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Neurodegenerative diseases are devastating and incurable disorders characterized by neuronal dysfunction. The major focus of
experimental and clinical studies are conducted on the effects of natural products and their active components on
neurodegenerative diseases. This review will discuss an herbal constituent known as cinnamaldehyde (CA) with the
neuroprotective potential to treat neurodegenerative disorders, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD).
Accumulating evidence supports the notion that CA displays neuroprotective effects in AD and PD animal models by
modulating neuroinflammation, suppressing oxidative stress, and improving the synaptic connection. CA exerts these effects
through its action on multiple signaling pathways, including TLR4/NF-κB, NLRP3, ERK1/2-MEK, NO, and Nrf2 pathways. To
summarize, CA and its derivatives have been shown to improve pathological changes in AD and PD animal models, which may
provide a new therapeutic option for neurodegenerative interventions. To this end, further experimental and clinical studies are
required to prove the neuroprotective effects of CA and its derivatives.

1. Introduction

Neuroinflammation plays a critical role in the pathogene-
sis of both acute and chronic neurological diseases, exem-
plified by stroke, Alzheimer’s disease (AD), Parkinson
disease (PD), and depression. During the neuroinflamma-
tory process, immune and glial cells are extremely acti-
vated and release several proinflammatory mediators that
cause neural injury. Thus, treatment or prevention of
neuroinflammation-mediated neural tissue dysfunction
may have a potential therapeutic option against neurolog-
ical diseases [1, 2].

Herbal drugs, such as plant, spices, and their oils, have
been used from ancient times to today to treat neurologi-
cal disorders [3]. It has been shown that herbal drugs

exert anti-inflammatory properties in a variety of periph-
eral systems. Now, increasing evidence indicates that
anti-inflammatory herbal medicine and its constituents
are being verified to be a potent neuroprotector against
numerous brain disorders [4–6].

Cinnamon powder is one of the most famous spices made
from the inner bark of cinnamon trees. The most common
species are C. cassia (Chinese cinnamon) and C. verum (true
cinnamon). These two species contain 85.3 and 90.5 percent
of the cinnamaldehyde (CA) [7]. CA is a major bioactive of
bark extract of cinnamon that is responsible for the odor and
flavor of cinnamon [8]. This component was isolated from cin-
namon for the first time by Jean-Baptiste Dumas and Eugène-
Melchior Péligot in 1834 and then synthesized in the labora-
tory by the Italian chemist, Luigi Chiozza in 1854 [9, 10]. Thus,
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CA can be obtained from natural extracts or synthesized in a
laboratory. Natural CA derivatives include trans-cinnamalde-
hyde (TCA), 2′-hydroxycinnamaldehyde (HCA), 2-meth
oxycinnamaldehyde (MCA), and 2-hydroxycinnamic (o-Cou-
maric acid) (Figure 1) [11]. CA derivatives are structurally
identified by the presence of cinnamoyl moiety [12]. In their
structures, the presence of highly reactive α,α-unsaturated car-
bonyl pharmacophore (Michael acceptor) can react with some
enzymes and/or receptors as electrophiles and subsequently
generate different therapeutically relevant pharmacological
functions [12]. Natural CA and its derivatives have been exten-
sively investigated and comprehensively reviewed with a wide
range of effects, such as anticancer, antidiabetic, antifungal,
and antibacterial [7, 11, 13, 14]. Besides, natural CA and its
derivates have been used for neurological purposes because
they have anti-inflammatory, neuroprotective, antioxidative
stress, and antiapoptotic properties (Table 1) and (Figure 2)
[15, 16]. For example, CA exhibits a protective influence
against glutamate-induced cytotoxicity in PC12 cells [17]. CA
considerably attenuated cell survival, inhibited the generation
of reactive oxygen species (ROS), alleviated mitochondrial
membrane potential, reduced the production of cytochrome
c, and decreased the activities of caspase-3 [18]. CA also signif-
icantly enhanced Bcl-2 (as an antiapoptotic marker) while
reducing Bax (as a proapoptotic marker) expression [17].
Moreover, TCA as a main natural CA derivative significantly
decreased LPS-induced neuronal death through the inhibition
of neuroinflammation by blocking the nuclear factor kappa B
(NF-κB) signaling pathway in vitro condition [19]. In the same
way, HCA is another CA derivative that can inhibit neuroin-
flammatory signaling pathways such as NF-κB, extracellular-
regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and
p38 mitogen-activated protein kinase (p-38 MAPK) by target-
ing low-density lipoprotein receptor-related protein 1 (LRP1).
[20]. Therefore, natural CA and its derivatives may be used as a
therapeutic agent against neuroinflammation for improving

