561 was extracted.

Results: A strong overlap of 191 genes across CAD, T2D and coexisting conditions, were mainly involved in a viral
infectious cycle, anti-apoptosis, endocrine pancreas development, innate immune response, and blood coagulation. In
T2D-specific PPI networks involving 64 genes, TCF7L2 (Degree = 169) was identified as a key gene in T2D development,
while in CAD-specific PPI networks involving 64 genes, HIF1A (Degree = 124), SMAD1 (Degree = 112) and SKIL
(Degree = 94) were identified as key genes in the CAD development. Interestingly, with the provided expression data
from GSE23561, the three genes were all up-regulated in CAD, and SMAD1 and SKIL were specifically differentially
expressed in CAD, while HIF1A was differentially expressed in both CAD and T2D, but with opposite trends.

Conclusions: This study provides some evidences in transcript level to uncover the association of T2D, CAD
and coexisting conditions, and may provide novel drug targets and biomarkers for these diseases.
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Background
Type 2 diabetes (T2D) and coronary artery disease
(CAD) often coexist and cause substantial public health
and economic burden world-wide. CAD has long been
established as a complication of T2D. The plaque forma-
tion in T2D patients may narrow the coronary arteries
and thus predispose the occurrence of heart attack. It is
assumed that there is an intrinsic interplay between T2D
and CAD, in the form of shared etiology and patho-
physiological mechanisms. The two diseases have shared

common risk factors such as, age, gender, anthropomet-
ric, metabolic, socioeconomic and lifestyle variables, as
well as psychosocial stress and environmental pollutant
exposure. In addition, both diseases are characterized by
a chronic inflammatory process [1, 2] and disorders of
the coagulation system [3].
T2D has been associated with increased risk of cardio-

vascular disease and death [4, 5]. The underlying mecha-
nisms may involve a complex interplay between genes
predisposing to insulin resistance and those independ-
ently regulating lipid metabolism, coagulation processes
and biological responses of the arterial wall [6]. The
shared susceptibility regions (bin 9.3 and 6.5) were
observed across T2D, obesity and CAD by Wu et al,
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suggesting the possibility of shared pathophysiology and
risk through genetic pleiotropy [7], which may account
for their frequent coexistence. However, there has been
limited success in correlating T2D with CAD in terms of
pathophysiologic changes up to now [8].
Peripheral blood gene expression profile has been used

to reflect pathological conditions in a variety of diseases
[9–14]. The increasing genomic information has pro-
vided an opportunity to better understand the complex
biological processes of diseases, especially after the
emergence of high throughput technologies. Previous
studies have reported the gradual change in circulating
gene expression profiles in patients with different extent
of CAD [14].
Therefore, to support a hypothesis of an intrinsic

interplay between T2D and CAD, we compared the
peripheral blood gene expression profiles of T2D, CAD
and coexisting conditions, to better understand the
association of the three metabolic disorders.

Methods
Patients
All patients (2 T2D, 2 CAD, and 6 T2D +CAD) were re-
cruited from the Third Municipal Hospital of Shijiazhuang
City between March 2007 and December 2009. The
diagnosis of T2D was according to World Health
Organization criteria [15]. CAD was diagnosed with
imaging techniques to detect flow-limiting coronary
artery stenosis[16]. Patients met both of the above
inclusion criteria were defined as T2D + CAD. The
age- and race-matched patients (n = 7) attending the
outpatient department were recruited as control
during the study period. None of these patients had
previous diagnosis of dyslipidemia, abnormal glucose
tolerance, high blood pressure, or any illness. Demo-
graphic data and medication of the study population
are summarized in Additional file 1: Table S1. The
study was approved by the Institutional Review Board
of the Third Municipal Hospital of Shijiazhuang City
and all subjects provided written informed consent.

RNA isolation and sequencing
Peripheral blood mononuclear cells (PBMCs) were
isolated from ethylene diamine tetraacetic acid (EDTA)
anticoagulated whole blood using Ficoll–Hypaque gradi-
ents. Total RNA was extracted using a Trizol reagent
(Invitrogen, Carlsbad, CA, USA). The quality and quantity
of RNA were evaluated on a Nanodrop ND-2000 spectro-
photometer (Thermo Scientific, Wilmington, DE, USA).
Isolation of messenger RNA (mRNA) was carried out
using a TruSeq RNA library preparation kit (Illumina,
San Diego, CA) according to the manufacturer’s in-
struction. The products were subsequently fragmented
into sizes of around 200 bp and subjected to double-

stranded cDNA synthesis. A HiSeqTM 2500 platform
(Illumina) was applied to perform sequencing.

