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Abstract
The unique functionality of Akkermansia muciniphila in gut microbiota indicates it to be an indispensable microbe for human 
welfare. The importance of A. muciniphila lies in its potential to convert mucin into beneficial by-products, regulate intestinal 
homeostasis and maintain gut barrier integrity. It is also known to competitively inhibit other mucin-degrading bacteria and 
improve metabolic functions and immunity responses in the host. It finds a pivotal perspective in various diseases and their 
treatment. It has future as a promising probiotic, disease biomarker and therapeutic agent for chronic diseases. Disease-
associated dysbiosis of A. muciniphila in the gut microbiome makes it a potential candidate as a biomarker for some diseases 
and can provide future theranostics by suggesting ways of diagnosis for the patients and best treatment method based on the 
screening results. Manipulation of A. muciniphila in gut microbiome may help in developing a novel personalized therapeutic 
action and can be a suitable next generation medicine. However, the actual pathway governing A. muciniphila interaction 
with hosts remains to be investigated. Also, due to the limited availability of products containing A. muciniphila, it is not 
exploited to its full potential. The present review aims at highlighting the potential of A. muciniphila in mucin degradation, 
contribution towards the gut health and host immunity and management of metabolic diseases such as obesity and type 2 
diabetes, and respiratory diseases such as cystic fibrosis and COVID-19.
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Introduction

Akkermansia muciniphila (A. muciniphila) is a recently dis-
covered member of commensal gut microbiota and consti-
tutes a new genus of the phylum Verrucomicrobia (Derrien 
et al. 2004). It is oval, strictly anaerobic, non-motile and 
Gram-negative bacteria that do not form endospores. It has 
circular genome of 2,664,102 base pairs, sharing 29% gene 
similarity with phylum Verrucomicrobia (van Passel et al. 
2011). As unveiled by whole-genome sequencing, its pro-
teome consists of 5644 unique proteins (Guo et al. 2017). A. 
muciniphila colonizes the gastrointestinal tracts at an early 
stage through human milk and accounts for 1–4% of total 

gut microbiota (Collado et al. 2008). The abundance of A. 
muciniphila in caecum is ubiquitous in infants and healthy 
adults. Besides the large intestine, it is also found in the lin-
ing of the lungs and saliva.

The importance of A. muciniphila lies in its potential 
to degrade mucin, the significant component in mucus. It 
consumes mucin as a carbon and nitrogen source during its 
life cycle and metabolism. The optimum temperature and 
pH for its growth are 37 °C and 6.5 respectively. A recent 
study showed that despite being a strict anaerobe, it could 
sustain lower amounts of oxygen (Ouwerkerk et al. 2016). 
This property is quite similar to other microbes in the intes-
tine, especially anaerobes, such as Bifidobacterium adoles-
centis and Bacteroides fragilis, which can tolerate ambient 
amounts of oxygen for 48 h (Ouwerkerk et al. 2016). A. 
muciniphila is known to competitively inhibit other mucin-
degrading bacteria and improve metabolic functions and 
immunity responses in the host, making it a suitable candi-
date as a probiotic (Belzer and de Vos 2012). A. muciniphila 
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was even found to be effective in treatment of inflamma-
tory bowel diseases and cancer (Png et al. 2010; Chen et al. 
2020a). The present review aims at studying the potential of 
A. muciniphila in mucin degradation, contribution towards 
the gut health and host immunity, and management of meta-
bolic diseases such as obesity and type 2 diabetes, and res-
piratory diseases such as cystic fibrosis and COVID-19.

A. muciniphila in gut microbiome

The prevalence of A. muciniphila has been connected with 
a healthy gut, and therefore, its richness is inversely linked 
to numerous disease conditions (Jakobsson et al. 2015). An 
investigation of its relationships with the hosts revealed 
A. muciniphila to enhance the intestinal barrier function 
in mice (Shin et al. 2014). Colonization by A. muciniph-
ila culminated in transcriptome alterations, leading to a 
rise in the genetic expression linked with immunogenic-
ity. Outer membrane proteins of A. muciniphila were dis-
covered to play a function in controlling immunological 
responses. One of the outer membrane proteins was recently 

discovered (Amuc-1100) (Ottman et al. 2017b). The work 
demonstrated that the outer membrane pili-like protein is 
essential in immunological modulation and the increase of 
trans-epithelial resistance. A. muciniphila performed a func-
tion in regulating metabolic endotoxemia and adipose tissue 
metabolism. Several investigations have consciously or inad-
vertently discovered the existence of Akkermansia-like spp. 
in regions of the human body other than the colon, where 
A. muciniphila could also have vital activities. The physiol-
ogy and environmental factors of Akkermansia-like spp. in 
distinct anatomic locations of the digestive tract allow us 
to evaluate the ability of A. muciniphila to colonize and be 
productive at all these niches. Various beneficial effects of 
A. muciniphila in the human microbiome are presented in 
Fig. 1.

