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Objectives: This study aimed to evaluate the expression of cytosine monophosphate
kinase 2 (CMPK2) and activation of the NLRP3 inflammasome in rats with spinal cord
injury (SCI) and to characterize the effects of electroacupuncture on CMPK2-associated
regulation of the NLRP3 inflammasome.

Methods: An SCI model was established in Sprague–Dawley (SD) rats. The expression
levels of NLRP3 and CMPK2 were measured at different time points following induction of
SCI. The rats were randomly divided into a sham group (Sham), a model group (Model), an
electroacupuncture group (EA), an adeno-associated virus (AAV) CMPK2 group, and an
AAV NC group. Electroacupuncture was performed at jiaji points on both sides of T9 and
T11 for 20 min each day for 3 consecutive days. In the AAV CMPK2 and AAV NC groups,
the viruses were injected into the T9 spinal cord via a microneedle using a microscope and
a stereotactic syringe. The Basso–Beattie–Bresnahan (BBB) score was used to evaluate
the motor function of rats in each group. Histopathological changes in spinal cord tissue
were detected using H&E staining, and the expression levels of NLRP3, CMPK2, ASC,
caspase-1, IL-18, and IL-1b were quantified using Western blotting (WB),
immunofluorescence (IF), and RT-PCR.

Results: The expression levels of NLRP3 and CMPK2 in the spinal cords of the model
group were significantly increased at day 1 compared with those in the sham group (p <
0.05). The expression levels of NLRP3 and CMPK2 decreased gradually over time and
remained low at 14 days post-SCI. We successfully constructed AAV CMPK2 and
showed that CMPK2 was significantly knocked down following 2 dilutions. Finally,
treatment with EA or AAV CMPK2 resulted in significantly increased BBB scores
compared to those in the model group and the AAV NC group (p < 0.05). The
histomorphology of the spinal cord in the EA and AAV CMPK2 groups was significantly
different than that in the model and AAV NC groups. WB, IF, and PCR analyses showed
that the expression levels of CMPK2, NLRP3, ASC, caspase-1, IL-18, and IL-1b were
significantly lower in the EA and AAV CMPK2 groups compared with those in the model
and AAV NC groups (p < 0.05).
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Conclusion: Our study showed that CMPK2 regulated NLRP3 expression in rats with
SCI. Activation of NLRP3 is a critical mechanism of inflammasome activation and the
inflammatory response following SCI. Electroacupuncture downregulated the expression
of CMPK2 and inhibited activation of NLRP3, which could improve motor function in rats
with SCI.
Keywords: SCI, electroacupuncture, NLRP3, CMPK2, inflammasome
INTRODUCTION

Spinal cord injury (SCI) is a devastating neurological condition
that results in loss of motor and sensory functions (1) and is a
major source of morbidity and mortality throughout the world
(2). The overall global incidence of SCI was 10.5 cases per
100,000 individuals, resulting in an estimated 768,473 new
cases annually worldwide (3). The number of individuals living
with SCI is expected to increase with population growth, and SCI
is expected to remain a considerable portion of the global injury
burden (4–6). No treatments have been developed that promote
functional recovery after injury (7). Improved understanding of
the pathophysiology of SCI and evaluation of novel treatment
strategies may benefit patients with SCI.

SCI is characterized by a primary injury caused directly by an
initial trauma. The primary injury compromises neurons and
glia, resulting in the initiation of a secondary injury cascade that
leads to additional cell death and spinal cord damage over
subsequent weeks (1, 8). Inflammation is one of the major
barriers to neuronal anatomical and functional repair (9). After
SCI, external stimulation and changes in the local
microenvironment of the injury rapidly activate the immune
system, thus activating the inflammatory response and
promoting the release of IL-1b, IL-18, and other inflammatory
factors (10). Inflammasome complexes are involved in the
activation of caspase-1, which catalyzes the cleavage of pro-
interleukins into their active forms (including IL-18 and IL-1b)
(11–13). Studies have shown that the NLRP3 inflammasome
plays a key role in this process (14–16). The NLRP3
inflammasome consists of PYD, NACHT, and LRR domains,
which recruit the adaptor protein ASC and downstream caspase-
1 through the PYD domain to form the inflammasome (17, 18).
Jiang (19) reported that after SCI, drugs used to inhibit NLRP3
inflammasome activation reduced neuroinflammation and
improved nerve recovery, which highlighted the importance of
the NLRP3 inflammasome in secondary injury after SCI. Many
recent studies have focused on exploring the mechanisms of
NLRP3 inflammasome activation (20–23). However, the
mechanisms by which SCI induces rapid NLRP3 activation
and inflammation have not been characterized.

CMPK2 is an enzyme that catalyzes the transformation of
nucleoside monophosphates into nucleoside diphosphates (24).
Studies have shown that UDP, UTP, ADP, and ATP can activate
macrophages through surface purinergic receptors to induce the
expression of cytokines such as IL-1b (25). Furthermore, studies
have shown that CMPK2 played a key role in NLRP3 activation,
IL-1b production, and subsequent chronic inflammatory
org 2
disease (26–30). However, the role of CMPK2 in NLRP3
inflammasome activation after SCI remains unclear (Figure 1).