neurological disorders. However, the mechanisms of natural
CA and its derivatives on neuroinflammation should be stud-
ied more than that it has. To this end, the aim of this study was
to review the current status of the neuroprotective and anti-
neuroinflammatory properties of natural CA and its deriva-
tives and discuss their potentials as therapeutic agents in
neurodegenerative diseases.

2. Natural CA and Its Derivatives Act as a
Neuroprotective Agent by Targeting
Neuroinflammatory Pathways

Neuroinflammation is an intrinsic brain response that
involves neurons and glial cells within the central nervous
system. The neuroinflammation signaling pathways are the
subject of extensive experimental and clinical studies [21–
23]. The NF-κB pathway is a main proinflammatory cytokine
mediator that is activated by toll-like receptors (TLRs) [24].
The TLRs are the most prominent family of pattern recogni-
tion receptors that are a part of the innate immune response
[25, 26]. Stimulation of TLRs by insult factors leads to severe
inflammatory responses by releasing proinflammatory cyto-
kines, such as interleukin-1β (IL-1β) and interleukin-18
(IL-18) [27]. TLR4 is a membrane receptor of TLRs which
have two adaptor proteins including myeloid differentiation
primary response gene 88 (MyD88-) dependent pathway
and MyD88-independent pathway (TRIF-dependent path-
way) [28]. Activation of TLR4 recruits MyD88 and activates
NF-κB that consequently expresses proinflammatory cyto-
kines [29]. Considerable data have shown that the
TLR4/NF-κB signaling pathway plays a key role in the path-
ogenesis of neuroinflammation [30]. Therefore, attenuating
the TLR4/NF-κB signaling pathway can be considered as a
therapeutic strategy for treating brain diseases [31]. With this
in mind, it has been revealed that CA inhibited TLR4/NF-κB
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Figure 1: Chemical structures of natural cinnamaldehyde derivatives.
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signaling and NLRP3 (caspase-1-containing multiprotein
complex) inflammasome and subsequently controlled the
release of IL-1β and IL-18 during the inflammatory processes

[32]. Furthermore, CA suppresses NLRP3 inflammasome
activation via inhibiting the cathepsin B and P2X7R ((P2
receptors) protein expression [33]. In this case, TCA

Table 1: Experimental studies of natural cinnamaldehyde and its derivation on neurological diseases.

Natural
cinnamaldehyde
derivation

Model Animal/cell Effective dose Mechanism Result Main effect Ref.

CA
Permanent cerebral

ischemia
Mouse 50mg/kg

Suppress the activation
of TLR4, TRAF6, and

NF-κB signaling

Attenuate levels of
TNF-α, IL-1β,

CCL2, and ELAM-1

Anti-
inflammatory

effect
[31]

CA Glutamate toxicity PC12 cells 20 μM

Inhibit intracellular
ROS accumulation,

increase Bcl-2
expression, inhibit Bax
expression, block the

release of cytochrome c,
and decrease the LC3-

II/LC3-I ratio

Maintain normal
mitochondrial
membrane
potential and
prevent the
activation of
autophagy

Antioxidative
stress and

antiapoptotic
effects

[17]

