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Abstract  
We investigated the effects of cytokines and chemokines and their associated signaling pathways 
on mesenchymal stem cell migration after spinal cord injury, to determine their roles in the curative 
effects of mesenchymal stem cells. This study reviewed the effects of tumor necrosis factor-α, 
vascular endothelial growth factor, hepatocyte growth factor, platelet-derived growth factor, basic 
fibroblast growth factor, insulin like growth factor-1, stromal cell-derived factor and monocyte 
chemoattractant protein-1, 3 during mesenchymal stem cell migration to damaged sites, and 
analyzed the signal transduction pathways involved in their effects on mesenchymal stem cell 
migration. The results confirmed that phosphatidylinositol 3-kinase/serine/threonine protein kinases 
and nuclear factor-κB play crucial roles in the migration of mesenchymal stem cells induced by 
cytokines and chemokines.  
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INTRODUCTION 
    
Recent studies have focused on 
mesenchymal stem cells (MSCs) for the 
treatment of spinal cord injuries (SCIs). 
However, it is necessary to increase MSC 
migration to damaged sites and numbers of 
MSCs at the damaged sites in order to 
realize the therapeutic effects of MSC 
transplantation[1-5]. A previous study found 
that the expression levels of various 
cytokines and chemokines were 
upregulated after SCI[6]. MSCs express 
cytokine and chemokine receptors that 
participate in signal transduction pathways 
during MSC migration[2]. However, the 

precise relationship between the various 
cytokines and chemokines and MSC 
migration remains unclear. The present 
study reviewed the relationships between 
cytokines and chemokines and MSC 
migration, and examined the signal 
transduction mechanisms activated after 
SCI, to inform subsequent research into 
MSC migration mechanisms and SCI 
treatment. 
 
 
EFFECTS OF CYTOKINES ON MSC 
MIGRATION AFTER SCI 
 
Tumor necrosis factor-α (TNF-α)  
TNF-α is an important proinflammatory  

www.nrronline.org 

Priya.Kale
Rectangle



Li LY, et al. / Neural Regeneration Research. 2012;7(14):1106-1112. 

1107 

factor that is rapidly induced in local regions after SCI[7]. 
TNF-α induces neuronal apoptosis, and early and 
immediate inhibition of TNF-α expression therefore 
relieved pathological changes in the spinal cord and 
improved functional disturbance[8]. In contrast, Pan et al [9] 
found that TNF-α improved neurological function of the 
spinal cord, associated with a specific time window of 
TNF-α upregulation. A study of TNF-α protein and mRNA 
levels confirmed that human MSCs express TNF-α 
receptors[10], and that the combination of TNF-α and its 
receptor enhanced the adhesion of human MSCs and 
vascular endothelial cells, as well as the 
targeted-migration ability of human MSCs[11]. TNF-α is 
therefore believed to contribute to the induction of 
targeted migration of MSCs towards damaged sites in 
the spinal cord.  
Another study[12] demonstrated that TNF-α activated the 
extracellular signal-regulated kinase and p38 pathways 
in MSCs, accelerated intranuclear genetic transcription 
and protein synthesis, and promoted MSC migration 
activity by combining with MSC surface receptors. In 
addition, TNF-α activated inhibitor protein κB (IκB) 
kinase/IκB/nuclear factor-κB (NF-κB), accelerated 
intranuclear genetic transcription and protein synthesis, 
and strengthened MSC migration ability[13]. CC 
chemokine receptor expression levels were upregulated 
and interactions with ligands were reinforced in the 
presence of TNF-α[14]. CXC-chemokine receptor 4 
(CXCR4) expression was unaffected by TNF-α, but 
TNF-α promoted MSC migration by enhancing its 
sensitivity to stromal cell-derived factor-1 (SDF-1)[14]. 
Further studies are needed to determine if TNF-α 
enhances MSC migration by directly activating 
intracellular signal cascade reactions, rather than by 
enhancing interactions between other factors/receptors.  
 