In this study, we evaluated the expression of CMPK2 and
NLRP3 in SCI rats. We successfully constructed adeno-
associated virus (AAV) CMPK2 and showed that CMPK2
knockdown was most significant after 2× virus dilution.
Finally, treatment with AAV CMPK2 resulted in significantly
increased Basso–Beattie–Bresnahan (BBB) scores in SCI rats.
The expression levels of CMPK2, NLRP3, ASC, caspase-1, IL-18,
and IL-1b, as determined using Western blotting (WB),
immunofluorescence (IF), and PCR, were decreased, and a
similar effect was observed following electroacupuncture
treatment, a widely used alternative therapy to treat SCI in
China (31–34).
MATERIALS AND METHODS

Reagent and Chemicals
A modified Model II-NYU/MASCIS impactor device for SCI
modeling (W.M. Keck, USA) was purchased from the Key
Laboratory of Acupuncture and Neurology of Zhejiang
Province. The needle used for acupuncture was 0.25 mm × 25
mm and was purchased from Suzhou Medical Co., Ltd. (Jiangsu,
China). The acupuncture point nerve stimulator was a HANS-
200A from Huawei Co., Ltd. (Beijing, China). A Zeiss electric
forward fluorescence microscope equipped with an Axio Imager
M2 was purchased from Zeiss (Oberkochen, Germany). A
Thermo NX50 cryostat was purchased from Thermo Fisher
Scientific (Winsford, UK). The stereotaxic apparatus was
purchased from RWD Life Science Co., Ltd. (Shenzhen,
China). Mini-protean vertical electrophoresis and membrane
transfer systems were purchased from Bio-Rad (Hercules, CA,
USA). An Image Quant LAS4000 gel imaging system was
purchased from GE Corporation (Frankfurt, Germany). A
SpectraMax M4 microplate reader was purchased from MeiGu
Molecular Co. Ltd. (Shanghai, China). Pentobarbital sodium and
N ,N ,N′,N′-tetramethylethylenediamine (TEMED) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Pierce™

BCA Protein Assay Kit was purchased from Thermo Fisher
Scientific Inc. (Fair Lawn, NJ, USA). Difco™ skim milk was
purchased from Becton, Dickinson and Company (Franklin
Lakes, NJ, USA). Polyvinylidene fluoride (PVDF) membranes
were purchased from Merck Millipore Ltd. (Billerica, MA, USA).
Antibodies against NLRP3, CMPK2, ASC, and caspase-1 were
purchased from Thermo Fisher. Antibodies against IL-18, IL-1b,
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and b-actin and Alexa Fluor 488-AffiniPure goat anti-rabbit
were purchased from Abcam PLC (Cambridge, UK).

Animals
Healthy adult male Sprague–Dawley (SD) rats (8 weeks old, 200–
220 g of body weight) were purchased from the Shanghai Xipu
Bikai Experimental Animal Company (animal license No. SCXK
(Shanghai)2018-0006) and housed in the Laboratory Animal
Center of Zhejiang Chinese Medical University, which is
accredited by the Association for Assessment and Accreditation
of Laboratory Animal Care (AAALAC, animal license No. SYXK
(Zhejiang)2018-0012). Rats were maintained under controlled
conditions with access to food and water ad libitum. All animal
experiments were performed in compliance with all relevant
ethical regulations for animal testing and research and in
accordance with animal protocols approved by the animal ethics
committee of Zhejiang Chinese Medical University (ZSLL, 2017-
183). All experimental protocols strictly followed the guidelines of
the National Institutes of Health (NIH) on the use of laboratory
animals (NIH Publication No. 8023).

Rat Spinal Cord Injury Model
To produce a contusive SCI model at T10, rats were placed on
their ventral surface in a U-shaped stabilizer and then subjected
Frontiers in Immunology | www.frontiersin.org 3
to a T10 contusion using the MASCIS weight-drop device with a
5 × 10 g/cm gravitational potential energy after a T10
laminectomy. The severity and consistency of injury were
verified by observing spinal cord congestion or tail lash of rats
after impact, and BBB scores <3 were used as the standard for
confirmation of successful model preparation. Rats in the sham
group only underwent laminectomy. All animals were
intraperitoneally injected with penicillin (100 U/day) for 3
consecutive days after modeling. After the procedure, the rats
were returned to clean home cages that were partially placed on a
heating pad until they fully recovered from anesthesia. Manual
bladder expression was performed twice daily to promote
bladder emptying (Figure 2A).

Electroacupuncture Treatment
Electroacupuncture was performed on the T9–T11 jiaji (EX-B2)
points on both sides of the spinous process on the backs of the
rats. A disposable sterile stainless steel acupuncture needle with a
diameter of 0.25 mm was inserted to a depth of 4–5 mm until the
needle tip touched the lamina and was connected to a HANS-
200A. The parameters were set as follows: the AC current (2/100
Hz) was applied on the first day after the operation, and the
current intensity was maintained at 1 mA, causing slight muscle
vibrations around the treatment area, for 20 min per day.
FIGURE 1 | The relationship between NLRP3 inflammasome activation and CMPK2. NLRP3 consists of PYD, NACHT, and LRR domains, which recruit the joint
protein ASC and downstream pro-caspase-1 to form the inflammasome. Assembly and activation of the NLRP3 inflammasome require mitochondrial damage, which
results in the release of fragmented mtDNA and increased production of reactive oxygen species (ROS), resulting in oxidation of mtDNA (OX-mtDNA). Activation of
the NLRP3 inflammasome involves pathogen-related or damage-associated molecular patterns (damPs), which are directly involved in toll-like receptor (TLR)
activation, leading to rapid activation of NF-kB and induction of mitochondrial DNA (mtDNA) synthesis. Oxidized mtDNA is associated with the NLRP3 inflammasome
complex. CMPK2 is a rate-limiting enzyme that provides deoxyribonucleotides for mtDNA synthesis, thus playing a key role in NLRP3 activation and the downstream
inflammatory response. This graphic was generated using AI.
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Electroacupuncture treatment was divided into 3 time points and
3 subgroups, with treatment periods of 1, 3, or 7 consecutive
days. Rats in the sham group, model group, and M+AAV
CMPK2 group were tied in the prone position for 20 min but
not subjected to EA (Figure 2B).
Frontiers in Immunology | www.frontiersin.org 4
Behavioral Testing
The BBB test is judged on a scale of 0–21 (0 = complete hind limb
paralysis; 21 = normal locomotion) based on hind limb
movements made in an open field including hind limb joint
movement, weight support, plantar stepping, coordination, paw
A

