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Abstract. Lung cancer is a major cause of cancer‑associated 
mortality worldwide. However, the association between 
multi‑omics data and survival in lung cancer is not fully 
understood. The present study investigated the performance 
of the methylation survival risk model in multi‑platform 
integrative molecular subtypes and aimed to identify copy 
number (CN) variations and mutations that are associated with 
survival risk. The present study analyzed 439 lung adenocar‑
cinoma cases based on DNA methylation, RNA, microRNA 
(miRNA), DNA copy number and mutations from The Cancer 
Genome Atlas datasets. First, six cancer subtypes were identi‑
fied using integrating DNA methylation, RNA, miRNA and 
DNA copy number data. The least absolute shrinkage and 
selection operator (LASSO) regression algorithm was used 
to extract methylation sites of survival model and calculate 
the methylation‑based survival risk indices for all patients. 
Survival for patients in the high‑risk group was significantly 
lower compared with that for patients in the low‑risk group 
(P<0.05). The present study also assessed methylation‑based 

survival risks of the six subtypes and analyzed the association 
between survival risk and non‑silent mutation rate, number 
of segments, fraction of segments altered, aneuploidy score, 
number of segments with loss of heterozygosity (LOH), frac‑
tion of segments with LOH and homologous repair deficiency. 
Finally, the specific copy number regions and mutant genes 
associated with the different subtypes were identified (P<0.01). 
Chromosome regions 17q24.3 and 11p15.5 were identified as 
those with the most survival risk‑associated copy number 
variation regions, while a total of 29 mutant genes were signifi‑
cantly associated with survival (P<0.01).

Introduction

Currently, lung cancer is the most prevalent malignancy 
worldwide, with an estimated 1.76 million deaths in 2018 (1). 
Non‑small cell lung cancer (NSCLC) accounts for 85% of 
primary lung cancer cases (2). The majority of patients with 
lung cancer are at an advanced stage when diagnosed, and the 
5‑year survival rate is <18% (3).

NSCLC is a highly complex and heterogeneous disease (4). 
Currently, molecular testing, often by next‑generation 
sequencing, is routinely used at the time of diagnosis to guide 
treatment decisions for patients with NSCLC (1). Several genes 
mutations have been identified in patients with NSCLC, such as 
KRAS (25‑35%), EGFR (10%), ALK (3‑7%), ROS1 (1‑2%) (5). 
Inhibition of these mutations through targeted small molecule 
drugs or antibody‑based strategies has emerged as an effec‑
tive approach to NSCLC therapy (6‑8). However, a number of 
patients with NSCLC lack an identifiable driver oncogene, thus 
targeted therapies are not effective for these patients (2). The 
5‑year survival rate for these patients remain low (3). Thus, only 
mutation features cannot completely characterize the cancer 
genome or precisely pinpoint the cancer‑driving mechanism. 
The Cancer Genome Atlas (TCGA) project proposed the 
concept of multi‑platform integrative molecular subtyping in 
2012 (9), which provides a paradigm for the discovery of novel 
cancer subtypes by integrating different omics data. Utilizing 
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iCluster algorithm (10), TCGA Research Network divided 
patients into different subtypes by integrating different omics 
data. Each subtype is called iCluster, for example iCluster 1, 
iCluster 2. By comparing the omics data in different iClus‑
ters, researchers can identify the distinctive omics features of 
each iCluster. In hepatocellular carcinoma, TCGA Research 
Network identified three iClusters for 196  patients  (11). 
iCluster 2 and iCluster 3 exhibited a high frequency of 
CDKN2A silencing by DNA hypermethylation and high 
frequency of mutations of TERT, CTNNB1 and HNF1A. 
iCluster 1 had a low frequency of CDKN2A silencing and low 
frequency of mutations of CTNNB1 and TERT. Furthermore, 
in lung adenocarcinoma (LUAD), TCGA Research Network 
also identified six iClusters for 230 patients (12). iClusters 1‑3 
frequently harbor TP53 mutations. Copy number associated 
gene expression changes on 3q in iCluster 1, 8q in iCluster 2, 
15q in iCluster 3, 6q in iCluster 4 and 19p in iCluster 5 were 
observed. In summary, the different omics features of cancer 
can be characterized more accurately based on the multi‑omics 
subtypes. Understanding the different characteristics of each 
multi‑omics subtype may promote effective individualized 
therapy for lung cancer; however, further integrated analyses 
should be performed to investigate the associations between 
different omics features and to elucidate the association of 
these features with clinical features.

With respect to epigenetic alterations, DNA methylation 
serves an important role in cancer development. Yue et al (13) 
revealed that PTEN methylation inhibits cell apoptosis in 
NSCLC, while Shahabi et al (14) found that FOXA2 was hyper‑
methylated in LUAD leading to low LINC00261 expression 
levels, and Yun et al (15) reported that overexpression of IL‑32γ 
decreases lung tumor growth by inducing TIMP‑3 hypometh‑
ylation. Hypermethylation of the CACNA2D2 promoter can 
promote proliferation and invasion of NSCLC (16). However, 
few studies have conducted methylation analysis of NSCLC 
from the perspective of a survival risk model and these models 
have been constructed based on mRNA profiles (17‑19). 