Mucin‑degrading activity of A. muciniphila

Mucus consists of heavily glycosylated mucin-2 (MUC2), 
an oligosaccharide composed of various amino sugars and 
monosaccharide sugars, including N-acetyl-D-galactosamine 
(GalNAc), N-acetyl-D-glucosamine (GlcNAc), D-galactose 

Fig. 1   Beneficial effects of A. 
muciniphila in human micro-
biome
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and L-fucose (Ottman et al. 2017a). In many cases, these 
sugars are further substituted with acetate, phosphate and 
sulfate groups. Mucin has defining roles like a lubricant for 
food transport over membranes and provides selective per-
meability that allows the flow of nutrients to epithelial cells. 
It also acts as the first line of defence against mechanical 
damage, pathogens, and toxins and provides a surface layer 
to bacteria for its growth, adhesion and protection (Cone 
2009; Johansson et  al. 2013). However, some bacterial 
species of human microbiota release inflammatory toxins, 
which increase the permeability of the mucus layer and ulti-
mately decrease its barrier property (Jakobsson et al. 2015). 
It has been concluded that bacterial colonies reside only at 
the outer layer of the intestinal tract. In contrast, the inner 
layer intends to keep the bacteria at bay from the epithelial 
cells to enforce immune tolerance to the guts by transport-
ing IgA and antimicrobial proteins (Johansson et al. 2008, 
2011).

It is observed that A. muciniphila can maintain an excit-
ing microbial relationship in the host intestine by converting 
mucin into beneficial by-products (Ottman et al. 2017a, b). 
Recent studies showed that A. muciniphila could be grown 
on a synthetic medium where mucin can be replaced with 
media containing glucose, threonine, peptone and GlcNAc 
(Plovier et al. 2016). The amino group of sugars promotes 
the growth of bacteria in the presence of casitone, tryptone, 
yeast extract and peptone. One of the essential factors that 
account for the proliferation of A. muciniphila is glucose-
6-phosphate, one of the constituents of mucin known to 
promote the adaptation of mucosal niche (van der Ark et al. 
2018). In order to study substrate uptake abilities of A. 
muciniphila, few studies were conducted on a genome-scale 
metabolic model to demonstrate amino acids auxotrophy, 
sugar degrading capacities and vitamin biosynthesis (Ottman  
et al. 2017a). These experiments have also been validated 
through in vivo experiments in which A. muciniphila has 
been shown to proficiently utilize mucin-derived monosac-
charide sugars and amino sugars. It has been found that the 
uptake of mucin-derived sugars and non-mucin sugar glu-
cose by A. muciniphila is enhanced in a mucin-rich envi-
ronment which indicates the need of mucin-derived compo-
nents for the optimal growth of bacteria. In vivo experiments 
have also suggested that A. muciniphila may have galactose 
metabolism; however, mucin-derived components are neces-
sary for its growth.

Transcriptomic analysis of A. muciniphila under mucin-
rich and mucin-depleted conditions showed differential gene 
expression suggesting a global change in cellular functions 
(Shin et al. 2019). Out of 1126 differentially expressed genes 
(DEGs), 583 genes were upregulated while 543 were down-
regulated in mucin-rich conditions as compared to mucin-
depleted conditions. The upregulated genes were significantly 
related to hydrolase activity acting on glycosidic bonds and 

their transporters, thereby confirming the activity of mucin-
degrading genes under mucin-rich conditions. Thus, the 
genes that encode mucin-degrading enzymes, such as sul-
fatases, galactosidases, acetyl-glucosaminidase, neurami-
nidases and L-fucosidase transporters were upregulated in 
mucin-rich conditions. Furthermore, their downregulation 
in mucin-depleted medium determined the importance of its 
role in mucin-degradation. The catabolic glycolysis pathway 
is also correlated with mucin-degradation pathways (Shin 
et al. 2019). Thus, under mucin-depleted conditions, genes 
involved in glycolysis and energy metabolism, such as NADH 
dehydrogenase, succinate dehydrogenase and ATP synthase, 
either showed similar expression levels or were upregulated 
significantly. At the same time, there were few exceptions, 
including one ATP-dependent 6-phosphofructokinase gene 
(Amuc_1481), two enolase genes (Amuc_844, Amuc_1184) 
and one dihydrolipoyl dehydrogenase gene (Amuc_1689).

A. muciniphila in host immunity and probiotic 
nature

The symbiotic relationship between the gut microbiota and 
host determines the normal physiology, immunity and patho-
gen susceptibility of an individual. The interplay between 
host and gut microbiome that helps in pathogen displace-
ment, regulating immune response and anti-inflammatory 
pathways, is a vital phenomenon. There is abundant evi-
dence in the literature on mucin-utilizing A. muciniphila 
conferring immunity (Tummler and Puchelle 1997; Plovier  
et al. 2016; Ottman et al. 2017a). Many mucin degrada-
tion pathways regulate the host pathway by signalling 
through tumour necrosis factor α (TNF-α), interferon γ, 
interleukins-10 (IL-10) and interleukins-4 (IL-4) (Derrien 
et al. 2011; Andersson et al. 2012; Collado et al. 2012). 
Decreased levels of anti-inflammatory cytokines (IL-10 and 
IL-4) induced interleukins, while increased proinflammatory 
cytokines (TNF-α and IFN-γ) causing rapid proliferation 
of A. muciniphila. An increase in 2-arachidonoylglycerol 
levels was noted post A. muciniphila treatment, reduc-
ing inflammation (Gunderson and Kopito 1994; Everard 
et al. 2013). The secreted proteins from bacteria interact 
with host immune cells to induce signalling pathways that 
exhibit anti-inflammatory and immunomodulatory activity 
(Sánchez et al. 2008, 2010; Bernardo et al. 2012; Ruiz et al. 
2014). The extracellular material secreted from it activates 
the downstream signalling pathway like toll-like receptors 2 
(TLR2) (Ottman et al. 2017b). Amuc_110, a specific protein 
in the outer membrane, recapitulates the effect of bacteria 
on TLR2 activation and improves the barrier integrity of 
intestines (Dean and Annilo 2005; Belzer and de Vos 2012; 
Plovier et al. 2016; Ottman et al. 2017b). However, it is still 
unknown how Amuc_110 protein is regulated in the pres-
ence of a dynamic mucosal environment. The gene encoding 