Differential expression analysis
TopHat v1.3.1 software [17] was used to align raw
sequencing reads to the UCSC human reference genome
(Build hg19). The original alignment file was processed
to measure transcript abundance using Cufflinks v1.0.3
software [18]. Transcript abundance of each gene was
determined by calculation of Reads per kilobase of exon
per million mapped reads (RPKM). The paired t-tests
were performed to identify differentially expressed genes.
P <0.05 was selected as the criteria for significant differ-
ences. Hierarchical clustering of differentially expressed
genes was performed using the “pheatmap” function of
the R/Bioconductor package [8].

Functional enrichment analysis of differentially expressed
genes
Gene ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis were performed to annotate the biological func-
tion of the differentially expressed genes using the online
software GENECODIS [19]. A cut-off of FDR was
defined at 0.05.

Protein-protein interactions (PPIs) network construction
To reveal the interactions of selected genes at molecular
level, PPIs network was established based on the online
database [20, 21]. Biological General Repository for
Interaction Datasets (BioGRID) (http://thebiogrid.org/)
was used to construct PPI networks, and the distribution
characteristics of selected genes in the PPI network were
visualized using Cytoscape software [22]. Nodes in the
PPI network represent proteins, while edges represent
interactions between two proteins.

Verification of gene expression via GSE23561
The publicly available microarray dataset, GSE23561,
was downloaded from GEO database (GEO, http://
www.ncbi.nlm.nih.gov/geo) [23] to confirm the selected
differentially expressed genes between each disorder group
and normal control. In GSE23561, it showed the periph-
eral blood gene expression profiles of control (n = 9),
rheumatoid arthritis (n = 6), metabolic syndrome (n = 6),
CAD (n= 6) and T2D (n = 8).

Results
Analysis of transcriptome sequencing
A total of 3.28 × 107, 2.88 × 107, 3.30 × 107, and 2.28 ×
107 sequencing reads were generated from the CAD,
T2D, T2D + CAD, and control groups. Total number of
reads that uniquely aligned to the UCSC human
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reference genome (hg.19) were 2.17 × 107, 1.90 × 107,
2.18 × 107, and 1.51 × 107, respectively.

Differential expression analysis between T2D and control
group
Four-hundred seventy four genes were identified to be
significantly differentially expressed in T2D compared
to the control group, including 126 up-regulated and
348 down-regulated genes. GO enrichment analysis
and KEGG pathway analysis showed that 92 GO terms
were significantly enriched, including G1/S transition
of mitotic cell cycle (GO:0000082, P = 1.08E-05),
transport(GO:0006810, P = 2.81E-05), etc. Blood co-
agulation (GO:0007596, P = 0.003), inflammatory re-
sponse (GO:0006954, P = 0.007), endocrine pancreas
development (GO:0031018, P = 0.002), and viral
reproduction (GO:0016032,9.01E-06). Interestingly,
pathway of Parkinson’s disease was identified as the highly
significantly enriched pathway in T2D (P = 0.001),
confirming that T2D may facilitate the development of
Parkinson’s disease (Table 1).

Differential expression analysis between CAD and control
group
A total of 488 genes were significantly differentially
expressed in CAD when compared with the control group,
which include 400 up-regulated and 88 down-regulated
genes. Signal transduction (GO: 0007165, P = 6.14E-11)
and blood coagulation (GO:0007596, P = 8.96E-09)
were significantly enriched. Chemokine signaling path-
way was one of the most significantly enriched
pathways (P = 6.14E-11)(Table 2).

Differential expression analysis between T2D + CAD and
control group
For T2D +CAD, 370 genes were up-regulated and 69
genes were down-regulated. GO terms identified as most
significantly enriched were signal transduction (GO:
0007165, P = 2.94E-07) and anti-apoptosis (GO: 0006916,
P = 2.86E-06). Malaria was the most significantly enriched
pathway (P = 0.00015) (Table 3).