The present study primarily focused on the association 
between mRNA, methylation, miRNA, copy number varia‑
tion, mutations and patient survival. The performance of the 
methylation survival risk model in multi‑platform integrative 
molecular subtypes was investigated, while the aim was to 
also identify copy number variations and mutations, which 
were associated with survival risk.

Materials and methods

Multi‑platform integrative clustering using iCluster. To 
reveal the subtypes formed by integrating various molecular 
platforms of NSCLC, the present study utilized the iCluster 
package (version 2.1.0) in R (10,20). Clinical data and the 
data of four molecular platforms, including DNA copy 
number, DNA methylation, mRNA expression and microRNA 
(miRNA) expression levels of NSCLC, were downloaded from 
TCGA using TCGAbiolinks (21). Four molecular platforms 
were provided as input to iCluster: DNA copy number, DNA 
methylation, mRNA expression and miRNA expression. Copy 
number variation data were derived from circular binary 
segmentation data from the Affymetrix SNP 6.0 platform 
(Thermo Fisher Scientific, Inc.), and further decreased to a set 

of non‑redundant regions as previously described (22). Probes 
in the methylation data (Illumina Infinium 450k arrays) with 
>20% missing values were removed and methylation probes 
corresponding to SNP and sex chromosomes were also 
removed. In addition, for mRNA and miRNA data, probes 
with >25% missing values were removed. mRNA and miRNA 
expression matrices were log2 transformed and normalized. 
The probes were then merged with the corresponding gene and 
their average value was selected as the gene expression level. 
The remaining probes of methylation data, mRNA and miRNA 
expression levels with no available values were uploaded 
into the CancerSubtypes (version 1.6.0) R package (23). The 
mRNA and miRNA set were filtered to remove genes with 
a standard deviation <1.0 across all tumor samples. DNA 
CN, DNA methylation, mRNA and miRNA expression levels 
were subsequently uploaded into the iCluster algorithm. 
The optimal combination of clusters was determined using 
the Bayesian Information Criterion (BIC) method (24). The 
iCluster algorithm was used, with a different number of clus‑
ters (from 1 to 6). According to the iCluster algorithm manual, 
the heatmap of the outcome was compared with the different 
number of clusters to determine the optimal number of clus‑
ters based on the features pattern. Survival analysis of all 
subtypes was performed using the survminer (version 0.4.3) 
R package (25) and survMisc (version 0.5.5) R package (26). 
For patients in different iClusters, the Renyi test was used to 
compare patients' survival at the beginning, the middle and 
the end of the study, respectively. P‑values between each two 
iClusters were calculated using the Renyi test. Patients without 
iCluster information were excluded from the survival analysis. 

Constructing the DNA methylation prognosis prediction 
model. Patients with NSCLC, without definite survival time 
or survival status were screened out. The summary of patients' 
clinical data that were selected are presented in Table SI. The 
methylation data was used which removed probes with >20% 
missing value or corresponding to SNP and sex chromo‑
somes. The NA values were imputed using CancerSubtypes 
(version 1.6.0) R package (23), based on k‑Nearest Neighbor 
algorithm. The preprocess Core R package (version 1.44.0) (27) 
was used to remove batch effects for the methylation dataset. 
Univariate Cox proportional risk regression model with the 
threshold of P<0.001 was used to screen the methylation level 
of each CpG site associated with the overall survival (OS) of 
patients using the survival R package (version 2.44‑1.1) (28). 
Least absolute shrinkage and selection operator (LASSO) 
regression was used to identity the most powerful methylation 
prognostic markers from survival related CpG sites using the 
glmnet R package (version 2.0‑16) (29). Coefficients of certain 
CpG sites were reduced to zero by forcing the sum of the abso‑
lute value of the regression coefficients to be less than a fixed 
value. The following steps were repeated ten thousand times: 
(1) Patients were randomly divided into training set and test 
set. The training set was composed of 70% patients and the 
test set was composed of 30% patients. (2) The methylation 
prognostic model was assessed on the on the training set and 
the performance of the model was assessed on the test set. (3) 
Utilizing Hmisc package (version 4.4‑0) (30) in R, the concor‑
dance index (c index) of prognostic model in the training set 
and the test set were calculated, respectively. Subsequently, 
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the performance score of the model was calculated using the 
following formula: performance score= c index(training set)2 + 
c index(test set)2.