813Folia Microbiologica (2022) 67:811–824



1 3

Amuc_110 protein is highly regulated in a mucin-depleted 
environment (Plovier et  al. 2016). Amuc_110 has also 
shown its ability to exert a probiotic effect on diet-induced 
obesity and was present in the extracellular proteins of A. 
muciniphila as well (Plovier et al. 2016). To conclude, A. 
muciniphila is inversely correlated with inflammatory condi-
tions and helps in epithelial barrier integrity by stimulating 
anti-inflammatory pathways (Gunderson and Kopito 1994; 
Shin et al. 2014; Cantarel et al. 2015; Caesar et al. 2015; 
Schneeberger et al. 2015).

The composition and functioning of the human gut micro-
biota are primarily proportional to nutritional accessibility 
of microbiota either obtained from a host or food (Zoetendal 
et al. 2012; Nicholson et al. 2012; Salonen and de Vos 2014). 
A. muciniphila is one of the good bacteria of the human gut 
microbiota. The presence of A. muciniphila in the intestinal 
mucus layer indicates it to be involved in gut regulation and 
host metabolism. It exists in a symbiotic relationship with 
the mucosal layer, and its abundance is greatly affected by 
the nutrients present in the mucus layer located around the 
intestinal epithelial cells. Its presence also supports other 
beneficial bacteria in the gut microbiome. A. muciniphila 
catabolizes mucins and turns them into short-chain fatty 
acids (SCFAs), including acetate, which other beneficial 
bacteria exploit, such as Firmicutes, to produce butyrate, 
a vital source of energy for the cells lining the gut. The 
production of SCFAs from the breakdown of mucin sup-
plies energy to the goblet cells, which are responsible for 
secreting mucins. Furthermore, the consumption of specific 
dietary fibres can increase the abundance of this friendly 
bacteria, which helps thicken the mucus lining the gut. This 
strengthens the gut lining and improves gut barrier function 
and may, in turn, help in preventing weight gain. Chelakkot 
et al. demonstrated the role of Amuc_1100, isolated from 
A. muciniphila, in AMP-activated protein kinase (AMPK) 
activation mechanism, thereby improving gut integrity 
(Chelakkot et al. 2018). Amuc_1100 has been implicated in 
enhancing the expression of tight junction protein-1 (Tjp-1) 
and occludin (Li et al. 2016), thereby contributing to the gut 
barrier function. Thus, the presence of A. muciniphila in 
the mucus of the intestine regulates intestinal homeostasis 
and its integrity barrier through host signalling pathways  
(Derrien et al. 2004; Ottman et al. 2017a).

A. muciniphila dysbiosis associated 
with disease states and its management

The gut microbiome of healthy people is quite diverse. Gut 
microflora through microbial antigens and metabolites is 
the master regulator of innate and adaptive immunity. Dis-
ease associated dysbiosis results in induction, training and 
function of immune system. The disturbance of the mucus 

layer by any means may lead to inflammation and increase 
the risk of infection. Even slight variance in intestinal flora 
may be associated with sensitivity and severity of a disease. 
Therefore, gut microbes find use as potential diagnostic bio-
markers by studying their abundance in different diseases.

A. muciniphila has been linked with wide range of 
diseases and disorders such as type 2 diabetes (Tilg and 
Moschen 2014), alcoholic steatohepatitis (ASH) (Grander 
et al. 2018), appendicitis (Swidsinski et al. 2011), obesity 
(Dao et al. 2016), atopic diseases (Drell et al. 2015), colo-
rectal cancer (Weir et al. 2013), autism (Wang et al. 2011), 
inflammatory bowel disease (Png et al. 2010), cystic fibrosis 
(Hayden et al. 2019), and COVID-19 (Yeoh et al. 2021) 
(Table 1). Various studies demonstrated A. muciniphila to 
be negatively correlated with inflammatory bowel diseases 
(Png et al. 2010; Rajilić-Stojanović et al. 2013), appendicitis 
(Swidsinski et al. 2011), obesity (Karlsson et al. 2012; Dao 
et al. 2016) and type 2 diabetes (Tilg and Moschen 2014). 
Lower abundance of A. muciniphila is commonly observed 
in the majority of metabolic disorders while higher abun-
dance is seen in few cases like colorectal cancer (Yu et al. 
2017).