Vascular endothelial growth factor (VEGF) 
VEGF is a homodimeric glycoprotein that increases MSC 
transplantation efficiency after ischemic injury[10].      
Liu et al [15] found that VEGF-A was highly expressed in 
ischemic central nervous system, and improved the 
recovery of spinal cord function. VEGF-A is a 
highly-active member of the VEGF family, which has 
been shown to enhance human MSC migration[16]. The 
promotional effects of VEGF-A on the recovery of 
neurological function of the spinal cord may therefore be 
associated with stimulation of the migration of MSCs to 
the damaged region. However, VEGF receptors have not 
been found on the surface of human MSCs; VEGF and 
platelet-derived growth factor (PDGF) exert their effects 
via PDGF receptors[16-17]. VEGF and PDGF are derived 
from different branches of the same ancestor, and VEGF 
can exert its effects after combining with the PDGF 
receptor[16]. Ball et al [16] indicated that PDGF family 

homodimers or heterodimers participate in the 
VEGF-A/PDGF signaling pathway. Moreover, the 
combination of PDGF and VEGF was more effective at 
mediating bone marrow MSC migration compared to 
either PDGF or VEGF alone[16]. Lee et al [18] reported that 
VEGF combined with Src stimulated focal adhesion 
kinase phosphorylation, while focal adhesion kinase also 
stimulated Src phosphorylation, which finally activated a 
downstream signaling cascade reaction. The 
non-receptor tyrosine kinase, Src, regulates cytoskeletal 
reorganization, cell adhesion, and migration.  
 
Hepatocyte growth factor (HGF) 
Expression levels of HGF and its receptor c-met are 
upregulated following SCI[19], and contribute to the 
recovery of spinal cord function[20]. An in vitro study by 
Son et al [21] verified that HGF regulated MSC migration 
by c-met and exerted chemotactic effects. Upregulated 
HGF expression therefore contributed to the migration of 
MSCs to the damaged region.  
Royal et al [22] suggested that the small G-protein 
Ras-phosphatidylinositol 3-kinase (PI3K) pathway 
directly controlled Rac and p21-activated kinase and 
induced cytoskeletal reorganization following 
HGF-triggered signaling cascade reactions in MSCs. 
HGF increased Rac1 activity in a Ca2+-dependent 
manner[23], while Rac1 facilitated lamellipodia 
formation[24], and accelerated MSC migration by 
stimulating the Wiskott-Aldrich syndrome protein family 
verprolin-homologous protein. HGF also promoted 
c-met phosphorylation, and these activated receptors 
could then activate PI3K/Akt pathway[25], resulting in 
cell migration. Regulation of the HGF/PI3K/Rac1/ 
signaling pathway may thus represent a target for 
enhancing MSC migration and improving its curative 
effects.  
 
PDGF 
PDGF comprises four subtypes: PDGF-A, -B, -C and -D. 
PDGF receptor tyrosine kinase contains PDGF-Rα and 
PDGF-Rβ, composed of homodimers or heterodimers. 
PDGF-A and PDGF-B exist as dimers and exert their 
effects by combining with their corresponding 
receptors[26]. Wu et al [27] found that PDGF expression 
was significantly elevated and exerted neuroprotective 
effects at 7 days following SCI, consistent with the results 
of another previously published study[28]. Hata et al [29] 
verified that upregulation of PDGF-B expression 
contributed to targeted migration of human MSCs. 
Upregulated PDGF-B expression could thus induce MSC 
migration to damaged regions of the spinal cord.  
Kang et al [30] thought that PDGF-B activated c-Jun 
NH2-terminal kinases in MSCs, resulting in 
phosphorylation of the transcription factor c-jun. The 
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targeted migration ability of human MSCs was 
strengthened by regulating some genetic transcription 
processes, but the precise mechanisms were not 
investigated[30]. Ligand-stimulated and activated PDGF 
receptors could stimulate PI3K and activate small 
G-protein family Rac[26]. The combined effects of Rac1 
and Cdc42 led to cytoskeletal changes, and controlled 
the speed and direction of cell migration[31]. The above 
results may be associated with the activation of 
actin-related proteins 2/3 and actin polymerization after 
combination of Cdc42 with Wiskott-Aldrich syndrome 
protein[24]. PDGF may thus induce MSC migration to 
damaged regions via PDGF-B c-Jun NH2-terminal 
kinases/c-jun and PDGF-PI3K-Rac/Cdc42/Wiskott- 
Aldrich syndrome protein-actin-related proteins 2/3 
pathways.  
 