The risk score for each patient was calculated by 
combining the relative methylation levels of the prognostic 
CpG sites and LASSO coefficients. Multivariate Cox regres‑
sion analysis was performed for the survival data to determine 
if the methylation score was independently predictive of 
survival. The performance of methylation score was assessed 
using time‑dependent survival ROC curve. The present study 
identified the optimal cut‑off risk score based on the optimum 
sensitivity and specificity of the 5‑year survival ROC curve. 
Patients were divided into high‑ and low‑risk groups according 
to the optimal cut‑off score (‑11.707). Kaplan‑Meier survival 
analysis was used to estimate the survival of patients between 
the high‑ and low‑risk groups. The correlation between all CpG 
sites and risk score, all mRNA and risk scores and all miRNA 
and risk scores were calculated using the cor.test function in 
R. P‑values were generated using a two‑sided t‑test. According 
to the correlations and P‑values, the most closely associated 
CpG sites, mRNA and miRNA were selected. Bonferroni's 
method was used to adjust the significance level of multiple 
comparisons, using the following formula:

Survival risk associations between somatic variation and 
germline variation. All loss of heterozygosity (LOH), aneu‑
ploidy, homologous repair deficiency (HRD) scores, copy 
number burden and mutation burden used in the present study 
were derived from the Genomic Data Commons website 
(https://gdc.cancer.gov/node/998) (31). Copy number burden 
scores are for fractions of segments altered and the number 
of segments. These two scores represent the fraction of bases 
deviating from baseline ploidy (defined as >0.1 or <‑0.1 in log2 
relative copy number space), and the total number of segments 
in the copy number profile of each sample. LOH means the 
irreversible loss of one of the parental alleles. The number of 
segments with LOH represents the number of segments with 
LOH events. The fraction of segments with LOH refers to 
the fraction of bases with LOH events. HRD score measures 
defects in homologous recombination. HRD score is the sum 
of three separate metrics of genomic scarring: Large (>15 Mb) 
non‑arm‑level regions with LOH, large‑scale state transitions 
(breaks between adjacent segments of >10 Mb) and subtelo‑
meric regions with allelic imbalance. Aneuploidy scores were 
calculated as the sum total of altered (amplified or deleted) 
arms (32).

Copy number variation data, which uses GISTIC 2.0 
(http://software.broadinstitute.org/cancer/cga/gistic) to define 
amplification and deletion, were downloaded from cBio‑
Portal (33,34). To identify the effects of genes copy number 
amplification and deletion on survival risk, the significant 
differences between the risk scores of patients with and without 
copy number variation were assessed. For each gene, the risk 
scores between patients with gene amplification and patients 
without gene alterations were compared. Subsequently, the 
risk scores between patients with gene deletions and patients 
without gene alterations were compared. Welch's two‑sample 

t‑tests were used to assess significant differences. The present 
study then analyzed whether the mRNA level of these 
survival‑associated genes can be influenced by copy number 
amplification or deletion using Kruskal‑Wallis tests in ggpubr 
package (version 0.2) (35) in R. All P‑values to compare differ‑
ences between two groups were calculated using Wilcoxon 
rank sum tests. Bonferroni's method was used to adjust the 
significance level of multiple comparisons, using the following 
formula:

Mutation data were downloaded from cBioPortal. A 
two‑sample t‑test was used to screen genes in which muta‑
tions were significantly associated with risk score. Genes with 
P<0.01 were selected. The co‑occurrence and exclusivity of 
risk‑related genes were compared using maftools R package 
(version 1.6.15) (36). P‑values were calculated using pair‑wise 
Fisher's exact tests. P‑values were adjusted using the FDR 
method.

Results

Multi‑platform integrative molecular subtyping. A total of 
423 patients had complete omics data, thus iCluster algo‑
rithm analysis was performed on these patients. An overview 
of the analytical strategy is shown in Fig. S1. Joint multi‑
variate regression of the four platforms (DNA copy number, 
DNA methylation, mRNA expression and miRNA expres‑
sion) calculated the BIC from two iClusters to six iClusters 
(Fig. S2). The BIC of the different number of iClusters did 
not show an inflection point, suggesting that the data gener‑
ated were noisy. According to the of iCluster algorithm 
manual, the heatmaps from two iClusters to six iClusters 
were compared (Fig. S3). We considered that six iClusters 
can reflect the features of different omics data most detailed. 
Thus, we selected six the optimal number of iClusters. 
Subsequently, the features of omics data in different iClusters 
were analyzed (Fig. 1 and Table SII). Among the six iClus‑
ters, copy number variation is the most variable omics data 
while miRNA converse. iCluster 1 (n=36), was characterized 
by a high frequency of KEAP1 mutations (63.89%) and low 
frequency of TP53 mutations (11.11%). iCluster 2 (n=94), 
iCluster 4 (n=50), iCluster 5 (n=80) and iCluster 6 (n=68) 
were characterized by high frequencies of TP53 mutations 
(75.53, 64, 68.75 and 66.18%, respectively). iCluster 6 (n=68) 
was characterized by clinical associations with higher 
AJCC stage (37). iCluster 1 and iCluster 6 had more male 
patients, while iCluster 3 and iCluster 5 were reversed. TTN 
mutations were observed in iCluster 2, iCluster 4, iCluster 
5 and iCluster 6 (56.9, 70, 57.5 and 67.1% respectively). The 
distribution of TTN mutations was similar to TP53. iCluster 
3 was associated with 30.5% KRAS mutations, which was 
the most frequent mutation in this molecular subtype. 
Multi‑platform integrative molecular subtyping was associ‑
ated with OS (Fig. 2). A total of 27 patients without iCluster 
information were excluded from the survival analysis. The 
Renyi test demonstrated significant differences for the begin‑
ning (P<0.001) and middle of the study (P<0.05) but not for 
the later stage (P>0.1). Survival analysis was implemented 
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for a total of 412 patients. Patients had better prognosis in 
iCluster 1, iCluster 3, iCluster 4 and iCluster 5 compared with 
iCluster 6. For different iClusters, the number of patients at 

risk in different times are presented in Fig. 2B. For different 
iClusters, the number of patient deaths in different times are 
presented in Fig. 2C.