CA
Diabetic

neuropathy
DRG 100 nmol/L

Inhibits the activation
of NF-κB pathway

Attenuate caspase-3
activation and

downregulate IL-6,
TNF-α, COX, and

iNOS levels

Anti-
inflammatory

effect
[34]

CA Sciatic nerve crush Rat 30mg/kg/day
Upregulate the number
of regenerated nerves
and Schwann cells

Promote nerve
regeneration, motor
function recovery,
and muscle mass

Neuroprotective
effect

[38]

TCA Depression Mouse 50mg/kg −

Regulate the level of
GABA

neurotransmitter
and also regulate
the eCB system by
downregulation of
TRPV1 and CB1

Antidepressive
effect

[39]

HCA
LPS-induced

neuroinflammation

BV-2
microglial

cells
2 μM

Inhibit ERK, JNK, p38
MAPK, and NF-κB
activation by target
LRP1 and reduce
microglia-mediated
neuroblastoma cell

death

Attenuate the
expression of iNOS

and
proinflammatory
cytokines such as
IL-1β and TNF-α

Anti-
inflammatory

and
neuroprotective

effects

[19]

Abbreviations: HCA: 2-hydroxycinnamaldehyde; MCA: 2-methoxycinnamaldehyde; DRG: dorsal root ganglion neurons; LPS: lipopolysaccharide; TRAF6:
tumor necrosis receptor-associated factor 6; TLR4: Toll-like receptor 4; eCB: endocannabinoid; MAPKs: mitogen-activated protein kinases, ERK:
extracellular-regulated kinase; JNK: c-Jun N-terminal kinase; COX: cyclooxygenase; iNOS: inducible nitric oxide synthase; NO: nitric oxide; IL-1β:
interleukin-1β; IL-6: interleukin-6; TNF-α: tumor necrosis factor-α; NF-κB: nuclear factor kappa B; TRPA1: transient receptor potential ankyrin 1; ROS:
reactive oxygen species; MDA: malondialdehyde; Bcl-2: B cell lymphoma 2; BAX: BCL2-Associated X; CCL2: C-C Motif Chemokine Ligand 2; ELAM-1:
endothelial-leukocyte adhesion molecule 1; GABA: Gamma-Aminobutyric acid; TRPV1: transient receptor potential cation channel subfamily V member 1;
LRP1: low-density lipoprotein receptor-related protein 1; LC3: microtubule-associated protein light chain 3.
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Figure 2: Schematic diagram of cinnamaldehyde extraction and its ability to reduce neuronal cell death through the inhibition of
mitochondrial dysfunction, nitrite oxide (NO) production, and inflammatory pathways.
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improves depressive-like behaviors in a chronic mild stress
model by inhibiting the NF-κB/NLRP3 inflammasome path-
way [33]. Also, CA not only inhibits TLR4/NF-κB signaling
but also attenuates the increased levels of TNF-α, IL-1β, C-
C Motif Chemokine Ligand 2 (CCL2), and endothelial-
leukocyte adhesion molecule-1 (ELAM-1) in a cerebral ische-
mic model that ultimately decreased leukocyte infiltration
into the ischemic brain areas (Figure 3) [32]. CA also sup-
pressed cytokine secretion from lipopolysaccharide (LPS-)
activated macrophages [34]. Additionally, CA inhibited apo-
ptosis and ROS generation by inhibiting NF-κB activity in
the DRG neurons treated by high glucose as an in vitro neu-
ropathy model [35].

The molecular mechanism of CA and its derivatives are
not fully understood, but these results suggest that natural
CA and its derivatives may introduce as a new candidate
for further development as an anti-inflammatory agent for
neurodegenerative diseases [34, 36–40].