Correlation among three disease states
A strong overlap of 191 genes was identified among genes
that differentially expressed across CAD, T2D, and T2D +
CAD groups when compared with the control group.
Additionally, pairwise Spearman’s correlation coefficient

was calculated to assess the correlation among three
disease states using the differentially expressed genes in
each disease. The results showed a significant correlation
among CAD, T2D, and T2D +CAD (p <0.0001), suggest-
ing the possibility of shared pathophysiology of the
diseases. The correlation between T2D and T2D +CAD
was the most significant in the peripheral blood gene
expression profiles (Spearman’s rho = 0.6757, p <0.0001).
For those overlapping genes across CAD, T2D, and

T2D + CAD, they are mainly enriched in GO terms of
viral infectious cycle (GO:0019058, p = 0.00014), anti-
apoptosis (GO:0006916, p = 0.00017), endocrine pan-
creas development (GO:0031018, p = 0.0004), innate
immune response (GO:0045087, p = 0.01), and blood
coagulation (GO:0007596, p = 0.03), etc. These common
genes were mainly involved in pathways of Ribosome
(p = 2.77E-06), Focal adhesion (p = 0.03), Apoptosis
(p = 0.03), Small cell lung cancer (p = 0.03), RIG-I-like
receptor signaling pathway (p = 0.03), Mineral absorption

Table 1 The top 15 significantly enriched pathways for differentially expressed genes in T2D

KEGG ID KEGG term Count FDR Genes

hsa05012 Parkinson's disease 10 1.33E-03 NDUFA5,ATP5J,NDUFV2,SNCA,NDUFA12,LRRK2,ATP5C1,UQCRB,VDAC3,UBB

hsa03010 Ribosome 8 1.41E-03 RPS3A,UBA52,RSL24D1,RPL7,RPL39,RPL21,RPS24,RPS12

hsa05200 Pathways in cancer 13 1.26E-02 PTCH1,FOS,BCL2L1,COL4A2,PTEN,BIRC3,TCF7,TCEB1,IL8,SMAD3,ITGB1,STK36,FN1

hsa05222 Small cell lung cancer 6 1.48E-02 BCL2L1,COL4A2,PTEN,BIRC3,ITGB1,FN1

hsa05016 Huntington’s disease 9 1.49E-02 NDUFA5,ATP5J,NDUFV2,NDUFA12,CREB5,ATP5C1,UQCRB,SP1,VDAC3

hsa04210 Apoptosis 6 1.50E-02 BCL2L1,BIRC3,IRAK3,DFFB,IL3RA,PRKACB

hsa05160 Hepatitis C 8 1.53E-02 STAT2,TBK1,IL8,MAVS,OAS3,OAS1,NR1H3,EIF3E

hsa04640 Hematopoietic cell lineage 6 1.56E-02 CD55,IL1R2,IL6R,TFRC,CD5,IL3RA

hsa04510 Focal adhesion 10 1.57E-02 COL4A2,PTEN,MYL12B,BIRC3,RAP1B,ARHGAP5,ITGB1,MYL12A,FN1,PPP1CC

hsa04114 Oocyte meiosis 7 1.67E-02 PPP2R5A,CDC27,SKP1,SLK,SMC3,PRKACB,PPP1CC

hsa04110 Cell cycle 7 1.76E-02 ORC3,CDC27,ORC4,SKP1,DBF4,SMAD3,SMC3

hsa03050 Proteasome 4 2.40E-02 PSMC6,POMP,PSMD12,PSMA4

hsa04120 Ubiquitin mediated proteolysis 7 2.54E-02 CDC34,CDC27,BIRC3,UBE2W,TCEB1,SKP1,CUL3

hsa04622 RIG-I-like receptor signaling pathway 5 2.56E-02 TBK1,ATG5,TANK,IL8,MAVS

hsa03013 RNA transport 7 3.28E-02 RANBP2,SRRM1,THOC7,NUP54,XPO1,POM121C,EIF3E
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(p = 0.04), Leukocyte transendothelial migration (p = 0.04),
etc (Table 4).