Recently, an association between A. muciniphila and 
metastasis of lymph nodes in lung adenocarcinoma was 
reported (Chen et al. 2020a). The relative abundance of A. 
muciniphila was observed to be greater in metastasis cohort 
(0.057) than the non-metastasis cohort (0.023) pointing 
towards its potential as a promising biomarker to predict 
lymph node metastasis. Likewise, a study to investigate 
whether A. muciniphila could enhance the antitumor effect 
of cisplatin (cis-diamminedichloroplatinum; CDDP) was 
conducted (Chen et al. 2020b). It was found that when A. 
muciniphila was combined with cisplatin, the growth of 
tumour volume slowed and the changes of tumour patho-
morphology significantly improved. At molecular level, 
upregulation of factor-associated suicide (Fas) proteins 
and downregulation of p53, ki-67 and Fas ligand (FasL) 
proteins were also observed. Several proinflammatory 
factors (TNF-α, IFN-γ and IL-6) were induced while the 
expression of CD4+CD25+Foxp3+ Treg was suppressed 
indicating the role of A. muciniphila in regulating immune 
inflammatory microenvironment in reversion of tumour 
growth and tumour immune escape. Also, the levels of 
IFI27l2 and IGFBP7, two most differentially expressed 
genes in lung cancer, were found to be increased because 
of the combined treatment with A. muciniphila and CDDP. 
Signalling pathways such as JAK-STAT, FOXO, cytokine-
cytokine receptor interaction, PI3K-Akt, Th17 and cell 
differentiation were associated with the antitumor effect 
of A. muciniphila and CDDP. The study suggested that A. 
muciniphila combined with CDDP provides good sym-
biotic environment to achieve maximum therapeutic effi-
cacy of antitumor drugs. The human gut microbiome could 
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therefore, be responsible for differences in drug response 
of individuals paving way for personalized therapeutics to 
significantly improve human health care. Thus, by regulat-
ing the abundance of A. muciniphila in the gut microbi-
ome in a personalized manner, early treatment of related 

diseases may be facilitated. The microbiome in general, 
and A. muciniphila in particular, can act as a biomarker 
of these diseased states and provide future theranostics 
by suggesting ways of disease diagnosis and treatment  
(Morgan and Huttenhower 2012).

Table 1   Altered abundance of A. muciniphila in various disease states in humans

Disease A. muciniphila 
abundance

Detection method Sample type References

Allergic asthma Reduced qPCR Faeces (Demirci et al. 2019)
Asthma Reduced 16S rRNA sequencing Faeces (Michalovich et al. 2019)
Alcoholic steatohepatitis (ASH) Reduced 16S rRNA sequencing Faeces (Grander et al. 2018)
Atopy Reduced 16S rRNA sequencing Faeces (Candela et al. 2012)
Atopy Reduced Pyrosequencing Faeces (Drell et al. 2015)
Autism Elevated bTEFAP Faeces (De Angelis et al. 2013)
Autism Reduced qPCR Faeces (Wang et al. 2011)
Clostridium difficile infection Elevated qPCR Faeces (Vakili et al. 2020)
Colorectal cancer Elevated 16S rRNA sequencing Faeces (Weir et al. 2013)
Colorectal cancer Elevated qPCR Tissue biopsy (Mira-Pascual et al. 2015)
Crohn’s disease Reduced qPCR Tissue biopsy (Png et al. 2010)
Crohn’s disease Reduced 16S rDNA pyrosequencing Faeces (Opstelten et al. 2016; 

Malham et al. 2019)
Cystic fibrosis Reduced 16S-based tag-encoded FLX amplicon 

pyrosequencing (bTEFAP)
Faeces (Hoffman et al. 2014)

Cystic fibrosis Reduced Metagenomic sequencing Faeces (Hayden et al. 2019)
COVID-19 Elevated Shotgun sequencing Faeces (Yeoh et al. 2021)
Oesophageal cancer Elevated 16S rRNA sequencing Tissue biopsy (Snider et al. 2019)
Hyperlipidaemia Reduced 16S rRNA sequencing Faeces (Gargari et al. 2018)
Microscopic colitis Reduced 16S rDNA pyrosequencing Faeces (Fischer et al. 2015)
Multiple system atrophy Elevated Metagenomic sequencing Faeces (Wan et al. 2019)
Obesity Reduced qPCR Faeces (Marvasti et al. 2020)
Obesity Elevated qPCR Faeces (Remely et al. 2015)
Parkinson’s disease Elevated qPCR Faeces (Unger et al. 2016)
Parkinson’s disease Elevated Shotgun sequencing Faeces (Bedarf et al. 2017)
Prediabetes Reduced 16S rRNA sequencing Faeces (Allin et al. 2018)
Psoriasis Reduced 16S rDNA pyrosequencing Faeces (Tan et al. 2018)
Pulmonary arterial hypertension Reduced Shotgun sequencing Faeces (Kim et al. 2020)
Pulmonary tuberculosis Reduced Metagenomic sequencing Faeces (Hu et al. 2019)
Schizophrenia Elevated 16S rRNA sequencing Faeces (Xu et al. 2020a)
Schizophrenia Elevated Shotgun sequencing Faeces (Zhu et al. 2020)
Spleen deficiency syndrome Reduced qPCR Faeces (Peng et al. 2020)
Type 1 diabetes Reduced qPCR Faeces (Fassatoui et al. 2019)
Type 2 diabetes Elevated Metagenomic sequencing Faeces (Chelakkot et al. 2018)
Type 2 diabetes Elevated Shotgun sequencing Faeces (Qin et al. 2012)
Type 2 diabetes Reduced 16S rRNA sequencing Urine (Liu et al. 2017)
Type 2 diabetes Reduced Metagenomic sequencing Faeces (Zhong et al. 2019)
Type 2 diabetes Reduced qPCR Faeces (Fassatoui et al. 2019)
Ulcerative colitis Reduced qPCR Tissue biopsy (Png et al. 2010)
Ulcerative colitis Reduced MiSeq sequencing Faeces (Bajer et al. 2017)
Ulcerative colitis Reduced 16S rRNA sequencing Faeces (Malham et al. 2019)
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A. muciniphila and metabolic diseases