3. CA Attenuates the Progression of
Neurodegenerative Diseases

3.1. Alzheimer’s Disease. AD is known as a progressive age-
related neurodegenerative disorder. The symptoms of AD
depend on the stage of the disease that is classified into
early-stage, mild, moderate, and late-stage according to the
degree of cognitive impairment. AD is associated with neuro-
logical and motor dysfunction that ultimately results in pro-
gressive memory loss [41–43]. The exact cause of AD is not
well understood, but oxidative damage and excessive ROS
production have been characterized at the early stage of

AD. Moreover, the main hallmark pathology of AD is the
accumulation of amyloid plaques and hyperphosphorylated
Tau proteins in the brain that these events cause neuronal cell
death through a series of toxic pathways [44, 45]. Despite
huge basic and clinical research on AD, there is no effective
treatment to stop the progression of clinical symptoms in
AD. Additionally, other pathological features such as neuro-
inflammation, microglial activation, acetylcholinesterase
(AChE) dysregulation, synaptic impairment, and mitochon-
drial dysfunction play important roles in the pathogenesis
of AD. Therefore, it is necessary to develop multifunctional
drugs with fewer side effects to target different aspects of AD
pathology [46–48]. In this case, it has been reported that CA
prevents the accumulation and formation of plaques and neu-
rofibrillary tangles in neurons. CA also reduces the accumula-
tion of Tau protein through interaction with the two cysteine
residues in tau and prevents neuronal loss (Table 2) [49]. CA
extract and its polyphenolic derivatives maintain redox
homeostasis through free radical scavenging activities. It has
been reported that long time consumption of cinnamon
downregulated oxidative stress markers in the blood [50].
Besides, CA significantly improved the lifespan and health-
span in male AD flies [44]. Furthermore, it has been reported
that the administration of CA (40mg/kg) improved cognitive
performance by increasing phosphorylated ERK1/2 in the pre-
frontal cortex of rats in the methamphetamine cognitive
impairment model [51]. In addition, it has been shown that
TCA possesses an ability to inhibit neuroinflammatory
responses by declining the microglial activation and levels of
proinflammatory mediators in the mice brain of the AD
model [52]. Besides, TCA improves memory impairment by
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Figure 3: Neuroprotective effects of cinnamaldehyde on neuroinflammation, oxidative stress, and mitochondrial dysfunction. Abbreviation:
PAMP: pathogen-associated molecular pattern; DAMP: damage-associated molecular pattern.

4 BioMed Research International



T
a
bl
e
2:
P
re
cl
in
ic
al
st
ud

ie
s
of

na
tu
ra
lc
in
na
m
al
de
hy
de

an
d
it
s
de
ri
va
ti
on

-m
ed
ia
te
d
ne
ur
op

ro
te
ct
iv
e
eff
ec
ts
on

A
lz
he
im

er
’s
di
se
as
e
an
d
P
ar
ki
ns
on

’s
di
se
as
e
m
od

el
s.

M
od

el
A
ni
m
al
/c
el
l

ty
pe

In
je
ct
io
n

ro
ut
e

D
ur
at
io
n

C
om

po
un

d
E
ff
ec
ti
ve

do
se

M
ec
ha
ni
sm

M
ai
n
fi
nd

in
g

B
eh
av
io
ra
la
ss
es
sm

en
t

R
ef
.

D
ro
so
ph

ila
m
el
an
og
as
te
r

(o
ve
re
xp
re
ss
in
g
A
β

or
T
au

pr
ot
ei
ns
)

Fl
y

C
A
ad
de
d
to

ye
as
t
pa
st
e

10
0
da
ys

C
A

80
m
M

A
ct
iv
at
e
th
e

au
to
ph

ag
y
pa
th
w
ay

by
N
rf
2

Im
pr
ov
e
th
e
lif
es
pa
n
an
d

he
al
th
sp
an

of
m
al
e
A
D

fl
ie
s

Im
pr
ov
e
cl
im

bi
ng

ab
ili
ty

an
d
im

pr
ov
e
sh
or
t-
te
rm

m
em

or
y

[4
3]

T
au

18
7

_
In
cu
ba
ti
on

17
h

C
A
an
d

ep
ic
at
ec
hi
n

11
0
μ
M

−
R
ed
uc
e
ta
u
ag
gr
eg
at
io
n

−
[4
8]