B

C

FIGURE 2 | Phase 1, phase 2, and phase 3 of the experimental scheme. (A) Phase 1 is the establishment schedule of the spinal cord injury model. After T10
laminectomy, the rats were contused using a MASCIS weightless device with 5 × 10 g/cm gravitational potential energy. BBB scores were measured on days 1, 3, 7,
and 14 post-SCI. The animals were then sacrificed, and tissues were extracted for Western blotting and immunofluorescence analysis. (B) Phase 2 is treatment with EA.
After the establishment of the SCI model, EA intervention was administered on days 1, 3, and 7 post-SCI. We then measured the BBB score, extracted tissues, and
performed Western blotting and immunofluorescence analyses. (C) Phase 3 is the establishment of the M+AAV CMPK2 and M+AAV NC groups. The SCI model was
established in rats 27 days after injection of adeno-associated virus (AAV) using a stereolocator. The rats were evaluated to determine BBB score, and Western blotting,
IF, PCR, H&E staining, and other analyses were performed. BBB, Basso–Beattie–Bresnahan; SCI, spinal cord injury; EA, electroacupuncture; IF, immunofluorescence.
March 2022 | Volume 13 | Article 788556
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position, and trunk and tail control. The purpose of the BBB is to
evaluate overall basic locomotor performance. Each rat was
placed in an open field and evaluated for more than 3 min by
two experimenters who were blinded to experimental groups,
with one experimenter keeping count of the total score. All rats
were assessed before modeling to ensure there were no baseline
defects, and scores were averaged into a final score per session.

CMPK2 Target Screening
To obtain effective interference targets against CMPK2, six
CMPK2 targets of interfering plasmids WS0621–0626,
overexpressing plasmid WS0588, and interfering control
plasmid WX625 were cloned into the plasmid PAAV-CMV.
Then, AAV 293T cells were cultured in Dulbecco’s modified
Eagle’s medium and transfected to collect AAV-containing
fractions. Then, the target sequence was screened using
fluorescence attenuation and WB.

Stereotaxic Injection of Viral Adeno-
Associated Virus
To inhibit the expression of CMPK2, the rats were anesthetized
with pentobarbital sodium (40 mg/kg, i.p.), and the hair on the
back of T9 was removed using an electric shaver. The rats were
fixed to a stereo-locater (RWD, 68025, Shenzhen, China), and a
10-ml Hamilton microsyringe was used to connect the rats to an
ultramicro pump (WPI, UMC4, Sarasota, FL, USA) and its
controller (WPI, UMC4, Sarasota, FL, USA). The rats were
then injected with 0.5 ml of AAV2/9-CMV_bGI-mCherry-
miRNAi (Cmpk2)-WPRE-pA (Shanghai Taitool Bioscience
Co., Ltd., Shanghai, China) and negative control (AAV2/9-U6-
shRNA(luciferase)-CAG-tdtomato virus) to the bilateral T9
spinal cord. After the T9 lamina was removed using forceps,
the spinal cord was exposed with the median line as a reference,
with a lateral opening of 1 mm and an inclination angle of 10°.
The virus was injected under a microscope at a depth of 1.5 mm
(Figure 7A). The virus was allowed to remain in the spinal cord
for 5 min after the injection to avoid virus leakage. Blood vessels
and nerves were avoided during injection, and the virus was
diluted at a final titer of 2× before injection (7.8E + 12 v.g./ml)
and infused at 100 nl/min, for a total of 550 nl/
injection (Figure 2C).

Immunofluorescence Staining
Rats were deeply anesthetized with sodium pentobarbital (50
mg/kg) and were perfused transcardially with 200 ml of 0.9%
saline (4°C) followed by 200 ml of 4% formaldehyde. The
ipsilateral T9–T11 spinal cord was harvested and post-fixed in
the same fixative for 4 h (4°C) before being transferred to 15%
and 30% sucrose for 72 h for dehydration. Several days later, the
spinal cord was serially cut into 25-mm-thick transverse sections
using a frozen microtome (Thermo NX50, USA) and mounted
on gelatin-coated glass slides as 6 sets containing every fifth serial
section. All slides were blocked with 5% normal goat serum in
TBST (with 0.1% Tween-20) for 1 h at 37°C and then incubated
overnight with the corresponding primary antibodies. The
primary antibodies used were rabbit anti-NLRP3 (1:200, #PA5-
79740, Thermo Fisher) and rabbit anti-CMPK2 (1:200, #PA5-
Frontiers in Immunology | www.frontiersin.org 5
34461, Thermo Fisher). The following day, the sections were
rinsed with TBST (6 times, 10 min each) and incubated for 1 h
with a mixture of corresponding secondary antibodies [Alexa
Fluor 488-AffiniPure goat anti-rabbit IgG (H + L) (1: 600)].
Fluorescence images were captured using a Zeiss Structured
Illumination Optical Section Microscope (Axio Imager M2).
For quantitative fluorescence intensity analysis, uniform
microscope settings were maintained throughout all image
capture sessions. All stained sections were examined and
analyzed in a blinded manner. Five images were randomly
selected from each rat tissue, and positive cells were counted
and averaged in the same area. Differences among groups were
determined using one-way anOVA and two-way anOVA.