Decreased abundance of A. muciniphila in obesity

World Health Organization (WHO) defines obesity as abnor-
mal fat accumulation leading to health implications like 
type 2 diabetes, fatty liver disease and hypertension. Being 
a multifactorial disorder, not only does it result in fatal com-
plications like cardiovascular diseases and psychological 
effects but also challenges one to perform everyday tasks 
with ease. It is a low-grade inflammatory metabolic disorder 
resulting in higher levels of inflammatory cytokines such as 
IL-6, TNF-α and hypersensitive C-reactive protein (hs-CRP). 
Inflammation in obesity leads to significant changes in gut 
microbiota, for example, increase in the abundance of Firmi-
cutes, Bifidobacterium spp. and Lactobacillus gasseri while 
decrease in the abundance of Bacteroidetes (Ley et al. 2005; 
Wang and Jia 2016). A. muciniphila was inversely associ-
ated with obesity and found to be more abundant in lean 
individuals than overweight individuals (Remely et al. 2016). 
The various mechanisms by which A. muciniphila helps in 
obesity management are shown in Fig. 2. A. muciniphila 
maintains the intestinal immunity, gut barrier integrity and 
permeability by reducing inflammatory cytokines, thereby 
achieving metabolic homeostasis (Ottman et al. 2017b). 
Also, lipopolysaccharide (LPS) found in cell wall of Gram-
negative bacteria is a potential proinflammatory molecule 
and is associated with onset of inflammation. Imbalance in 
LPS levels leads to activation of proinflammatory signalling 
pathways causing increased secretion of IL-6 and TNF-α. 
The inherent property of A. muciniphila of SCFAs produc-
tion signals G-protein coupled receptor (GPCR) activation 
and histone deacetylase (HDAC) inhibition to maintain 
energy homeostasis and appetite sensation (Lukovac et al.  

2014). SCFAs production facilitate increased production 
of glucagon-like peptide 1 (GLP-1) and glucose-dependent 
insulin tropic polypeptide (GIP) upon binding to GPR41/
GPR43 receptors present in L-cells in the intestinal mucosa. 
This results in improvement in insulin resistance and glucose 
tolerance thereby, suppressing appetite through metabolic 
signalling. Furthermore, A. muciniphila decreases inflamma-
tion by increasing the levels of oleoylathanolamide (OEA), 
2-palmitoylglycerol (2-PG), 2-acylglycerol (2-AG) and 
2-oleoylglycerol (2-OG) which bind to GPR119 receptors, 
stimulating release of GLP-1 (Everard et al. 2013). In a recent 
study, oral supplementation of A. muciniphila in obese mice 
through high fat diet (HFD) has been demonstrated to reduce 
the intestinal endotoxin levels, hence reducing inflammation 
(Cani and de Vos 2017; Fuke et al. 2019). It helped restore 
gut barrier dysfunction through symbiotic relationships with 
other beneficial microbes like Bacteroidetes, Euryarchaeota, 
Firmicutes and Actinobacteria and improved intestinal per-
meability through the inhibition of claudin 3 (Cldn3), can-
nabinoid receptor 1 (Cnr1) and occludin like tight junction 
proteins or lowering of flavin-containing monooxygenase 3 
(FMO3) expression (Dao et al. 2016).

In humans, both live and pasteurized A. muciniphila 
were found to be safe for oral consumption by heavy body 
weight individuals (Plovier et al. 2016). In a clinical trial 
(NCT02637115), oral administration of A. muciniphila in 
obese patients for 3 months was found to be an effective 
and safe treatment. Similarly, in a randomized, double-blind 
human study based on A. muciniphila supplementation, a 
decrease in body weight along with improvement in liver 
dysfunction and inflammation in patients was observed 
(Depommier et al. 2019). Also, supplementation with prebi-
otic containing oligofructose helped restore A. muciniphila 
abundance. But since A. muciniphila does not grow in vitro 

Fig. 2   Role of A. muciniphila in 
obesity management
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on oligofructose-enriched media, it can be concluded that 
complex cross-feeding interactions might be involved. While 
it is clear that the human mucus colonizer maintains gut 
barrier integrity and homeostasis during obesity, the role 
of human gut microbiome on etiology of obesity remains to 
be investigated. The study of Akkermansia-obesity relation-
ship could provide better insights to microbe-based treat-
ments. Since A. muciniphila regulates the energy metabo-
lism of host, its therapeutic intervention in obesity could 
be explored (Xu et al. 2020b). The reduction in fat-mass 
ratio in obesity can be studied by urinary metabolomics pro-
file of A. muciniphila, making it a suitable biomarker for 
obesity (Png et al. 2010). Furthermore, the risk of obesity 
and associated metabolic diseases can be reduced by proper  
management of gut microbial profile.