A
lu
m
in
um

ch
lo
ri
de

(a
lc
l3
-)
in
du

ce
d

A
lz
he
im

er
’s
di
se
as
e

R
at

O
ra
lg
av
ag
e

60
da
ys

C
A

20
0
m
g/
kg

R
ed
uc
e
th
e
G
FA

P
-

po
si
ti
ve

ce
lls

R
ed
uc
e
th
e
pr
og
re
ss
io
n
of

ne
ur
ofi

br
ill
ar
y
de
ge
ne
ra
ti
on

,
lo
ss

of
de
nd

ri
ti
c
sp
in
es
,a
nd

ap
pe
ar
an
ce

of
ne
ur
it
ic
pl
aq
ue
s

Im
pr
ov
e
T
-m

az
e
te
st

[4
4]

P
re
se
ni
lin

1/
2

co
nd

it
io
na
ld

ou
bl
e

kn
oc
ko
ut

m
ic
e

M
ou

se
IP

90
da
ys

T
C
A

24
0
pp

m
Su
pp

re
ss
th
e
N
F-
κb

si
gn
al
in
g
pa
th
w
ay

P
re
ve
nt

th
e
up

re
gu
la
ti
on

of
iN
O
S,
C
O
X
-2
,I
L-
1β

,a
nd

T
N
F-

α
an
d
re
sc
ue

m
em

or
y

im
pa
ir
m
en
t
an
d
sy
na
pt
ic

dy
sf
un

ct
io
n

Im
pr
ov
e
no

ve
lo

bj
ec
t

re
co
gn
it
io
n
te
st
,M

or
ri
s

w
at
er

m
az
e,
an
d
Y
-m

az
e

[5
1]

M
et
ha
m
ph

et
am

in
e-

in
du

ce
d
sp
at
ia
l

le
ar
ni
ng

an
d

m
em

or
y
de
fi
ci
ts

R
at

IP
7
da
ys

C
A

80
m
g/
kg

A
ct
iv
at
e
th
e
E
R
K

si
gn
al
in
g
pa
th
w
ay

Im
pr
ov
e
co
gn
it
iv
e
an
d
le
ar
ni
ng

fu
nc
ti
on

s

Im
pr
ov
e
m
em

or
y

im
pa
ir
m
en
t
in

M
or
ri
s

w
at
er

m
az
e

[5
0]

LP
S

M
ou

se
/p
ri
m
ar
y

m
ic
ro
gl
ia

IP
/i
nc
ub

at
io
n

28
da
ys

T
C
A

50
m
g/
kg
/1
0
μ
M

In
hi
bi
t
M
E
K
1/
2-

E
R
K
1/
2
si
gn
al
in
g

pa
th
w
ay

D
ec
re
as
e
N
O

pr
od

uc
ti
on

an
d

IL
-1
β
re
le
as
e
in

pr
im

ar
y

m
ic
ro
gl
ia
an
d
im

pr
ov
e
m
em

or
y

im
pa
ir
m
en
t

Im
pr
ov
e
op

en
fi
el
d,

no
ve
l

ob
je
ct
re
co
gn
it
io
n
ta
sk
,

an
d
M
or
ri
s
w
at
er

m
az
e

te
st

[5
3]

LP
S

M
ou

se
IP

7
da
ys

T
C
A

50
m
g/
kg
/d
ay

In
hi
bi
t
th
e
N
F-
κB

ac
ti
va
ti
on

an
d

at
te
nu

at
e
th
e
le
ve
lo

f
IL
1β

,M
D
A
,a
nd

ca
sp
as
e-
3

M
od

ul
at
e
N
rf
2
an
ti
ox
id
an
t

de
fe
ns
e
in

th
e
hi
pp

oc
am

pu
s,

in
hi
bi
t
ne
ur
oi
nfl

am
m
at
io
n,

ap
op

to
si
s,
an
d
am

yl
oi
d
pr
ot
ei
n

bu
rd
en

Im
pr
ov
e
sp
at
ia
la
nd

no
ns
pa
ti
al
m
em

or
ie
s

im
pa
ir
m
en
t
in

M
or
ri
s

w
at
er

m
az
e
an
d
ob
je
ct

re
co
gn
it
io
n
te
st

[5
2]