Figure 1. Multi‑platform clustering analysis identified six integrated molecular subtypes of non‑small cell lung cancer. Heatmaps organized by iCluster groupings 
for DNA CN, mRNA expression levels, DNA methylation levels and miRNA expression levels and their associations with selected mutations and clinical features 
(top tracks). Patients are in columns, grouped by the iCluster membership. Meth, methylation; Exp, expression; T, tumor; N, node; M, metastasis; NA, not available.

Figure 2. Survival analysis of the six integrated molecular subtypes of non‑small cell lung cancer. (A) The outcomes of survival analysis. iCluster 6 had the least 
favorable outcome for overall survival, while iCluster 1, iCluster 2, iCluster 3, iCluster 4 and iCluster 5 had the better prognosis compared with iCluster 6. Statistically 
significant differences were observed for the beginning (P<0.001) and middle of the study (P<0.05) but not for the later stage (P>0.1). (B) The number of patients 
at risk in different months for iClusters 1‑6. (C) The number of patient deaths in different times for iClusters 1‑6. *P<0.05, **P<0.01. n.censor, number cencored.
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Constructing the DNA methylation prognosis prediction model. 
A total of 439 patients with survival times and survival status 
were selected to construct the DNA methylation prognosis 
prediction model. First, the present study removed the probes 
in the methylation data with >20% missing values. The probes 
corresponding to SNP and sex chromosomes were also removed. 
After the pre‑processing steps, univariate Cox proportional risk 
regression model analyses were performed with the threshold of 
P<0.001 on the DNA methylation dataset. A total of 4,534 CpG 
sites associated with OS were initially identified.

The relative regression coefficients of survival‑associated 
CpG sites were then calculated using a LASSO analysis. 
Coefficients of certain CpG sites were reduced to zero by 
forcing the sum of the absolute value of the regression coeffi‑
cients to be less than a fixed value. A total of 21 CpG sites were 
selected as the most powerful prognostic marker (Table I). The 
detailed information of these 21 CpG sites are presented in 
Table SIII. 

The risk score for each patient was calculated by combining 
the methylation levels of the prognostic CpG sites with the 
corresponding LASSO coefficients. The outcome of multi‑
variate Cox regression analysis for the survival data showed 
that the methylation score independently predicted survival 
(Table SIV). Cross‑validated time‑dependent ROC curves 
demonstrated that the 12 months AUC was 0.809 (Fig. 3B). 

Both AUC of 36 months and AUC of 60 months were more 
>0.7. These reflect that our model had good ability of prognosis 
prediction in short term and long term. Patients were divided 
into high‑ and low‑risk groups based on the cut‑off value, 
which was generated according to the optimum sensitivity and 
specificity of the 5‑year survival ROC curve. Patients with a 
risk score ≥‑11.707 were assigned to the high‑risk group, and 
the remaining patients into the low‑risk group (Fig. 4A). The 
number of deaths in the high‑risk group was significantly 
greater compared with that in the low‑risk group (Fig. 4B). 
The survival time of patients in the low‑risk score group was 
significantly longer compared with that of patients in the 
high‑risk group (P<0.001; Fig. 3A). As presented in Fig. 4C, 
the majority of these 21 CpG sites in patients in the high‑risk 
group exhibited low methylation levels. 

The correlations between all CpG sites and risk score, all 
mRNAs and risk score, and all miRNAs and risk score were 
calculated using the cor.test function in R. Next, we screened the 
most related CpG sites, mRNA and miRNA based on correla‑
tion scores. High‑risk scores were most significantly associated 
with higher methylation levels of ST6GALNAC6 (cg13939204) 
(Fig. 5A), as well as higher ANLN expression (Fig. 5B) and 
lower hsa‑miR‑29c expression levels (Fig. 5C) in methylation, 
mRNA and miRNA, respectively. In addition, a similar signifi‑
cant association between risk score and stage was observed 

Table I. Overall, 21 CpG sites were selected as the most powerful prognostic markers using LASSO regression in patients with 
non‑small cell lung cancer.

		  Univariate cox regression analysis	
	-------------------------------------------------------------------------------------	  LASSO
CpG site	 Position	 HR	 95% CI	 P‑value	 coefficient