Decreased abundance of A. muciniphila in type 2 diabetes

According to WHO, 1 out of 11 people suffer from diabe-
tes with over 1.5 million deaths globally. Type 2 diabetes 
is a silent killer marked by the body’s inability to utilize 
insulin produced by pancreatic β-cells. A study conducted 
by National Institute of Diabetes and Digestive and Kidney 
Diseases (NIDDK) suggests that factors such as sedentary 
lifestyle and genetic conditions may contribute to early onset 
of type 2 diabetes. The increased levels of blood sugar, i.e. 
hyperglycaemia results in nervous, circulatory and immune 
system–related complications. Insulin resistance as a result 
of type 2 diabetes affects the gut microbial diversity and 
metabolite production. Alterations in the abundance of 
various gut microbes during the onset and progression of 
type 2 diabetes have also been observed. Many studies have 
reported negative correlation of genus Akkermansia, Bacte-
roides, Faecalibacterium, Roseburia and Bifidobacterium, 
while positive correlation of genus Ruminococcus, Blautia 
and Fusobacterium with type 2 diabetes (Sedighi et al. 2017; 
Gao et al. 2018). Patients with normal glucose tolerance 
exhibited higher abundance of A. muciniphila as compared 
to pre-diabetic or type 2 diabetes patients. Interestingly, sev-
eral anti-diabetic drugs like metformin, dapagliflozin and 
liraglutide were found to favour the abundance of A. mucin-
iphila (Shin et al. 2014; Wang et al. 2018; Lee et al. 2018). 
Furthermore, a study conducted on the administration of an 
antidiabetic drug, metformin revealed that A. muciniphila 
further enhanced its anti-diabetic effects (Shin et al. 2014). 
Mice fed on HFD, when treated with metformin, showed 
increased abundance of A. muciniphila and improved blood 
sugar levels. Moreover, improved tolerance to glucose was 
observed upon oral administration of A. muciniphila but not 
metformin.

A. muciniphila is known to protect the intestinal barrier 
function by maintaining normal blood sugar levels. The 
intrinsic ability of A. muciniphila to catabolize complex 

carbohydrates further assists in inhibition of α-glucosidase 
and reduction of postprandial hyperglycaemia (Everard et al. 
2013). Both obesity and type 2 diabetes may be ameliorated 
by increasing fatty acid oxidation and energy expenditure but 
reducing fatty acid biosynthesis (Everard et al. 2013; Gurung 
et al. 2020). Thus, fatty acid oxidation in adipose tissues and 
adipocyte differentiation may be promoted by administration 
of A. muciniphila, and other bacteria such as Lactobacillus 
gasseri, Bacteroides acidifaciens and thus SCFAs. This is 
correlated to increased levels of 2-PG, 2-AG and 2-OG in the 
adipose tissue. Furthermore, A. muciniphila can be regulated 
by increasing circulation of tryptophan metabolites through 
dietary intake (Cronin et al. 2021). Interestingly, A. mucin-
iphila positively influences the host’s glucose metabolism by 
inducing IL-10, thus protecting from ageing-related insulin 
resistance (Wang et al. 2015; Greer et al. 2016). It fights 
against diabetic oxidative damage and improves resistance to 
gluco/lipotoxicity by decreasing hepatic glycogen levels and 
increasing HDL-C levels (Zhang et al. 2018). Moreover, it 
reduces inflammation by inhibiting the expression of TNF-α 
and lipid oxidative damage by lowering malondialdehyde 
levels in diabetic animals (Zhang et al. 2018). Increased par-
acellular gut permeability and gut barrier disruptions result 
in inflammation and metabolic diseases by increased absorp-
tion of LPS. A. muciniphila maintains glucose homeostasis 
and fat mass storage by controlling host mucus turnover and 
higher L-cell activity. Therefore, prebiotic treatment could 
help restore A. muciniphila abundance and counter meta-
bolic endotoxemia in type 2 diabetes and obesity. Therefore, 
it becomes necessary to study the host-gut microbe interac-
tions for better understanding of governing mechanisms in 
development of type 2 diabetes. A. muciniphila, through the 
alteration of the gut microbiota, could help to control and 
manage type 2 diabetes in the near future.