M
P
T
P
/M

P
P
+
-

in
du

ce
d
ne
ur
on

al
ce
ll
in
ju
ry

M
ou

se
/h
um

an
ne
ur
ob
la
st
om

a
B
E
(2
)-
M
17

ce
lls

IP
7
da
ys

C
A

10
m
g/
kg

U
pr
eg
ul
at
e
p6
2
an
d

re
du

ce
th
e
ra
te
of

au
to
ph

ag
y

In
hi
bi
t
au
to
ph

ag
y

−
[6
6]

6-
O
H
D
A

P
C
12

ce
ll
lin

es
In
cu
ba
ti
on

24
h

C
A

10
μ
M

−
In
cr
ea
se

vi
ab
ili
ty

of
6-
O
H
D
A
-

tr
ea
te
d
ce
lls

an
d
de
cr
ea
se

th
e

R
O
S
ge
ne
ra
ti
on

−
[6
5]

A
D
:A

lz
he
im

er
’s
di
se
as
e;
P
D
:P
ar
ki
ns
on

di
se
as
e;
C
A
:c
in
na
m
al
de
hy
de
;M

P
T
P
:1
-m

et
hy
l-
4-
ph

en
yl
-1
,2
,3
,6
-t
et
ra
hy
dr
op

yr
id
in
e,
M
P
P
+
:1
-m

et
hy
l-
4
ph

en
yl
py
ri
di
ni
um

;N
rf
2:
nu

cl
ea
r
fa
ct
or

er
yt
hr
oi
d
2-
re
la
te
d
fa
ct
or

2;
R
O
S:
re
ac
ti
ve

ox
yg
en

sp
ec
ie
s;
6-
O
H
D
A
:6
-h
yd
ro
xy
do

pa
m
in
e;
IP
:i
nt
ra
pe
ri
to
ne
al
;C

O
X
2:
cy
cl
o-
ox
yg
en
as
e
2;
IL
-1
β
:i
nt
er
le
uk

in
-1
β
;T

N
F-
α
:t
um

or
ne
cr
os
is
fa
ct
or
-α
.

5BioMed Research International



suppressing microglial activation [53]. For this reason, TCA
considerably reduced nitric oxide (NO) production in micro-
glial cells by accelerating the destabilization of inducible nitric
oxide synthase (iNOS) mRNA through the disruption of the
mitogen-activated protein kinase kinase (MEK1/2)-ERK1/2
pathway in a mouse memory impairment model of LPS [46].
TCA can also inhibit the NF-κB pathway through the down-
regulation of iNOS, Cyclo-oxygenase-2 (COX-2), and TNF-α
gene expressions in LPS-induced microglial cells [53]. Simi-
larly, TCA can decrease the iNOS levels and phosphorylated
ERK1/2 in the hippocampal tissue of the LPS in vivo model
[46]. Recently, it has been reported that TCA has a memory-
enhancing effect [54]. TCA improved the spatial memory
and locomotor activity in mice with lipopolysaccharide
(LPS-) induced memory impairment by stimulating the
nuclear factor erythroid 2-related factor 2 (Nrf2) and restoring
superoxide dismutase and glutathione-S-transferase as the
downstream antioxidant enzymes in the hippocampus. TCA
also decreased the levels of IL-1β and caspase-3 as well as
Aβ1–42 protein accumulation in the brain of mice [55].
Therefore, TCA enhancedmemory function through the ame-
lioration of Nrf2, inhibition of neuroinflammation and apo-
ptosis, and reduction of amyloid protein aggregation.