Disease-specific PPI network
The pathology of T2D with CAD shares much in
common with that of CAD and T2D. We selected 64

genes that were significantly differentially expressed in
T2D or T2D with CAD, but were not significantly differ-
entially expressed in CAD to construct T2D-specific PPI
networks. The information of 7 genes wasn’t available in
BioGRID database. When removing duplicated edges,
self-loops nodes, colocalization edges, finally 47 genes

Table 2 The top 15 significantly enriched pathways for differentially expressed genes in CAD

KEGG ID KEGG term Count FDR Genes

hsa04062 Chemokine signaling pathway 15 8.37E-06 STAT2,CCL3L3,NRAS,RAP1A,CXCL1,RAP1B,CCL3,GNAI3,
IL8,ADCY4,PIK3R1,PTK2,CCL4,JAK2,PRKACB

hsa05144 Malaria 8 2.26E-05 IL1B,IL6,HBD,SDC4,GYPC,THBS1,IL8,ICAM1

hsa04670 Leukocyte transendothelial migration 10 2.07E-04 MLLT4,RAP1A,RAP1B,GNAI3,ARHGAP5,ICAM1,PIK3R1,PTK2,
ITGB1,MYL12A

hsa04621 NOD-like receptor signaling pathway 7 4.20E-04 IL1B,NLRP1,IL6,TNFAIP3,CXCL1,BIRC3,IL8

hsa05142 Chagas disease (American trypanosomiasis) 9 4.85E-04 IL1B,IL6,CCL3L3,PPP2R2A,CCL3,GNAI3,IL8,IFNGR1,PIK3R1

hsa05323 Rheumatoid arthritis 8 4.86E-04 IL1B,IL6,ATP6V1C1,CCL3L3,CXCL1,CCL3,IL8,ICAM1

hsa04010 MAPK signaling pathway 14 4.97E-04 IL1B,NRAS,RAP1A,RASA2,PPM1A,LAMTOR3,RAP1B,PLA2G6,
DUSP5,NR4A1,CACNB3,DUSP2,PRKACB,MAP3K8

hsa03010 Ribosome 8 5.05E-04 RPS3A,UBA52,RSL24D1,RPL7,RPL39,RPL21,RPS24,RPS12

hsa05146 Amoebiasis 8 1.26E-03 IL1B,IL6,CXCL1,SERPINB2,IL8,PIK3R1,PTK2,PRKACB

hsa04510 Focal adhesion 11 1.31E-03 PTEN,RAP1A,THBS1,BIRC3,RAP1B,ITGA5,ARHGAP5,PIK3R1,
PTK2,ITGB1,MYL12A

hsa05162 Measles 9 1.33E-03 IL1B,IL6,STAT2,TBK1,TNFAIP3,IFNGR1,PIK3R1,JAK2,OAS1

hsa04620 Toll-like receptor signaling pathway 8 1.43E-03 IL1B,IL6,TBK1,CCL3,IL8,PIK3R1,CCL4,MAP3K8

hsa05222 Small cell lung cancer 7 2.02E-03 BCL2L1,PTEN,BIRC3,PIK3R1,PTK2,ITGB1,PTGS2

hsa04210 Apoptosis 7 2.17E-03 IL1B,BCL2L1,BIRC3,PIK3R1,IRAK3,PRKACB,ATM

hsa05145 Toxoplasmosis 8 3.37E-03 BCL2L1,BIRC3,PLA2G6,GNAI3,IFNGR1,PIK3R1,ITGB1,JAK2

Table 3 Highly significantly enriched pathways for differentially expressed genes in T2D + CAD group

KEGG ID KEGG term Count FDR Genes

hsa05144 Malaria 7 1.51E-04 IL1B,IL6,HBD,GYPC,IL8,HBA2,KLRB1

hsa03010 Ribosome 9 1.82E-04 RPS3A,UBA52,RSL24D1,RPL7,RPL39,RPL21,RPL34,
RPS24,RPS12

hsa04620 Toll-like receptor signaling pathway 7 1.01E-02 IL1B,IL6,TBK1,CCL3,IL8,TLR5,CCL4

hsa05211 Renal cell carcinoma 6 1.18E-02 HIF1A,NRAS,RAP1A,PAK6,RAP1B,SLC2A1

hsa05020 Prion diseases 4 1.38E-02 IL1B,IL6,EGR1,PRKACB

hsa05143 African trypanosomiasis 4 1.38E-02 IL1B,IL6,HBD,HBA2

hsa04621 NOD-like receptor signaling pathway 5 1.54E-02 IL1B,IL6,CXCL1,BIRC3,IL8

hsa05323 Rheumatoid arthritis 6 1.59E-02 IL1B,IL6,CXCL1,ATP6V0E1,CCL3,IL8

hsa04062 Chemokine signaling pathway 9 1.64E-02 NRAS,RAP1A,CXCL1,RAP1B,CCL3,IL8,CCL4,JAK2,
PRKACB