Basic fibroblast growth factor (bFGF)  
SCI rapidly and significantly increased bFGF expression, 
activated a cascade reaction[32-33], and promoted the 
recovery of spinal cord function after SCI[33-34].   
Schmidt et al [35] observed significant bFGF-induced 
human MSC migration, while Liu et al [33] verified that the 
number of MSCs highly expressing bFGF after SCI was 
significantly increased compared to the control group, 
suggesting that bFGF contributed to the targeted 
migration of MSCs. Concentration-gradient experiments 
confirmed that low concentrations of bFGF suppressed 
MSC migration, while high concentrations promoted 
MSC migration; when the concentration was 
continuously increased, the migration activity of human 
MSCs fell to the initial level[35]. bFGF activates FGF 
receptors, which trigger PI3K/Akt[36] signaling and an 
increase in Akt and phosphoAkt[35]. These results 
indicate that bFGF induces human MSC migration via a 
FGFR/PI3K/Akt pathway.  
 
Insulin-like growth factor-1 (IGF-1)  
Increased expression of IGF-1 after SCI has been 
shown to promote the recovery of neurological 
functions, suppress neuronal apoptosis, and reduce the 
inflammatory reaction[37-41]. Baek et al [40] reported that 
IGF-1 mediated MSC migration, which may explain its 
effect on the recovery of neurological functions.   
Haider et al [41] confirmed that transplantation of MSCs 
expressing high levels of IGF-1 resulted in elevated 
SDF-1α and phosphorylated Akt levels. IGF-1 
increased the expression levels of CXCR4, 
strengthened the MSC response to SDF-1 through the 
PI3K/Akt pathway, and increased cell migration ability[42]. 
Thus although there was no evidence that IGF-1 
directly induced MSC migration, it was able to increase 
SDF-1/CXCR4 chemotaxis and control MSC migration 
via PI3K/Akt. 

 
EFFECTS OF CHEMOKINES ON MSC 
MIGRATION AFTER SCI  
 
SDF-1 
Knerlich-Lukoschus et al [43] found that SDF-1 and 
CXCR4 were persistently highly expressed within   
2-42 days after SCI. SDF-1 and CXCR4 mediated the 
migration ability of hematopoietic stem cells and 
hematopoietic progenitor cells[44]. Numerous studies 
have verified the chemotactic effects of SDF-1/CXCR4 
during MSC migration[2, 45]. Tysseling et al [46] 
demonstrated that SDF-1 induced the migration of 
CXCR4-positive macrophages to damaged regions 
following SCI, and several studies have verified that 
SDF-1/CXCR4 regulates MSC migration to damaged 
sites in the central nervous system[47-50]. These results 
suggest that SDF-1/CXCR4 can mediate MSC migration 
to SCI regions. Wynn et al [45] reported that the CXCR4 
response to SDF-1 was concentration-dependent; MSC 
migration would increase with increasing extracellular 
SDF-1 concentration or increasing numbers of cell 
surface receptors. Nevertheless, CXCR4 expression was 
rare on the surface of MSCs (3.9% of cells), despite the 
presence of non-activated receptors in 83-98% of MSCs. 
Thus, mobilization of internal CXCR4 may increase MSC 
migration ability and improve their therapeutic efficacy.  
The endothelial nitric oxide synthase/nitric oxide/soluble 
guanylate cyclase/cyclic guanosine monophosphate 
pathway upregulated SDF-1α secretion and CXCR4 
expression on the surface of MSCs after SCI[45]. 
Interaction of SDF-1 with CXCR4 resulted in activation of 
G-protein-coupled phospholipase C and PI3K pathways, 
as well as the activated protein kinase C pathway[42, 51]. 
SDF-1 chemotaxis is associated with atypical protein 
kinase C-zeta subtype. However, protein kinase C-zeta is 
not directly activated by phospholipase C, but is 
activated indirectly by diacylglycerol and second 
messengers such as ceramide and phosphatidic acid, or 
by the PI3K/Akt pathway, leading to activation of 
downstream signaling molecules[42] such as proline-rich 
tyrosine kinase 2, extracellular signal-regulated kinase[51] 
and the NF-κB pathway[52]. In addition, an upstream 
signaling molecule activated the downstream Janus 
kinase/signal transducer and activator of transcription 
and extracellular signal-regulated kinase pathways, and 
controlled focal adhesion kinase and paxillin activation 
and expression[52]. Interaction between intracellular focal 
adhesion kinase/Src regulated the downstream cascade 
reaction[24] and promoted human MSC migration.  
 