Western Blotting
Rats were sacrificed on the third day after induction of SCI. The
rats were deeply anesthetized using pentobarbital (50 mg/kg, i.p.)
and transcardially perfused with 200 ml of normal saline (4°C).
The spinal cord was immediately removed and stored at −80°C.
Tissues were homogenized in radioimmunoprecipitation assay
(RIPA) buffer [50 mm of Tris (pH 7.4),150 mM of NaCl, 1%
Triton X-100, 1% sodium deoxycholate, sodium orthovanadate,
0.1% sodium dodecyl sulfate (SDS), EDTA, sodium fluoride,
leupeptin, and 1 nM of phenylmethylsulfonyl fluoride (PMSF)]
and then centrifuged at 15,000 rpm for 15 min at 4°C, after which
the supernatant was collected. The protein concentration was
determined using the bicinchoninic acid (BCA) method
according to the manufacturer’s instructions (Thermo Fisher,
USA), and 20 mg of protein was loaded in each lane. Protein
samples were separated on 8%–12% SDS–polyacrylamide gel
electrophoresis (SDS-PAGE) gels and electrophoretically
transferred to PVDF membranes (Merck KGaA, Darmstadt,
Germany). The membranes were blocked with 5% non-fat
milk at room temperature for 1 h and then incubated at 4°C
overnight with the following primary antibodies diluted in
blocking buffer: NLRP3, CMPK2, caspase-1, ASC, IL-1b, IL-18,
and b-actin. The next day, the membrane was incubated with the
secondary antibody (1:5,000, #7074, CST, Danvers, MA, USA)
for 2 h at room temperature. Immunoreactivity was detected
using enhanced chemiluminescence and visualized using an
Image Quant LAS 4000. The density of each band was
measured using Image Quant TL 7.0 analysis software. The
relative expression of the target protein is (target protein
absorbance value)/(actin absorbance value), and the results are
expressed as the mean ± standard deviation.

H&E Staining
The rats in each group were anesthetized by intraperitoneal
injection of 3% sodium pentobarbital (50 mg/kg) at different
time points. After intubation in the left ventricle, the right auricle
was cut open and rinsed with a rapid infusion of normal saline.
Once the outflow liquid was clear, 40 g/L of paraformaldehyde
was slowly infused through the heart. The spinal cord was
quickly cut 4 cm from the injury center and fixed in 4%
paraformaldehyde for 12 h. After post-fixation, gradient
alcohol dehydration, and paraffin embedding, continuous
transverse sections were prepared, H&E staining and resin
March 2022 | Volume 13 | Article 788556
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sealing were performed, and images were collected using a digital
pathological section scanning system (C13210-01, Hamamatsu
Photonics, Hamamatsu, Japan).

Reverse Transcriptase PCR
Total RNA was extracted from the spinal cord tissue using
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s protocol. Primer sequences are listed in
Table 1. Quantitative PCR was performed using the Fast Start
Universal SYBR Green Master kit (TaKaRa Bio Inc., Dalian,
China) according to the manufacturer’s protocol on a CFX96
Real-Time System (Bio-Rad, Hercules, CA, USA). Each reaction
was performed in triplicate and normalized to GAPDH gene
expression. The CT value of each well was determined using the
CFX96 Real-Time System software, and the average of the
triplicates was calculated. Relative quantification was
determined using the 2−DDCT method.

Statistical Analysis
GraphPad Prism 8.0 was used to conduct statistical analyses. The
data in the figures are expressed as the mean ± SEM. One-way or
two-way ANOVA followed by Tukey’s post hoc test was used for
comparisons among groups ≥5. Comparisons were considered
significantly different when p < 0.05.
RESULTS

Motor Dysfunction after Spinal Cord Injury
We generated a T10 contusion model of sci, as shown in
Figure 2A, and BBB scores were used to evaluate a motor
function on days 1, 3, 7, and 14 after SCI. The BBB scores
began to rise on the second day, and motor function gradually
improved, with the highest BBB scores achieved on day 14
after SCI, as evidenced by the significant recovery of hind limb
function (Figure 3C). After T10 contusion SCI, we continuously
administered EA for 3 days. The BBB scores in the EA group
began to increase on the third day and showed a significantly
higher rate of increase than that in the model group (Figure 4C).
The results showed that hind limb motor function was
significantly impaired following SCI. Although motor function
Frontiers in Immunology | www.frontiersin.org 6
recovered slightly following injury, the degree of improvement was
greater following EA intervention than that in the model group.

Activation of the NLRP3 Inflammasome
After Spinal Cord Injury
Motor function scores were measured 1, 3, 7, and 14 days after
SCI (Figure 3C). The BBB score results showed that the model
group had significantly impaired motor function compared with
the sham group (*p < 0.05). Hind limb motor function began to
recover on the 3rd day after SCI, and BBB score was the highest
on the 14th day of observation. WB (Figures 3A, B, F, G) was
used to measure the expression levels of NLRP3, ASC, caspase-1,
and IL-18 at 1, 3, 7, and 14 days after SCI to determine the timing
of inflammatory mediator expression. The protein expression
levels of NLRP3 in the model group were greater than those in
the sham group and were significantly increased at 1 and 3 days
after SCI (p < 0.05; Figure 3A). After SCI, the number of NLRP3-
positive cells (marked in green) around the central canal of the
spinal gray matter increased significantly (Figures 3D, E). IF
results were consistent with those obtained using WB. At 1, 3,
and 7 days after SCI, the expression of ASC protein in the spinal
cord tissue of rats in the model group was significantly increased
(Figure 3B) compared with that in the sham group (p < 0.05).
On days 3 and 7 after SCI, the expression of caspase-1 in the
spinal cord tissue of rats in the model group was significantly
increased (Figure 3F) compared with that in the sham group (p <
0.05). Three days after SCI, the expression of IL-18 in the spinal
cords of rats in the model group was significantly increased
(Figure 3G) compared with that in the sham group (p < 0.05).