cg01467592	 chr8: 144424051‑144424331	 0.02	 0.01‑0.08	 <10‑16	 ‑0.23727154
cg02967813	 chr2: 3635439‑3635700	 0.04	 0.01‑0.23	 3x10‑4	 ‑1.215714791
cg04391569	 chr10: 132781789‑132782190	 0.01	 0‑0.04	 <10‑16	 ‑1.105381717
cg05406101	 chr21: 29018943‑29019437	 0.14	 0.05‑0.37	 1.2x10‑4	 ‑0.527102271
cg06860998	 chr4: 4385866‑4388192	 0.03	 0.01‑0.21	 3.3x10‑4	 ‑1.509305485
cg06933711	 chr10: 30058670‑30059719	 0.03	 0.01‑0.11	 <10‑16	 ‑0.966075621
cg12193943	 chr12: 1796111‑1797599	 0.02	 0‑0.07	 <10‑16	 ‑0.305762883
cg13372811	 chr1: 110083906‑110084862	 6.43	 2.2‑18.77	 6.7x10‑4	 0.524860897
cg19160958	 chr17: 37406724‑37406967	 0.04	 0.01‑0.15	 <10‑16	 ‑0.469969803
cg21749275	 chr4: 109559671‑109560904	 0.03	 0‑0.21	 4x10‑4	 ‑1.227936552
cg22697853	 chr1: 148264740‑148265029	 0.06	 0.01‑0.22	 4x10‑5	 ‑0.065212053
cg27018309	 chr16: 8868332‑8869080	 0.01	 0‑0.03	 <10‑16	 ‑1.016454431
cg27529004	 chr2: 236567668‑236568620	 0.02	 0‑0.1	 1x10‑5	 ‑0.319014839
cg00278107	 chr5: 1060924‑1061607	 0	 0‑0.01	 1x10‑5	 ‑0.283330883
cg03723506	 chr5: 38556120‑38557461	 0	 0‑0.01	 8.9x10‑4	 ‑1.663229849
cg04973915	 chr5: 172006000‑172007078	 0	 0‑0.01	 <10‑16	 ‑0.286595288
cg06720244	 chr13: 46052319‑46052884	 0	 0‑0.02	 6.7x10‑4	 ‑3.055164476
cg11302293	 chr4: 3772124‑3772335	 0	 0‑0.08	 5.2x10‑4	 ‑0.045241836
cg13354228	 chr18: 657401‑658745	 0	 0‑0	 2x10‑5	 ‑8.258933249
cg17510645	 chr1: 243254439‑243255473	 0	 0‑0	 <10‑16	 ‑0.017156936
cg20981791	 chr8: 23288015‑23288493	 0	 0‑0.08	 4.4x10‑4	 ‑1.539966176

CI, confidence interval; HR, hazards ratio; chr, chromosome; LASSO, least absolute shrinkage and selection operator.
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(Fig. S4A). Patients in stage 2 and stage 3 had higher risk scores 
compared with that in patients in stage 1. The significance level 
was adjusted using Bonferroni's correction (α'=8.3x10‑3). The 
P‑values of comparisons between each two group are displayed in 
Fig. S4A. The mutation of TP53 was significantly associated with 
high risk (Fig. 5D). Risk scores in different molecular subtypes 
were significantly different (Fig. S4B). Risk scores in iCluster 4, 
iCluster 5 and iCluster 6 were significantly higher than iCluster 3. 
Risk scores in iCluster 6 were significantly higher than iCluster 
1, iCluster 2, iCluster 3 and iCluster 5. The significance level was 
adjusted using Bonferroni's correction (α'=3.3x10‑3). The P‑values 
of comparisons between each two group are displayed in Fig. S4. 

Survival risk associations between somatic variation and 
germline variation. Risk scores were positively correlated 
with non‑silent mutation rate with the strongest correlation 
in iCluster 1. Risk scores were associated with copy number 
variation burden (number of segments and fraction of genome 
alterations) in iCluster 5 and iCluster 6 (Fig. 6A). Risk scores 
were also positively correlated with the number of segments 
with LOH in iCluster 5 and iCluster 6. In iCluster 2 and iCluster 
6, risk scores were positively correlated with the fraction of 
segments with LOH. Risk scores were positively correlated 
with homologous repair deficiency scores in iClsuter 1 and 
iCluster 5. These measures (number of segments, fraction of 
segments altered, number of segments with LOH and homolo‑
gous repair deficiency) represented smaller focal copy number 
events and DNA damage. These results suggested that the 
alteration of focal copy number may increase patients' survival 
risk scores in iCluster 5 and iCluster 6. High number or frac‑
tion of LOH events may lead high risk scores for patients 
in iCluster 2, iCluster 5 and iCluster 6. Furthermore, high 
homologous repair deficiency scores may lead high risk scores 
for patients in iCluster 1 and iCluster 5.