Monocyte chemoattractant protein-1 (MCP-1) 
MCP-1 belongs to the CC subfamily of chemokines and 
exerts its effects by binding to CC chemokine receptor 2. 
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Baek et al [40] reported that MSCs could express CC 
chemokine receptor 2 mRNA, but did not express CC 
chemokine receptor 2 protein because of the lack of an 
inducer in the medium. Astrocytes in the SCI region have 
been shown to secrete MCP-1, leading to increased 
MCP-1 levels in the serum[53-54]. Wang et al [55] reported 
that MCP-1 contributed to MSC migration to the ischemic 
region, and CC chemokine receptor 2 is expressed on 
the surface of MSCs. Upregulated MCP-1 expression 
thus affected MSC migration by interacting with CC 
chemokine receptor 2.  
Using MSCs transfected with a vector expressing a 
truncated version of FROUNT (DN-FROUNT), 
Belema-Bedada et al [56] reported that binding of 
activated CC chemokine receptor 2 to FROUNT 
triggered the PI3K-Rac pathway, induced cytoskeletal 
changes, produced pseudopodia, and promoted MSC 
migration after MCP-1 stimulation. When DN-FROUNT 
competes with endogenous FROUNT for CC chemokine 
receptor 2 binding and acts as a dominant-negative 
effector of CC chemokine receptor 2-mediated 
chemotaxis. The CC chemokine receptor 
2/FROUNT/PI3K/Rac pathway could thus promote MSC 
migration.  
 
MCP-3 
MCP-3 is a member of the CC-chemokine family that 
exerts various chemotactic effects by binding to its 
receptors CC chemokine receptors 2, 3 and 5.       
Ma et al [57] reported that MCP-3 expression was 
significantly increased at 1 day after SCI, compared to 
after 7 days. Interactions between CC chemokine 
receptors 3 and 5 and their ligand regulated targeted 
MSC migration[47], but this chemotaxis was weak 
compared to that stimulated by SDF-1 under similar 
conditions. Schenk et al [58] failed to verify the promotion 
of MSC migration by interactions between MCP-3 and 
CC chemokine receptor 1 or CC chemokine receptor 2; 
nevertheless, Belema-Bedada et al [56] believed that 
MCP-3 exerted its effects by activating CC chemokine 
receptor 2. MCP-3 can also act via the above-mentioned 
CC chemokine receptor 2/FROUNT/PI3K/Rac pathway. 
Further investigations are therefore needed to determine 
if upregulated MCP-3 exerts chemotaxis by one or two 
receptors. 
 