Another significant aspect of AD pathology is decreased
synaptic protein expression and synaptic impairment. TCA
can increase synaptic markers in the hippocampus and fron-
tal cortex of the mouse model of neurological disorder, indi-
cating an improvement in synaptic connection in AD [52,
56]. Besides, CA polyphenolics may improve dementia
through their vasorelaxant potentials and attenuating vascu-
lar cell adhesion molecule expression within the endothelial
cells [43]. These examples show that natural CA and its
derivatives can improve AD symptoms by attenuating differ-
ent pathological pathways.

3.2. Parkinson’s Disease. PD is a debilitating progressive neu-
rodegenerative disorder characterized by degeneration and
loss of dopaminergic neurons in the substantia nigra area of
the midbrain [54]. Mitochondrial dysfunction, neuroinflam-
mation, oxidative stress, loss of supportive molecules, and
dysregulated kinase signaling are critical factors that are
known to impact the pathogenesis of PD. Moreover, preclin-
ical and clinical evidence suggests that α-synuclein misfold-
ing (Lewy body) and autophagy imbalance have been
reported as the molecular mechanisms underlying PD path-
ogenesis [57, 58]. To date, there is no effective treatment to
reduce the progression of PD or even to prevent its manifes-
tation. Therefore, searching for neuroprotective agents,
which can stop the underlying pathological condition and
prevent further neuronal death, is needed. Among different
neuroprotective agents, herbal components have long-term
efficacy and safety [59, 60].

Studies have been demonstrated that cinnamon has anti-
inflammatory effects as well as some neuroprotective proper-
ties [61, 62]. Treatment with cinnamon prevented the devel-
opment of PD-like symptoms and pathology in 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP-) treated mice
[63]. The major compound in cinnamon is CA, which is
metabolized into sodium benzoate (NaB) in the liver. NaB

can cross the blood–brain barrier and increase the produc-
tion of neurotrophic factors in the brain. It has been reported
that NaB metabolized from cinnamon can inhibit the loss of
Parkin and DJ-1 (protein deglycase), regulate neurotransmit-
ter levels, and improve motor functions in mice with PD [63–
65]. Parkin and DJ-1 are necessary proteins for supporting
the survival of dopaminergic neurons while significantly
decrease in the brain of PD patients [66]. Consequently,
sodium benzoate (NaB) metabolized from cinnamon mod-
ifies the pathology of PD through the production of neuro-
trophic factors and inhibition of neuroinflammation [64].
NaB produces brain-derived neurotrophic factor and
neurotrophin-3 via the activation of protein kinase A and
cAMP response element-binding pathway [64]. On the other
hand, NaB suppresses the activation of p21ras, a small G pro-
tein, and consequently decreases the activation of NF-κB.
Following the inhibition of NF-κB activation, iNOS expres-
sion and NO production are reduced, which ultimately
inhibits the neuroinflammation in PD [63, 67]. Furthermore,
the inhibition of LPS-induced production of NO and expres-
sion of iNOS, COX-2, and IL-1β is the molecular mechanism
behind TCA-mediated neuroprotective effects [19]. CA also
exerted antioxidant activity by decreasing ROS production
in 6-hydroxydopamine-induced cytotoxicity (Table 1) [68].
Recently, it has been shown that CA could block dysregulated
autophagy in MPTP as a PD model [69]. In general, it seems
that CA has a neuroprotective effect in PD models and might
be a promising therapeutic target for PD.

4. Conclusion Remarks and Future Perspectives

The current treatment for neurodegenerative diseases is
based on synthetic drugs that show undesirable side effects
or toxicity. On the other hand, natural components are
thought to be relatively safe and effective; therefore, many
researchers have focused to find herbal products with neuro-
protective effects. Initial experimental studies have shown
that natural CA and its derivatives have therapeutic effects
via modulation of several mechanisms, such as inflamma-
tion, mitochondrial dysfunction, and synaptic connection
in neurodegenerative diseases, such as AD and PD. However,
further studies in animal models and clinical trials are needed
to clarify the safety and efficacy of CA and its derivatives as a
potential therapeutic option for neurodegenerative disorders.
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