A. muciniphila and respiratory diseases

Decreased abundance of A. muciniphila in cystic fibrosis

Cystic fibrosis (CF) is an autosomal recessive disorder 
caused by mutations in the cystic fibrosis transmembrane 
conductance regulator (CFTR) gene located on chromo-
some 7. CFTR protein functions as an important anion-
selective ion channel responsible for epithelial f luid 
secretion and intra-luminal hydration (Welsh and Smith 
1993). Defective CFTR protein leads to accumulation 
of mucus in the lungs and intestine largely affecting the 
pulmonary and intestinal microbiota (Price and O’Toole 
2021). As the mucus gets more and more viscous, the 
mucociliary clearance mechanism (MCC) becomes unable 
to clear the mucus resulting in manifestation of opportun-
istic microbial infections. Dysfunctional CFTR results in 
an altered intestinal condition including dysbiosis of gut 
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microbiota due to physiological and biochemical imbal-
ance. It includes changes in intestinal pH, inflammation, 
malabsorption and gut barrier disruptions (Meeker et al. 
2020). Various factors such as prolonged antibiotics 
intake, immunosuppressive mediations and high-calorie 
diet further shape the CFTR microbiome. Specifically, in 
delF508 mutations, bacteria such as E. coli and Eubac-
terium biforme were found in higher abundance while 
Bifidobacterium and Faecalibacterium species were in 
lower abundance (Schippa et al. 2013). Recent studies 
on the gut microbiota of CFTR-deficient mice reported 
an increase in abundance of Enterobacteriaceae, Myco-
bacteria and Bacteroides while a decrease in abundance 
of Lactobacilli, Acinetobacter lwoffii and A. muciniphila 
(Thomsson et al. 2002; Bazett et al. 2016). Through inte-
grated metagenomics and metabolomics study on CFTR 
gut microbiota, an increase in the expression of associ-
ated metabolites such as propylbutyrate, γ-aminobutyric 
acid (GABA), ethanol, choline and pyridine was observed 
while there was reduction in expression levels of 4- 
methylphenol, methylacetate, uracil, sarcosine, acetate, 
phenol, benzaldehyde and glucose (Vernocchi et  al. 
2018). The multi-omics-based model pointed out the cor-
relation of microbial and metabolite variations caused by 
CFTR functional defects. Therefore, it becomes important 
to study the relationship between host gut, microbes and 
associated metabolites to investigate CF and its biomark-
ers. Major evidence of their relationship is the study on 
the administration of CFTR potentiator Ivacaftor which 
resulted in an increase in A. muciniphila. It could be 
explained by the release of bicarbonates from CFTR post 
Ivacaftor treatment that provided the optimal environ-
ment for mucin degraders (Ambort et al. 2012; Schütte 
et al. 2014). Post treatment with Ivacaftor, a significant 
reduction in stool calprotectin, a protein released by neu-
trophils, but no change in M2 pyruvate kinase (M2-PK) 
was observed. The reduction of calprotectin indicated 
that intestinal inflammation could be improved in CF 
patients upon restoration of intestinal milieu. Also, there 
was selective loss of pathogens like those of Enterobacte-
riaceae family which was positively correlated with stool 
calprotectin level (Manor et al. 2016). It led to an increase 
in the expression of an antimicrobial peptide (Reg III), 
which has direct metabolic activity in the intestine against 
Gram positive bacteria. In CF, A. muciniphila accounted 
for normal stool M2-PK concentration and decreased 
amount of Enterobacter. Thus, the increased abundance 
of A. muciniphila supports its potential as a biomarker for 
the gut and it may be used for the microbe based therapy 
in CF (Pang et al. 2014). Many gut microbes including A. 
muciniphila could be associated with CF and hold future 
as its promising therapeutic intervention. By regulating 
the gut profile of A. muciniphila through personalized 

nutrition and supplementation, host immunity can be 
improved, which could serve as one of the prophylactic 
ways by which the severity of CF could be minimized.

Increased abundance of A. muciniphila in COVID‑19

On 11th March 2020, COVID-19 caused by severe acute 
respiratory syndrome-coronavirus 2 (SARS-CoV-2) was 
declared as a pandemic. Over 180 countries were affected 
globally leading to nationwide lockdowns. The virus primar-
ily attacked the respiratory system causing high-grade fever, 
severe cough, shortness of breath and pneumonia in severe 
cases. Several people infected with the virus experienced 
neurological and gastrointestinal (GI) manifestations with 
or without respiratory symptoms. On the other hand, some 
people were asymptomatic or symptom-free. The viral infec-
tion was also correlated with gut-lung-brain axis and micro-
biome imbalance. Significant reduction in the abundance of 
beneficial microbes was associated with inflammation and 
pathogenesis in COVID-19 (Hussain et al. 2021). Altered 
microbiome composition could further weaken body’s 
immunity and may play a role in SARS-CoV-2 infection. 
Recent studies have elucidated the relationship between gut 
and lung microbiota in COVID-19 and potential as prog-
nostic markers (Wang et al. 2021). Although there is no 
direct evidence of specific interaction between resident gut 
microbe and COVID-19, some studies suggest that the gut 
microbiome in COVID-19 could be a key player in modulat-
ing host response and disease severity (Hussain et al. 2021; 
Yamamoto et al. 2021; Yeoh et al. 2021). GI symptoms were 
accompanied by gut dysbiosis during the early phase causing 
changes in gut microbiome and increase in inflammatory 
cytokines. Recently, proinflammatory cytokine storm due to 
significant increase in levels of IL-6 and IL-10 was reported 
to be predictive of COVID-19 severity (Han et al. 2020). 
Moreover, the presence of SARS-CoV-2 RNA was reported 
in faecal samples suggesting gut to be a viral replication 
site (Xiao et al. 2020). According to a study performed on 
SARS-CoV-2 recovered patients, A. muciniphila along with 
B. dorei was found to be elevated in the COVID-19 patients 
(Yeoh et al. 2021). Moreover, these bacteria were positively 
correlated with inflammatory cytokines, namely IL-1β and 
IL-6 and proinflammatory cytokine C-X-C motif ligand 8 
(CXCL8). On the other hand, Faecalibacterium prausnitzii, 
Eubacterium rectale and some species of Bifidobacteria 
were found in lower abundance. A recent faecal metabo-
lomics studies through machine learning approach suggested 
that particular set of gut microbiota could be used to predict 
proteomic risk score based on 20 blood proteomic biomark-
ers for COVID-19 severity (Gou et al. 2021). The gut micro-
bial profile was used as a tool for prediction of the blood 
molecular signatures, indicating amino acid related pathways 
such as aminoacyl-tRNA biosynthesis, arginine biosynthesis 
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and valine, leucine and isoleucine biosynthesis to be a pos-
sible link between inflammation and gut microbiota. It is 
well known that the gut microbiome renders beneficial 
effects on pulmonary mucosal immunity and host defence, 
thus safeguarding against respiratory infections (Gray et al. 
2017). Downregulation of angiotensin-converting enzyme 
II (ACE2) involved in amino acid transport, tryptophan and 
antimicrobial peptide metabolism upon binding with viral 
spike protein might affect gut microbial ecology leading to 
dysbiosis in COVID-19 (Kuba et al. 2005). The possible 
factors contributing to A. muciniphila dysbiosis in COVID-
19 along with strategies to restore its normal abundance are 
shown in Fig. 3. Co-morbidities such as diabetes, obesity and 
cardiovascular diseases largely influence the risk of infection 
and severity of disease. A lot of stress and consumption of 
fat and carbohydrate rich foods during the quarantine period 
was observed, leading to reduced CD8 + T cell response 
which could be linked to higher risk of infection (Mattioli 
et al. 2020). On the contrary, non-pharmacological measure 
such as reduction in consumption of fast food and increased 
emphasis on a healthy balanced diet also helped mitigate 
severe health conditions. Lifestyle habits, including diet and 
physical exercise, can profoundly influence the composition 
of the microbiome and consequently host metabolism and 
well-being. With the regulation of dietary habits, the opti-
mum abundance of this friendly bacteria can be achieved in 
COVID-19 (Dhar and Mohanty 2020). Food supplements 
rich in polyphenols, omega-3 and FODMAP (Ferment-
able oligosaccharides, disaccharides, monosaccharides and 
polyols) are well known to increase A. muciniphila. Thus, 