hsa04010 MAPK signaling pathway 10 1.94E-02 IL1B,NRAS,RAP1A,RASA2,PPM1A,LAMTOR3,RAP1B,
NR4A1,DUSP2,PRKACB

hsa00860 Porphyrin and chlorophyll metabolism 4 1.98E-02 FECH,BLVRB,HMBS,ALAS2

hsa00100 Steroid biosynthesis 3 2.06E-02 SOAT1,CYP2R1,C5orf4

hsa04720 Long-term potentiation 5 2.19E-02 NRAS,RAP1A,RAP1B,RAPGEF3,PRKACB

hsa04120 Ubiquitin mediated proteolysis 7 2.29E-02 CDC34,CDC27,BIRC3,UBE2W,SKP1,UBE2E3,CUL3

hsa05200 Pathways in cancer 11 2.52E-02 IL6,BCL2L1,HIF1A,NRAS,PTEN,BIRC3,IL8,ITGB1,DAPK1,
SLC2A1,PTGS2
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were involved in T2D-specific PPI networks, including
1216 nodes and 1579 edges. The significant hub proteins
contained TCF4 (Degree = 169), SKP1 (Degree = 164)
and UBE2W (Degree = 75) (Fig. 1), suggesting their
important role in the development of T2D. To
construct CAD-specific PPI networks, we selected 69
genes that were significantly differentially expressed
in CAD or T2D with CAD, but were not signifi-
cantly differentially expressed in T2D. The informa-
tion of 9 genes wasn’t available in BioGRID database.
When removing duplicated edges, self-loops nodes,
colocalization edges, finally 54 genes were involved
in T2D-specific PPI networks, including 943 nodes
and 1085 edges. The significant hub proteins con-
tained HIF1A (Degree = 124), SMAD1 (Degree = 112)
and SKIL (Degree = 94) (Fig. 2), suggesting their
important role in the development of CAD.

The verification of gene expression in GSE23561
, HIF1A, SMAD1, and SKIL, specifically differentially
expressed in CAD, and also hub genes in the CAD-specific
PPI networks, was selected to confirm the above results.
With the provided expression data from GSE23561,
HIF1A, SMAD1, and SKIL were all significantly up-
regulated in CAD, and the expression of SMAD1 and SKIL
remained unchangeable in T2D as compared with normal
control, which was consistent with our results. Differently,
HIF1A was both differentially expressed in CAD and T2D,
but with opposite trends (Fig. 3).

Discussion
In this study, we used RNA-seq to identify unique
peripheral blood gene expression signatures of T2D,
CAD, and coexisting condition. Previous literature have
revealed that there is an intrinsic interplay between T2D
and CAD, while the detailed mechanism remains

unclear. Toward this end, we compared the gene expres-
sion profiles of T2D, CAD and coexisting condition to
show the association in-between them, and tried to
explain the shared pathophysiology.
Here, PBMCs are usually selected to monitor post-

translational modifications relevant to many diseases
[24], updating the underlying molecular events of
diseases. Furthermore, the feature of minimal invasion
makes differentially expressed genes in PBMCs suitable as
predictive biomarkers in clinical studies. Some studies that
analyzed gene expression profile in peripheral blood cell
of CAD or T2D have already been performed [25–27].
There were common features and characteristic differ-
ences between the current study and previous studies.
T2D and CAD both manifest disordered coagulation
system, local inflammatory process, or lipid-related dis-
order. The shared pathophysiology between T2D and
CAD may be explained by the common genetic variant,
such as CDKN2A/2B, ADIPOR1 [28] and TCF7L2 vari-
ants [29]. In our study, many differentially expressed genes
from the individual comparisons of T2D, CAD and
coexisting condition to control was also found to be
overlapped among the three disorders, suggesting shared
pathophysiology. Also Spearman’s test for gene expression
correlation revealed the significant correlation of the three
disorders, among which the correlation between T2D and
T2D +CAD was the most significant.
The overlapping genes were mainly enriched in GO

terms of viral infectious cycle, anti-apoptosis, endocrine
pancreas development, innate immune response, and
blood coagulation, etc. Those overlapping genes were
mainly involved in pathways of Ribosome (RPS3A,
UBA52, RSL24D1, RPL7, RPL39, RPL21, RPS24, and
RPS12). Ribosomal proteins are involved in cell growth
and proliferation, differentiation and apoptosis. Ribosome
biogenesis disruption could activate the p53 signaling