 
DISCUSSION 
 
In summary, expression levels of various cytokines and 
chemokines and their corresponding receptors are 
upregulated after SCI. These factors participate in 
targeted MSC migration, together with numerous 
signaling molecules in the in vivo microenvironment. All 

these factors are interlinked to produce a signaling 
network able to induce targeted MSC migration in vivo. 
However, few recent studies have reported direct 
evidence for the promotion of targeted MSC migration by 
chemokines following SCI.  
Current studies addressing the mechanisms of MSC 
migration have provided theoretical evidence to improve 
our understanding of the pathological changes and 
signaling molecule transduction occurring during MSC 
migration.  
TNF-α can mediate MSC migration through its specific 
receptor. TNF-α binding to its receptors results in 
receptor activation, activation of NF-κB-inducing kinase 
via an adaptor protein, and triggering of the NIK/IκB 
kinase/IκB/NF-κB pathway, resulting in IκB complex 
degradation. Activated NF-κB subsequently enters the 
nucleus and induces various genes, including genes for 
cytokines, chemokines and adhesion factors[13]. 
Moreover, interactions between activated TNF receptors 
and ligands can activate various transcription factors, 
including c-Jun, NF-κB and ATF-2 [13, 30] by activating 
MEKK1-MKK4/7-c-Jun NH2-terminal kinases and the 
MEKK1-MKK3/6-P38 pathway[25], as well as promoting 
the expression of genes for products such as enzymes 
and receptors, including CC chemokine receptor 3, CC 
chemokine receptor 4 and intercellular adhesion 
molecule 1[12,14] in MSCs, and responding to surrounding 
inducers. NF-κB plays an important role in signal 
transduction. TNF-α mediates NF-κB activation and 
intranuclear transfer[13], and chemotaxis by SDF-1 
associated with NF-κB[52]. In accordance with the NF-κB 
activation pathway, NIK caused MEKK1 activation 
resulting in IκB kinase phosphorylation, thus linking 
TNF-α downstream signaling molecules. Moreover, the 
p21-activated kinase, Akt and germinal center kinase 
pathways could activate MEKK1 and NIK kinases, and 
induce c-Jun NH2-terminal kinases and NF-κB activation.  
Second, as shown in Figure 1, the chemotaxis induced 
by many cytokines and chemokines was confirmed by 
PI3K/Akt pathway experiments. Interactions between 
ligands and receptors could directly or indirectly trigger 
PI3K and further activate downstream signaling 
molecules, including Akt and protein kinase C, as well as 
the Rho family member Rac, resulting in cascade 
reactions in the cytoplasm and nucleus, and mediating 
MSC activity[18, 22, 25-26, 35-36, 41-42, 52, 56]. The PI3K/Rac 
pathway is important[22, 26, 29, 42, 56]. The regulation by Rac 
of the downstream signaling molecules extracellular 
signal-regulated kinase and protein kinase C and the 
c-Jun NH2-terminal kinase pathway could induce nuclear 
gene expression and protein synthesis, resulting in MSC 
migration. It is assumed that the factors that trigger the 
PI3K/Akt pathway could activate NF-κB and control MSC 
migration activity.  
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SDF-1/CXCR4 chemotaxis has been a focus of attention. 
Previous studies found that SDF-1/CXCR4 mediated 
MSC migration to the bone marrow[2, 45]. Intracellular 
signaling molecules, such as endothelial nitric oxide 
synthase/nitric oxide guanylate cyclase/cyclic guanosine 
monophosphate pathway, adjusted SDF-1/CXCR4 
expression on the surface of MSCs. In addition, 
interaction between SDF-1 and CXCR4 activated PI3K 
and the phospholipase C pathway, the protein kinase C 
and Akt pathways, and c-Jun NH2-terminal kinases and 
extracellular signal-regulated kinase signaling molecules, 
as well as adjusting genetic transcription and protein 
expression[24, 42, 51-52].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SDF-1/CXCR4 could induce MSC migration, but 
although CXCR4 was expressed in most MSCs, few 
MSCs demonstrated surface expression of CXCR4[45], 
thus limiting SDF-1/CXCR4 chemotaxis. Further studies 
are needed to clarify this issue. Increasing cell surface 
CXCR4 expression could enhance the effects of cell 
therapy.  
This study reviewed the roles of cytokines and 
chemokines in MSC migration to damaged regions 
following SCI, including the signal conduction 
mechanisms involved in MSC migration. The PI3K 
pathway, extracellular signal-regulated kinase pathway 

and NF-κB in particular, appear to play important roles in 
cytokine and chemokine-regulated MSC migration 
following SCI. 
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