Expression of CMPK2 in Spinal Cord After
Spinal Cord Injury
Recent studies have shown that CMPK2 plays a key role in
NLRP3 activation and chronic inflammatory disease (9, 10). To
confirm that CMPK2 plays an important role in NLRP3
activation, WB and IF were performed to evaluate CMPK2
expression. Compared with that in the sham group, the
expression of CMPK2 protein in the model group was
significantly increased on days 1 and 3 post-SCI (Figure 5A).
The IF results were consistent with the results obtained using
WB. After SCI, the expression of CMPK2 (marked in green)
TABLE 1 | Sequences of the primers used for qPCR.

Ranking Sequence name Primer sequence (5′ to 3′) Amplicon size (bp)

1 NLRP3 F:5′-GAGCTGGACCTCAGTGACAATGC-3′ 146
R:5′-ACCAATGCGAGATCCTGACAACAC-3′

2 CMPK2 F:5′-TGCCCGATTGCTCCCTGACTC-3′ 131
R:5′-GCCTTCGCCTGGAACCAATGG-3′

3 Caspase-1 F:5′-GTGGTTCCCTCAAGTTTTGC-3′ 154
R:5′-CCGACTCTCCGAGAAAGATG-3′

4 ASC F:5′-GGAGGGGTATGGCTTGGAG-3′ 179
R:5′-TGAGTGCTTGCCTGTGTTGGT-3′

5 IL-18 F:5′-ATATCGACCGAACAGCCAAC-3′ 105
R:5′-TTCCATCCTTCACAGATAGGG-3′

6 IL-1b F:5′-CAACTGTTCCTGAACTCAACTG-3′ 281
R:5′-GAAGGAAAAGAAGGTGCTCATG-3′
March 2022 | Volume
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F G

FIGURE 3 | The expression levels of NLRP3, ASC, caspase-1, and IL-18 in rat spinal cords 1, 3, 7, and 14 days after SCI. (A) Representative Western blotting and
semiquantitative analysis of NLRP3 protein in the spinal cords of rats in the sham and model groups at days 1, 3, 7, and 14 post-SCI. The image shows
representative Western blotting for NLRP3 and b-actin. (B) Western blotting was used to analyze the protein expression of ASC in the sham and model groups after
SCI. Representative protein bands are shown for ASC at 1, 3, 7, and 14 days after SCI (N = 5 rats/group). The expression of ASC is shown for the model and sham
groups. *p < 0.05; two-way ANOVA. (C) The BBB function scores in the sham and model groups. N = 8 rats/group. *p < 0.05. (D) The expression of NLRP3 in the
spinal cords of rats was detected using IF. The expression of NLRP3 in the spinal cord was detected in the sham group and 1, 3, and 7 days after SCI. Cells
positive for NLRP3 protein are shown in green. (E) Quantitative analysis of NLRP3-positive cells in the model group compared with the sham group. *p < 0.05; one-
way ANOVA was used for comparison. N = 5 rats/group. (F, G) Protein expression and representative protein bands for caspase-1 and IL-18 at each time point
after SCI as determined using Western blotting. N = 5 rats/group. *p < 0.05; two-way ANOVA was used for comparison. Data are presented as the mean ± SEM.
SCI, spinal cord injury; BBB, Basso–Beattie–Bresnahan; IF, immunofluorescence.
Frontiers in Immunology | www.frontiersin.org March 2022 | Volume 13 | Article 7885567
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around the central canal of the spinal gray matter increased
significantly (Figures 5B, C), which indicated that CMPK2 was
significantly upregulated around the central tubules of the spinal
gray matter at days 1, 3, and 7 after SCI.

Effect of Electroacupuncture on CMPK2
Expression in Spinal Cord Injury Rat Spinal
Cords
To observe the effect of EA on the expression of CMPK2
around the central canal of the spinal cord at 1, 3, and 7 days
after SCI, we performed IF and determined BBB scores for rats
in the EA and model groups. The BBB scores were significantly
higher in the EA group than those in the model group at 3 and
7 days post-SCI (p < 0.05) (Figure 4C). IF results showed that
EA intervention significantly reduced the number of CMPK2-
positive cells (green fluorescence) compared with that in the
model group at 1 and 3 days post-SCI (Figures 4A, B;
p < 0.05).
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CMPK2 Target Screening
To further verify the relationship between CMPK2 and NLRP3
after SCI, we designed 6 groups of miRNAi sequence plasmids
with green fluorescent protein (GFP) fluorescence labels, which
were integrated into AAV and then transfected into HEK293
cells to observe the degree of translation. In this study, 293T cells
were co-transfected with interference group WS0621–626,
interference control sample WX625, and overexpression
sample WS0588 in vitro using the fluorescence attenuation
test. The negative control, WX625, which was found to have
interference targets, did not result in a significant knockdown. In
contrast, the WS0625 and WS0626 target sequences resulted in
substantial interference (Figure 6C). WB showed that the
protein expression levels in the WS0625 and WS0626 groups
were low, which indicated that the two targets had good
interference effects (Figures 6A, B). Therefore, WS0625 and
WS0626 were the best sequences for use as inhibitors (Table 2).
As a result, WS0626 was selected to package AAV2/9-
A