Table 4 The significantly enriched pathways for the common differentially expressed genes in T2D, CAD, and T2D + CAD

KEGG ID KEGG term Count FDR Genes

hsa03010 Ribosome 8 0.00 RPS3A,UBA52,RSL24D1,RPL7,RPL39,RPL21,
RPS24,RPS12

hsa04510 Focal adhesion 6 0.03 PTEN,BIRC3,RAP1B,ARHGAP5,ITGB1,MYL12A

hsa04210 Apoptosis 4 0.03 BCL2L1,BIRC3,IRAK3,PRKACB

hsa05222 Small cell lung cancer 4 0.03 BCL2L1,PTEN,BIRC3,ITGB1

hsa04622 RIG-I-like receptor signaling pathway 4 0.03 TBK1,ATG5,TANK,IL8

hsa04978 Mineral absorption 3 0.04 ATP2B1,TRPM7,ATP1B3

hsa04670 Leukocyte transendothelial migration 4 0.04 RAP1B,ARHGAP5,ITGB1,MYL12A

hsa04961 Endocrine and other factor-regulated
calcium reabsorption

3 0.04 ATP2B1,ATP1B3,PRKACB

hsa04114 Oocyte meiosis 4 0.04 CDC27,SLK,SMC3,PRKACB

hsa05144 Malaria 3 0.04 HBD,GYPC,IL8

hsa05131 Shigellosis 3 0.05 ATG5,IL8,ITGB1
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pathway, resulting in cell cycle arrest and apoptosis. More-
over, it has been correlated to clinical manifestations in
pathological states, such as cardiovascular diseases and
metabolic disorders. RpL17 inhibited vascular smooth
muscle cell growth, and limits carotid intima thickening in
mice [30]. Animal study has shown that ribosomal protein
S6kinase4 plays a crucial role in pancreatic β-cell function
and glucose homeostasis [31]. Ribosomes dysfunction may
be applied in the early diagnosis of chronic diseases, such
as cancer and cardiovascular diseases.

Besides the common signatures among T2D, CAD
and coexisting condition, we also analyzed the gene
sets which functioned specially in the development of
T2D or CAD. In the T2D-specific PPI networks, the
significant hub proteins were TCF4 (Degree = 169),
SKP1 (Degree = 164) and UBE2W (Degree = 75). TCF4,
also named transcription factor 7-like 2 (TCF7L2),
encodes a transcription factor involved in the Wnt signal-
ing pathway. TCF4 stimulates the proliferation of pancre-
atic β-cells, regulates embryonic development of the

Fig. 1 The T2D-specific PPI networks of 64 dysregulated genes. Red nodes indicate up-regulated genes in T2D, blue nodes indicate down-regulated
genes in T2D. Pink nodes indicate genes interacting with the differentially expressed genes, and larger icons indicate hub proteins
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pancreatic mass, and induces the production of the insuli-
notropic hormone glucagon-like peptide-1 (GLP-1) in
intestinal endocrine cells [32]. It plays a critical role in
blood glucose homeostasis. Recently, numerous studies
have demonstrated an association between TCF7L2 geno-
type and T2D [33–37]. In a meta-analysis by Wang J et al.,
the TCF7L2 rs7903146 polymorphism was found to be
associated with increased T2D risk in the Chinese popula-
tion [38]. There were also evidences for a strong interplay
between TCF7L2 polymorphisms and CAD [29, 39]. In
another study on nine hundred subjects referred for
cardiac catheterization for CAD diagnosis by Sousa AG et
al., a significant association was identified between the
TCF7L2 rs7903146 polymorphism and the prevalence and
severity of CAD [40].
Interestingly, differentially expressed genes between

T2D and normal controls were significantly enriched
in Parkinson’s disease, suggesting that a shared

Fig. 2 The CAD-specific PPI networks of 69 dysregulated genes. Red nodes indicate up-regulated genes in CAD, and blue nodes indicate down-regulated
genes in CAD. Pink nodes indicate genes interacting with the differentially expressed genes, and larger icons indicate hub proteins