Welch's two‑sample t‑tests were used to investigate the 
association between copy number variation and risk scores 
(P<0.01; Fig. 6B). The red bars represent amplified regions 
and the blue bars indicate deletions. The darker bar color 
represents smaller P‑values of the corresponding regions. The 
present study identified 35 copy number amplification regions 
(2p23, 2p24, 2p25, 3q25, 3q26, 3q27, 3q28, 3q29, 4p12, 7p11, 
7p12, 7p13, 7q11, 10p15, 10q26, 12p11, 12p12, 12p13, 12q12, 
12q13, 12q14, 12q21, 15q23, 15q24, 15q25, 15q26, 17q11, 17q12, 
17q21, 17q22, 17q23, 17q24, 17q25, 19q13 and 22q13) and 40 
copy number deletion regions (1p34, 1p36, 2p11, 2q11, 5p12, 
5q11, 8p21, 9p11, 9p12, 9p13, 9p21, 9p22, 9p23, 9p24, 9q12, 
9q13, 9q21, 11p11, 11p12, 11p13, 11p14, 11p15, 11q14, 11q21, 
11q22, 11q24, 11q25, 14q22, 14q23, 14q24, 14q31, 14q32, 
16p13, 18q11, 18q12, 19p12, 19p13, 19q13, 20p12 and 22q13) 
which were significantly associated with higher risk scores.. 
17q24.3 amplification (including AC005152.3, LINC01152, 
RP11‑84E24.2, SOX9‑AS1, AC007461.2, SOX9, KCNJ16 
and SLC39A11) and chromosome 11p15.5 deletion (MOB2, 
AP2A2, MUC6, MUC2, MUC5B, MIR6744, TOLLIP and 
TOLLIP‑AS1) were most significantly associated with higher 
risk scores. Amplification of AC005152.3 was most correlated 
with higher risk scores in 17q24.3 (Fig. 6C and D). Deletion of 
MOB2 was most correlated with higher risk scores in 11p15.5. 
Associations between amplification/deletion and the expres‑
sion levels of genes in 17q24.3 and 11p15.5, demonstrating that 
six deletion genes (AP2A2, MOB2, MUC5B, MUC6, TOLLIP 
and TOLLIP‑AS1) significantly influenced the levels of mRNA 
(Fig. 7), whereas two amplification (KCNJ16 and SLC39A11) 
genes affected the levels of mRNA (Fig. 8).

A total of 29 mutant genes were found to be significantly 
associated with risk scores (P<0.01; Table  II) and TP53 
was most significantly correlated with risk score. Utilizing 
maftools R packages, pair‑wise Fisher's exact tests were 

Figure 3. Performance of methylation survival model. (A) Kaplan‑Meier survival analysis of the high‑ and low‑risk groups. Patients in the low‑risk group 
showed improved survival compared with those in the high‑risk group. (B) The time‑dependent ROC curves of methylation prognostic classifier of non‑small 
cell lung cancer. AUCs at 1, 3, and 5 years were used to assess prognostic accuracy. ROC, receiver operating characteristic; AUC, area under the curve; 
n.censor, number censored.
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Figure 4. Methylation prognostic classifier of non‑small cell lung cancer. (A) The distribution of risk scores. The present study selected‑11.7070 as the optimal 
cut‑off value. Patients were divided into a high‑risk (blue) and low‑risk groups (yellow). (B) Patient survival time and status. The black dotted line represents 
the optimum cut‑off dividing patients into low‑risk (left) and high‑risk (right) groups. The yellow dots represent death and the blue dot represents alive status. 
The number of deaths in the high‑risk group was significantly greater compared with that in the low‑risk group. (C) Heatmap of the methylation level of the 
21 CpG sites in the prognostic classifier. Red represents high level of methylation, while blue represents low level of methylation. The majority of 21 CpG sites 
exhibited lower levels of methylation in the high‑risk group compared with that in the low‑risk group.

Figure 5. Molecular and clinical features associated with survival risk score in non‑small cell lung cancer. Correlation scores of survival risk scores and (A) the 
most survival risk‑associated CpG site (cg13939204), (B) the most survival risk‑associated gene (ANLN) and (C) the most survival risk‑associated miRNA 
(hsa‑miR‑29c). (D) The risk score of patients with and without TP53 mutation. Patients with the TP53 mutation had higher risk scores compared with patients 
with WT TP53. miRNA/miR, microRNA, WT, wild‑type.
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used to identify the co‑occurrence and exclusivity of genes 
screened in the present study. We identified that MUC16 
significantly co‑occurred with HYDIN, APOB, RYR3 and 
LRP1B (FDR<0.01 and co‑occurrence≥3; Fig.  9). APOB 
significantly co‑occurred with TRPS1, MUC16, COL11A1, 
COL22A1 and LRP1B (FDR<0.01 and co‑occurrence≥3). 
CSMD3 significantly co‑occurred with COL11A1, LRP1B and 
TP53 (FDR<0.01 and co‑occurrence≥3). ERBB4 significantly 
co‑occurred with NLRP3 (FDR<0.01 and co‑occurrence≥3). 
COL11A1 significantly co‑occurred with APOB, CSMD3 and 
COL22A1 (FDR<0.01 and co‑occurrence≥3).

Discussion

In 2014, TCGA Research Network reported research 
regarding the multi‑omics integrated analysis of LUAD (38). 

TCGA Research Network identified that EGFR mutations 
were more frequent in women, and RBM10 mutations were 
more common in men. A total of 4% of cases harbored exon 
14 skipping in MET mRNA. Mutations in NF1, MET, ERBB2 
and RIT1 may play driver roles in LUAD. TCGA Research 
Network inferred that phosphorylation of proteins may lead 
aberrant activation of MAPK and PI(3)K pathway. TCGA 
Research Network identified six integrated multi‑omics (CN, 
DNA methylation and mRNA expression data) subtypes 
using iCluster analysis. Meanwhile, the present study 
also identified six molecular subtypes based on integrated 
analysis of multi‑omics data (copy number variation, mRNA, 
methylation and miRNA) and constructed a survival risk 
model based on NSCLC data. The present study investigated 
the role of methylation, copy number variation and mutation 
in the survival of patients with NSCLC. The data type of 