B C

FIGURE 4 | Immunofluorescence analysis showed positive expression of CMPK2 in spinal cord tissues of the model and EA groups. (A) Immunofluorescence
labeling represented the number of CMPK2-positive cells (green fluorescence) at 1, 3, and 7 days after SCI, and the CMPK2-positive protein staining area is shown
in green. (B) Quantitative analysis of CMPK2-positive cells. *p < 0.05 compared with the model group; one-way anOVA was used for comparison. N = 5 rats/group.
(C) BBB scores for the model and EA groups. N = 8 rats/group. *p < 0.05 compared with the sham group. Data are presented as the mean ± SEM. EA,
electroacupuncture; BBB, Basso–Beattie–Bresnahan.
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CMV_bGI-mCherry-miRNAi (Cmpk2)-WPRE-pA for
subsequent experiments. To verify the knockdown efficiency of
CMPK2 in rats, AAV2/9-CMV_bGI-mCherry-miRNAi
(Cmpk2)-WPRE-pA was injected into the T9 spinal cord for
27 days before modeling using stereometric microinjection.
However, injection with the original virus titer (1.56E + 13
v.g./ml) resulted in increased mortality. Therefore, we diluted
the original virus and found that virus knockdown efficiency was
best after 2× dilution (Figures 7B, C), as evidenced by
significantly reduced CMPK2 expression in the knockdown
group compared with that in the model group (p < 0.05). An
AAV2/9-U6-shRNA(luciferase)-CAG-tdtomato blank virus was
used as a control. Samples were extracted for WB and IF analyses
on day 3 after SCI. The results showed that AAV2/9-CMV_bGI-
mCherry-miRNAi (Cmpk2)-WPRE-pA diluted 2× significantly
reduced the expression of CMPK2 after SCI.

Effects of Electroacupuncture and Adeno-
Associated Virus on CMPK2 Expression in
Spinal Cord Injury Rats
The expression of CMPK2 and activation of the NLRP3
inflammasome were evaluated after intervention with EA or
AAV. To demonstrate the relationship between NLRP3 and
CMPK2, we used AAV2/9-CMV_bGI-mCherry-miRNAi
(Cmpk2)-WPRE-pA, an effective AAV (designed and
Frontiers in Immunology | www.frontiersin.org 9
customized by Shanghai Tierto Biotechnology Co., Ltd.,
Shanghai, China) for knockdown of CMPK2 expression. In
this experiment, BBB score was used to evaluate hind limb
motor function in each group after CMPK2 knockdown. The
results showed that the BBB score decreased from 21 prior to SCI
to 0 at day 3 post-SCI. Intervention with EA or AAV virus
resulted in a BBB score of 3 at day 3 post-SCI, which
was significantly higher than that observed in the model group
(*p < 0.05) (Figure 8A). WB and IF showed that the expression
of CMPK2 protein increased after SCI (Figures 8B, E) in the
model and M+AAV NC groups. In contrast, the expression of
CMPK2 protein was significantly lower in the EA and M+AAV
CMPK2 groups. Three days after SCI, WB and IF results
showed significant differences between the model group and
the sham, M+EA, and M+AAV CMPK2 groups (p < 0.05)
(Figures 8B, D). The results of the analysis of CMPK2 using
PCR (Figure 8C) were consistent with those obtained using WB
and IF.

Effects of Electroacupuncture and Adeno-
Associated Virus Intervention on
Activation of NLRP3 Inflammasome in
Spinal Cord Injury Rats
Following confirmation that EA and CMPK2 knockdown
reduced CMPK2 expression in spinal cords of SCI rats, WB,
A C

B

FIGURE 5 | The expression of CMPK2 in rat spinal cords was detected using WB and IF. (A) Western blotting was used to analyze the protein expression of
CMPK2 in the sham and model groups after SCI. Representative protein bands are shown for CMPK at 1, 3, 7, and 14 days after SCI (N = 5 rats/group). *p < 0.05;
two-way ANOVA was used for comparison. (B) Quantitative analysis of CMPK2-positive cells. *p < 0.05 compared with the sham group; one-way anOVA was used
for comparison. N = 5 rats/group. (C) CMPK2 was expressed around the central canal of the gray matter of the spinal cord at 1, 3, and 7 days after spinal cord
injury. CMPK2-positive cells are represented by green fluorescence. DAPI (blue) co-staining was used to identify positive cells. Data are presented as the mean ±
SEM. WB, Western blotting; IF, immunofluorescence; SCI, spinal cord injury.
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IF, and PCR results showed that NLRP3 inflammasome protein
expression significantly increased after SCI (Figures 9A–D). SCI
resulted in increased expression of ASC, caspase-1, IL-18, and
IL-1b, and treatment with EA reversed these increases
(Figures 10A–D). Analysis of gene expression levels of ASC,
caspase-1, IL-18, and IL-1b using PCR agreed with the results
obtained using WB (Figures 10E–H). Three days after SCI, WB
and IF results showed that NLRP3 protein expression in the
spinal cords of rats in the sham, M+EA, and M+CMPK2 AAV
Frontiers in Immunology | www.frontiersin.org 10
groups was significantly decreased compared with that in the
model group (p < 0.05; Figures 9A, C).