by consuming polyphenol-rich foods, like fruits and veg-
etables, the abundance of A. muciniphila in the gut can be 
enhanced. Probiotic supplementations along with standard 
therapies as a prophylactic measure could also help mitigate 
the increased risk of comorbidities and move towards effec-
tive treatment. It becomes necessary to manage gut microbi-
ome during and post disease recovery. The gut microbiome 
is asserted to critically impact the severity of infection as 
well as host immunity in COVID-19. By monitoring the 
GI symptoms, early diagnosis and treatment of COVID-19 
can be facilitated. Therefore, it becomes important to study 
interaction between coronavirus and intestinal microbiome 
to develop novel treatment approaches.

Conclusion and future perspectives

A. muciniphila is a key mucus degrading bacteria in host 
immunity and infection response. The correlated metabo-
lites and pathways are closely associated with inflamma-
tion, post-infection severity and recovery. A. muciniphila 
fortifying the intestinal mucus layer promotes several 
health-mediating effects. It regulates intestinal homeosta-
sis and helps in maintaining epithelial barrier integrity by 
stimulating anti-inflammatory pathways. A. muciniphila 
presents itself as a powerful gut microbe having many met-
abolic interventions and as a promising therapeutic agent. 
The close relation of intestinal anti-inflammatory and pro-
tective effects of A. muciniphila emphasizes on its promis-
ing probiotic role (Neef and Sanz 2013). On the basis of 

Fig. 3   Possible factors contrib-
uting to A. muciniphila dysbio-
sis in COVID-19 along with 
strategies to restore its normal 
abundance
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cross-talk elucidated across gut-lung axis, alterations in 
the gut microbiota through administration of SCFAs, pro-
biotics or micronutrients could act as potential therapeu-
tic strategies. A specific protein in the outer membrane of 
A. muciniphila, Amuc-110, which recapitulates the effect 
of bacteria on TLR2 activation and improves the barrier 
integrity of intestines, could serve as a strong candidate 
for drug production in future. Thus, by unveiling the inter-
relationships between host factors such as diet, lifestyle 
habits, clinical markers and A. muciniphila in the human 
gut microbiome, interventions and clinical trials may be 
designed. Through extensive investigation, new dimen-
sions of the impact of A. muciniphila in the microbiome on 

human health may be explored in obesity, type 2 diabetes, 
cystic fibrosis and COVID-19 by examining its dysbiosis 
in patients as compared to healthy individuals and adopting 
suitable strategies for its restoration (Fig. 4). The study of 
the relationship between A. muciniphila in gut microbiome 
and personalized medicine can be one of the most attractive 
aspects of future research, which can provide significant 
perspectives for the treatment of metabolic diseases like 
type 2 diabetes and obesity, and even respiratory diseases 
such as cystic fibrosis and COVID-19. To conclude, poten-
tial opportunities exist for targeted interventions to modify 
the composition of A. muciniphila in the gut microbiome 
to improve host health.

Fig. 4   Dysbiosis and restoration of A. muciniphila in obesity, type 2 diabetes, cystic fibrosis and COVID-19
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