Figure 6. Association between copy number variation and survival risk score. (A) Association between DNA damage measures and survival risk scores in 
different molecular subtypes. (B) Copy number variation regions that were significantly associated with survival risk scores (P<0.01). (C) The risk scores of 
patients with different copy number variation statuses of AC005152.3 in chromosome region 17q24.3. The significance level was adjusted using Bonferroni's 
correction (α'=0.0167). (D) Risk scores of patients with different copy number variation statuses of MOB2 in chromosome region 11p15.5. The significance 
level was adjusted using Bonferroni's correction (α'=0.0167). Corr, correlation; amp, amplification; del, deletion; LOH, loss of heterozygosity.
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Figure 7. Survival‑risk associated genes in which mRNA expression level is significantly associated with copy number variation deletions. mRNA expression 
levels of (A) AP2A2, (B) MOB2, (C) MUC5B, (D) MUC6, (E) TOLLIP and (F) TOLLIP‑AS1 in different copy number variation status. Multiple comparisons 
were corrected using Bonferroni's method (α'=0.0167). CN, copy number.

Figure 8. Survival‑risk‑associated genes in which mRNA level is significantly associated with copy number variation amplification. mRNA expression levels 
of (A) KCNJ16 and (B) SLC39A11 in different copy number variation status. Multiple comparisons were corrected using Bonferroni's method (α'=0.0167). 
CN, copy number.
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copy number variation (‑2, ‑1, 0, 1 and 2) and mutation (0 and 
1) was a discrete variable. It's hard to fit a precise prognosis 
model using discrete variable. Thus, we selected methylation 
data (continuous variable) were used to construct the survival 
risk model. The outcome of Cox regression analysis showed 
that methylation‑based survival risk was an independent 
prediction factor of survival. The survival risk scores for 439 
patients with NSCLC were obtained by constructing a meth‑
ylation‑based prognosis model. A total of 35 copy number 
amplifications regions, 40 copy number deletion regions and 
29 mutation genes were identified, which were significantly 
associated with survival risk.

The present study identified various mutation features in 
different molecular subtypes. iCluster 2, iCluster 4, iCluster 
5 and iCluster 6 were characterized by a high frequency of 
TP53 mutations. Remarkably, TTN also had a high mutation 
frequency in iCluster 2, iCluster 4, iCluster 5 and iCluster 6. 
The distribution of TTN mutations was similar to TP53. Thus, 
TTN may be an important gene in NSCLC; however, to the best 
of our knowledge, TTN has not been investigated in previous 
lung cancer studies. 

iCluster 6 had the least favorable outcome for overall 
survival, while iClusters 1‑5 had a more favorable prognosis 
compared with iCluster 6. In addition, iCluster 6 had high TTN 
(66.18%) and TP53 (66.18%) mutation rates. Thus, TTN and 
TP53 mutations may lead to unfavorable survival outcomes for 
iCluster6.

Based on the methylation datasets, the present study 
constructed a survival risk model using LASSO regression. 
Using this model, high survival risk was associated with 
chromosome 17q24.3 amplification and chromosome 11p15.5 
deletion. It has previously been reported that chromosome 
17q24.3 is associated with LUAD (39) and with MGMT meth‑
ylation in the lung (40). Among the amplified genes identified in 
17q24.3, AC005152.3, LINC01152, RP11‑84E24.2, SOX9‑AS1, 
AC007461.2, SOX9, KCNJ16 and SLC39A11 were the most 
significant genes in the present study. To the best of our knowl‑
edge, RP11‑84E24.2 and AC007461.2 have not been identified 
in previous studies investigating lung cancer. The present study 
revealed that the deletion of the six survival risk‑associated genes 
(AP2A2, MOB2, MUC5B, MUC6, TOLLIP and TOLLIP‑AS1) 
in 11p15.5 influenced their mRNA expression levels, whereas 
the amplification of two survival risk‑associated genes (KCNJ16 
and SLC39A11) in 17q24.3 influenced their mRNA expression 
levels. A previous study reported that the chromosome region at 
17q24.3 was a novel and frequent LOH region associated with 
NSCLC (41). The present study showed that the survival risks 
of patients with amplified genes in 17q24.3 were significantly 
higher compared with those with deletion or normal 17q24.3 
gene status. It was hypothesized that copy number variation 
of survival risk‑associated genes in 17q24.3 may affect patient 
prognosis by LOH. The majority of deletion events in 17q24.3 
may therefore be due to LOH. 

Depletion of SOX9‑AS1 and AC005152 leads to a decrease 
in SOX9 mRNA and protein expression levels (42). However, 
the expression levels of LINC01152 had the opposite trend 
in contrast to SOX9‑AS1, AC005152 and SOX9  (42). As 
a gene functioning in cartilage homeostasis, BMP3B has 
tumor‑suppressive functions with promoter hypermethylation 
in lung cancer (43). It has been reported that SOX9 can influence 
the chondrocyte phenotype through regulating the process of 
hypoxia (44). Thus, it was considered that SOX9 may influ‑
ence the expression of BMP3B, and SOX9‑AS1, AC005152 and 
LINC01152 may mediate the expression levels of SOX9 and 
BMP3P indirectly. Therefore, genes that have been identified 
in chromosome 17q24.3 may serve important roles in lung 
cancer by regulating the levels of BMP3B expression.