Changes in H&E Staining in the Spinal
Cord
To observe the pathological changes of the area surrounding the
SCI in the sham, model, M+EA, M+AAV CMPK2, and M+AAV
NC groups at 3 days post-SCI, H&E staining was performed on 3
rats in each of the 5 groups. The spinal cord tissue structure in
the sham group (S) was complete, the gray and white matter
boundaries were clear, nuclear morphology was normal, nucleoli
were large and clear, and there was no evidence of inflammatory
cell infiltration, hemorrhage, necrosis, or tissue edema. The
model (M) and AAV virus (M+AAV NC) groups showed
obvious patches of bleeding, loose tissue, formation of a large
number of vacuoles, obvious changes in cell morphology, cell
body shrinkage, nuclear pyknosis, and increased numbers of
inflammatory cells in the spinal cord 3 days after SCI. In contrast,
the spinal cord tissue structure in the EA and knockdown virus
A

C

B

FIGURE 6 | In vitro CMPK2 target screening. (A) Plasmid digestion validation for WS0588 and WS0621-0626 using the following restriction sites: Smal (S) and
KpnI–BamHI (E). Molecular weight was determined using a 1-kb DNA Ladder (from bottom to top: 100 bp, 250 bp, 500 bp, 750 bp, 1 kb, 2 kb, 3 kb, 4 kb, 5 kb, 6
kb, 8 kb, and 10 kb). The pictures in panel A represent each plasmid treated with restriction enzyme (S) and unrestricted controls (NC). The restriction site was Smal
for WS0621, WS0622, WS0623, WS0624, WS0625, and WS0626, and the restriction site of WS0588 was KpnI–BamHI. The size of each band corresponded with
the expected value. (B) Western blotting of the interference group WS0621–626, the interference control sample WX625, and the overexpression sample WS0588
Western blotting bands. The flag signal was present at 77.6 kDa. WS0625 and WS0626 proteins were least expressed, which indicated the best interference effect.
(C) The interference group WS0621–626, the interference control sample WX625, and the overexpression sample WS0588 were co-transfected with 293 T cells in
vitro. Red fluorescence represents the expression of interfering plasmids. Green fluorescence represents overexpression of the target gene plasmid. In the
experimental group, the green fluorescence was significantly reduced for the WS0625 and WS0626, which indicated that these targets had strong interference
ability. The negative control WX625 had no knockout ability. The green fluorescence in the interference control sample WX625 and overexpression sample WS0588
were significantly enhanced.
TABLE 2 | CMPK2 target sequence.

Ranking Target sequence Plasmid

1 GCTGAGCAAACTGCTGGGATA WS0621
2 TCTTGGAGGAGTGCACATCTT WS0622
3 GTCAGAGTCTCTCCAAGCTGT WS0623
4 GTGGAGGAAGCTCTTTGATGA WS0624
5 GCTAAACAGTCAGCCAAGTTT WS0625
6 GGTCAACAGCGTGTTTCGTCA WS0626
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(M+AAV CMPK2) groups was relatively complete compared
with that in the model and AAV NC groups, with small bleeding
foci, reduced tissue vacuoles, increased numbers of nerve cells,
and decreased numbers of inflammatory cells (Figure 11).
DISCUSSION

Excessive inflammation following SCI is a major obstacle to
neurological recovery. The NLRP3 inflammasome plays a central
role in many acute and chronic inflammatory and degenerative
diseases (35–38), but the mechanisms that control its activation
are poorly understood. Recent studies have confirmed that
CMPK2 plays a key role in NLRP3 activation, IL-1b
production, and subsequent chronic inflammatory disease (26,
27) . We examined CMPK2 expression and NLRP3
inflammasome activation following SCI. Studies have shown
that NLRP3 consists of PYD, NACHT, and LRR domains,
which recruit the adaptor protein ASC and caspase-1 through
the PYD domain, resulting in inflammasome activation and
increased release of IL-18 and IL-1b. In our study, the
expression levels of NLRP3, ASC, caspase-1, and IL-18 were
significantly increased at the beginning of day 1 post-SCI, which
indicated that the NLRP3 inflammasome was activated following
SCI. These results were consistent with the current clinical
approach to intervene as quickly as possible following SCI.
These results also confirmed that NLRP3 inflammasome
activation after SCI can contribute to secondary injury (39,
40). We also showed that the expression of CMPK2 increased
after SCI, and the expression levels of inflammatory factors
increased in parallel with the expression of CMPK2. These
increases were accompanied by decreases in BBB scores.
Intervention with electroacupuncture reversed SCI-induced
increases in expression levels of NLRP3 and CMPK2, reduced
Frontiers in Immunology | www.frontiersin.org 11
accumulation of NLRP3 and CMPK2 around the central gray
matter, promoted the recovery of motor function, and increased
BBB score. These findings indicated that CMPK2 may be closely
related to activation of the NLRP3 inflammasome.

To further investigate the correlation between NLRP3 and
CMPK2 in spinal cord tissue of rats after SCI, we screened
CMPK2 target sequences in vitro and packaged them into viruses
for injection into the T9 spinal cord. The results showed that
injection with AAV CMPK2, which effectively knocked down
CMPK2, significantly improved motor function in rats following
SCI compared with the model and AAV NC (control virus)
groups. This improvement further supported the role of CMPK2
in the motor function deficits associated with SCI. Furthermore,
CMPK2 knockdown inhibited activation of the NLRP3
inflammasome, which confirmed that CMPK2 was involved in
NLRP3 inflammasome activation. Confirmation of the
association between CMPK2 and the NLRP3 inflammasome
was consistent with previous studies that showed that CMPK2
was closely associated with NLRP3 inflammasome activation in
hepatic ischemia/reperfusion (I/R) injury and acute respiratory
distress syndrome (ARDS), which may inhibit the synthesis of
ATP and mtDNA (30, 41).