Fig. 3 The verification of mRNA expression of HIF1A, SMAD1, and
SKIL in patients with CAD or T2D via GSE23561
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pathophysiology of Parkinson’s disease and T2D. The
link has been confirmed in several epidemiological
studies [41, 42]. The mechanism behind this associ-
ation may be that there was a reciprocal regulation
between insulin and dopamine [43].
In case of CAD-specific PPI networks, the significant

hub proteins were HIF1A, SMAD1 and SKIL. In the
provided expression data from GSE23561, we found that
SMAD1 and SKIL were specifically up-regulated in CAD
with no change in T2D, while HIF1A was both differen-
tially expressed in CAD and T2D, but with opposite
trends. In CAD patients, oxygen supply was limited as a
result of reduced blood flow brought about by athero-
sclerotic plaque formation and inflammatory processes
taking place within the vascular endothelium [44]. As a
consequence of oxidative stress in hypoxic conditions,
hypoxia-inducible factor-1 alpha (HIF-1α) was produced
to involve in adaptive and repair mechanisms. HIF-1α is
a transcriptional factor encoded by the HIF1A gene,
functioning in the preservation of oxygen homeostasis.
HIF-1α may participate in the occurrence and progres-
sion of CAD through activating various genes such as
VEGF, HO-1, and ET-1. HIF-1α mRNA was found to be
markedly up-regulated in both monocytes and lympho-
cytes of CAD patients than that of controls, and the
expression level of HIF-1α was highly correlated with
severity of atherosclerosis and higher level of collateral
score [45, 46]. In addition, other studies have investi-
gated the correlation between HIF1A polymorphism and
CAD. A recent study showed that HIF-1α polymor-
phisms (rs11549465 and rs11549467) were associated
with clinical type and formation of coronary collaterals
[47]. The rs2057482 SNP of HIF1A was showed to be
associated with increased susceptibility to premature
CAD, which may be applied in clinical diagnostics as a
susceptibility marker of premature CAD [48].
However, there were some evidences showing that

the HIF1A was crucial for first phase insulin secretion
and glucose homeostasis. Nagy et al. revealed that
polymorphism (g.C45035TSNP, rs11549465) of HIF1A
were associated with T1D and T2D in a Caucasian
population [49]. Cheng et al. identified that HIF1A
could play an important role in β cell function via binding
to ARNT promoter in a mouse with β cell–specific Hif1a
disruption [50]. Besides, hyperglycaemia appeared to
down-regulated HIF-1α mRNA expression in ischae-
mic myocardium, and inhibited the defective response
of HIF-1α to ischaemia [51, 52], explaining a positive
association between hyperglycaemia at the time of the
event and subsequent mortality from myocardial in-
farction. The dual role of HIF1A connects the patho-
genesis of T2D with that of CAD. For this study, we
determined the up-regulation of HIF1A in CAD, but
didn’t detect the expression of down-regulation of

HIF1A in T2D in RNA-seq results. The limited sam-
ple may explain the inconsistency between RNA-seq
results and that of published studies. Further large-
sample studies are needed to confirm these results.
In our study, SMAD1 and SKIL were both significantly

up-regulated in CAD, remained unchangeable in T2D,
which were involved in SMAD pathway. SMAD1
polymorphism was reported to be associated with
sudden cardiac arrest in CAD patients [53]. In a trans-
genic mice model with cardiac-specific overexpression of
smad1, Masaki M found that transgenic mice had
significantly smaller myocardial infarctions and fewer
apoptotic deaths of cardiomyocytes after ischemia-
reperfusion (I/R) injury, suggesting a role of SMAD1 in
cardioprotection against I/R injury [54]. SKIL, a compo-
nent of the SMAD pathway, was showed to be involved
in cardiac fibrosis [55, 56]. There remained no reports
on the association with CAD.

Conclusions
In summary, our data showed that the gene expres-
sion profile of T2D, CAD, and coexisting condition
were all distinguishable from controls, and displayed
common and specific gene expression pattern in each
disordered state. To note, viral infectious cycle, anti-
apoptosis, endocrine pancreas development, innate
immune response and blood coagulation were com-
mon biological processes among the three conditions.
This study provides some evidences in the transcript
level to show the association of T2D, CAD and coex-
isting condition. For this study, the number of sample
for RNA-seq was small, which is a limitation of this
study, so studies of large sample size need to be
conducted to confirm this conclusion.
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