The outcome of the present study indicated that deletion of 
chromosome 11p15.5 may lead to high survival risk for patients 
with NSCLC. MOB2, AP2A2, MUC6, MUC2, MUC5B, 
MIR6744, TOLLIP and TOLLIP‑AS1 are located within this 
region and were significantly associated with survival risk. 
A previous study demonstrated that deletion of TOLLIP can 
increase the level of mRNA expression of IL‑6 (45), while a 
decrease in MUC2 protein expression can increase the level of 
IL‑6 expression (46). It has been reported that IL‑6 can induce 
the early response of MUC2, MUC5B and MUC6 (47). IL‑6 
can activate the STAT3 signaling pathway, which will stimu‑
late the progression of cancer (48). It was proposed that the 
deletion of genes in 11p15.5 may up‑regulate the level of IL‑6 
expression and lead to an increase in survival risk. However, 

Table II. A total of 29 mutant genes are significantly associated 
with risk scores in patients with non‑small cell lung cancer.

Gene name	 Location	 P‑value

TP53	 17p13.1	 1.8x10‑4

SMARCA4	 19p13.2	 2.68x10‑4

TRPS1	 8q23.3	 2.07x10‑3

COL22A1	 8q24.23	 2.52x10‑3

SCN1A	 2q24.3	 2.72x10‑3

HYDIN	 16q22.2	 2.99x10‑3

FAM47B	 Xp21.1	 3.30x10‑3

POTEG	 14q11.2	 3.39x10‑3

NLRP3	 1q44	 3.61x10‑3

LRP1B	 2q22.1	 3.63x10‑3

KEAP1	 19p13.2	 4.05x10‑3

KCNU1	 8p11.23	 4.43x10‑3

FMN2	 1q43	 5.13x10‑3

MUC16	 19p13.2	 5.22x10‑3

BSN	 3p21.31	 5.37x10‑3

RGPD4	 2q12.3	 5.63x10‑3

PKD1L1	 7p12.3	 5.68x10‑3

RBP3	 10q11.22	 5.74x10‑3

TNN	 1q25.1	 5.80x10‑3

CSMD3	 8q23.3	 6.52x10‑3

APOB	 2p24.1	 6.86x10‑3

PCDHB5	 5q31.3	 7.85x10‑3

USP9X	 Xp11.4	 7.86x10‑3

ERBB4	 2q34	 8.28x10‑3

ZFHX4	 8q21.11	 8.68x10‑3

COL11A1	 1p21.1	 8.78x10‑3

DNAH3	 16p12.3	 9.10x10‑3

MTCL1	 18p11.22	 9.61x10‑3

RYR3	 15q14	 9.61x10‑3
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this association was not found in any of the datasets in the 
present study.

A total of 29 mutant genes were found to be significantly 
correlated with survival risk score. Among these genes, 12 
genes had significant co‑occurrence (MUC16 co‑occurred with 
HYDIN, APOB, RYR3 and LRP1B; APOB co‑occurred with 
TRPS1, MUC16, COL11A1, COL22A1 and LRP1B; CSMD3 
co‑occurred with COL11A1, LRP1B and TP53; ERBB4 
co‑occurred with NLRP3; COL11A1 co‑occurred with APOB, 
CSMD3 and COL22A1.). A previous study demonstrated that 
overexpression of MUC16 can promote tumor cell prolifera‑
tion and migration by activating the JAK2/STAT3/GR axis (49). 
Overexpression of TRPS1 leads to multi‑drug resistance by 
inducing MGMT transcription in lung cancer  (50). It was 
reported that COL11A1 can promote the proliferation, migra‑
tion and invasion of NSCLC cell lines in vitro (51). Qiu et al (52) 
reported that mutation of CSMD3 will lead resistance to etopo‑
side in small‑cell lung cancer. Teng et al (53) reported that 
activation of NLRP3 may induce pyroptosis in NSCLC. The 
second‑generation inhibitor of ERBB4 has passed the phase 
III clinical trial (54). It was reported that mutation of LRP1B 
correlated with better response of immune therapy and higher 
tumor mutation load (55). However, the other co‑occurrence 
genes we identified lacked NSCLC‑associated research. The 
co‑occurrence associations of genes we identified may provide 
direction for further clinical and therapy studies.

In conclusion, integrated molecular subtypes of NSCLC 
were identified by integrated analytic approaches. The 
chromosome regions 17q24.3 and 11p15.5 were identified as 
survival‑associated copy number variation regions, while a 
total of 29 mutant genes were found to be significantly associ‑
ated with survival. Through assessing the level of methylation 
sites in the present model, the survival risk of patients was 
predicted and this may be beneficial to estimate the prognosis 

of patients with lung cancer. In addition, the CpG sites identified 
in the present study require further investigation to understand 
their functions in lung cancer. Genes corresponding to these 
CpG sites may serve as novel therapeutic targets for lung 
cancer treatment in the future.
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