Electroacupuncture has been used as an alternative treatment
for various diseases in recent years (42–44). A number of studies
have shown that EA can improve motor function in the lower
limbs of patients with SCI, resulting in improved quality of life
(32–34). However, the mechanism by which EA confers
therapeutic benefit is unclear. We previously showed that EA
intervention regulated the inflammatory response, and EA at the
jiaji point promoted the expression of the transcription factors
Olig2 and Sox10 after SCI, which promoted proliferation and
differentiation of oligodendrocyte precursor cells into
oligodendrocytes, resulting in the recovery of motor function
in rats (34, 45). In this study, the expression levels of NLRP3,
A B C

FIGURE 7 | The expression of CMPK2 around the central canal of the spinal cord was decreased after CMPK2 knockdown. (A) Schematic diagram of virus
injection. (B) Quantitation of CMPK2 in the T10 spinal cord 4 weeks after virus injection using Western blotting. The results show CMPK2 protein expression after 2×
and 3× viral dilutions. N = 3 rats/group. *p < 0.05 compared with the model group; one-way anOVA was used for comparison. (C) Fluorescent representation of
CMPK2 expression in the T10 spinal cord 4 weeks after virus injection. All data are expressed as the mean ± SEM.
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CMPK2, ASC, caspase-1, and IL-18 were significantly decreased
after EA treatment or CMPK2 knockdown, which indicated that
these treatments inhibited activation of the NLRP3
inflammasome. Furthermore, EA and CMPK2 knockdown
each resulted in improved BBB scores and histomorphological
changes. These results further confirmed that EA can mitigate
the inflammatory response following SCI by influencing CMPK2
expression and inhibiting NLRP3 inflammasome activation.
Frontiers in Immunology | www.frontiersin.org 12
CONCLUSIONS

Our study showed that CMPK2 can regulate NLRP3 expression
in rats with SCI. Activation of NLRP3 is an important
component of the inflammatory response following SCI. In
addition, EA reduced the expression of CMPK2, which
inhibited activation of the NLRP3 inflammasome, reduced
inflammation, and preserved motor function.
A

E

B C D

FIGURE 8 | Effect of EA on CMPK2 expression in spinal cords of rats following CMPK2 knockdown. (A) BBB scores of rats in the Sham, Model, M+EA, M+AAV
CMPK2, and M+AAV NC groups. N = 8. *p < 0.05 compared with the model group. (B) Western blotting analysis of CMPK2 expression in spinal cord tissues of rats
in the Sham, Model, M+EA, M+AAV CMPK2, and M+AAV NC groups. A representative Western blotting and semiquantitative analysis of CMPK2 are shown. N = 5
rats/group. *p < 0.05 compared with the model group; one-way anOVA was used for comparison. (C) Evaluation of CMPK2 gene expression using qPCR in the
Sham, Model, M+EA, M+AAV CMPK2, and M+AAV NC groups 3 days after SCI. N = 5 rats/group. *p < 0.05 compared with the model group; one-way anOVA was
used for comparison. (D) Quantitative analysis of CMPK2-positive cells. *p < 0.05 compared with the model group; one-way anOVA was used for comparison. N = 5
rats/group. (E) Immunofluorescence was used to detect the expression of CMPK2 around the central canal of the spinal gray matter of rats in the Sham, Model, M
+EA, M+AAV CMPK2, and M+AAV NC groups. Number of CMPK2-positive cells (green fluorescence) 3 days after SCI. DAPI (blue) co-staining was used to identify
positive cells. All data are expressed as the mean ± SEM. EA, electroacupuncture; BBB, Basso–Beattie–Bresnahan; SCI, spinal cord injury.
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A
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FIGURE 9 | Effects of CMPK2 knockdown on activation of the NLRP3 inflammasome in rat spinal cord. (A) Western blotting analysis of NLRP3 expression in spinal
cords of rats in the Sham group, Model, M+EA, M+AAV CMPK2, and M+AAV NC groups. A representative Western blotting and semiquantitative analysis of NLRP3
protein levels are shown. N = 5 rats/group. *p < 0.05 compared with the Model group; one-way anOVA was used for comparison. (B) Quantitative PCR analysis of
NLRP3 gene expression in the spinal cords of rats in the Sham, Model, M+EA, M+AAV CMPK2, and M+AAV NC groups. N = 5 rats in each group. *p < 0.05
compared with the model group; one-way anOVA was used for comparison. (C) Quantitative analysis of NLRP3-positive cells. *p < 0.05 compared with the model
group; one-way anOVA was used for comparison. N = 5 rats/group. (D) The expression of NLRP3 in the spinal cords of rats in the Sham, Model, M+EA, M+AAV
CMPK2, and M+AAV NC groups were detected using IF. The number of CMPK2-positive cells (green fluorescence) 3 days after SCI was labeled by
immunofluorescence, and the areas with positive NLRP3 staining are shown in green. All data are expressed as the mean ± SEM. IF, immunofluorescence; SCI,
spinal cord injury.
A B C D
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FIGURE 10 | Expression of ASC, caspase-1, IL-18, and IL-1b in spinal cords of rats after CMPK2 knockdown. (A–D) Western blotting detection of ASC, caspase-
1, IL-18, and IL-1b expression in the spinal cords of rats in the Sham, Model, M+EA, M+AAV CMPK2, and M+AAV NC groups showed increased expression of all
inflammatory complexes in the Model group. Intervention with EA or AAV virus reversed this increase. Representative images show ASC, caspase-1, IL-18, IL-1b,
and b-actin protein expression. Semiquantitative analysis of ASC, caspase-1, IL-18, and IL-1b is shown for each group at 3 days post-SCI. N = 5 rats/group. *P <
0.05 compared with the model group. One-way anOVA was used for comparison. (E–H) Gene expression of ASC, caspase-1, IL-18, and IL-1b in the spinal cords of
rats in the Sham, Model, M+EA, M+AAV CMPK2, and M+AAV NC groups using qPCR. N = 5 rats in each group. All data are expressed as the mean ± SEM. AAV,
adeno-associated virus; EA, electroacupuncture.
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