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Network analysis of transcriptional signature typically relies on direct interaction between two highly expressed genes. However,
this approach misses indirect and biological relevant interactions through a third factor (hub). Here we determine whether a hub-
based network analysis can select an improved signature subset that correlates with a biological change in a stronger manner than
the original signature. We have previously reported an interferon-related transcriptional signature (THP1r2Mtb-induced) from
Mycobacterium tuberculosis (M. tb)-infected THP-1 human macrophage. We selected hub-connected THP1r2Mtb-induced genes
into the refined network signature TMtb-iNet and grouped the excluded genes into the excluded signature TMtb-iEx. TMtb-iNet
retained the enrichment of binding sites of interferon-related transcription factors and contained relatively more interferon-related
interacting genes when compared to THP1r2Mtb-induced signature. TMtb-iNet correlated as strongly as THP1r2Mtb-induced
signature on a public transcriptional dataset of patients with pulmonary tuberculosis (PTB). TMtb-iNet correlated more strongly
in CD4+ and CD8+ T cells from PTB patients than THP1r2Mtb-induced signature and TMtb-iEx. When TMtb-iNet was applied to
data during clinical therapy of tuberculosis, it resulted in themost pronounced response and theweakest correlation. Correlation on
dataset from patients with AIDS or malaria was stronger for TMtb-iNet, indicating an involvement of TMtb-iNet in these chronic
human infections. Collectively, the significance of this work is twofold: (1) we disseminate a hub-based approach in generating a
biologically meaningful and clinically useful signature; (2) using this approach we introduce a new network-based signature and
demonstrate its promising applications in understanding host responses to infections.

1. Introduction

It has been estimated thatMycobacterium tuberculosis (M. tb)
infects as many as 2 billion people in the world. Between 5
and 10%of these infected individuals will likely develop active
tuberculosis (TB) during their lifetime [1]. Approximately 1.4
million people each year die from TB [1]. M. tb infection
results in disease after immune cells fail to contain bacterial
replication. As M. tb primarily resides within macrophages
after being inhaled there is an urgent need to understand

how the host macrophages respond protectively and patho-
logically to M. tb infection. Transcriptional profiling of host
cell responses is an unbiased whole-genome approach that
has already been applied to the whole blood [2–4] and blood
cell subpopulations [2, 5] of TB patients and to the human
macrophage cell line model THP-1 infected with M. tb [6].
The information-rich data obtained from these analyses hold
great promise for exploringmechanisms of pathogenicity and
immunity, for TB diagnosis/prognosis, and have potential
implications for development of new TB vaccines.
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Changes in the transcriptome cause changes in cell
functions. Yet the changes in transcriptome and the resultant
changes in cell function are generally mediated by changes in
the availability of RNA sequences and proteins that function
within cascades of network interactions. Working from the
principle that genes do not function alone but in the context
of networks, network-based interpretations of “omics” data
can uncover novel insights for biomedical research [7–9].
In such a view, it would be of greater biological relevance
if “omics” data were trained in the context of protein-
protein interactions [3, 9, 10]. As a precedent, candidate
genes identified from a RNAi functional screen for host genes
important for regulatingM. tb survival in macrophages have
been analyzed in the context of protein-protein interaction
data. This analysis revealed a pivotal role of the regulation of
autophagy for survival of M. tb [11]. This kind of network-
based approach has also been applied in other contexts, such
as an AIDS-relevant network in macaques for predicting the
magnitude of specific T-cell responses and viral loads [9] and
a putative network underlying early human organogenesis
[12].

Network analysis of highly expressed genes typically relies
on preexisting knowledge of a direct interaction between
pairs of highly expressed genes. However, expression of
multiple genes often indicates interaction with a hub or a
factor that interacts/associates with many other gene prod-
ucts. Connections via a hub can be missed by network
analysis that is based solely on direct interaction between
two expression-active gene products. As these connections
are biologically relevant, we proposed that hubs could be
exploited for creating a biologically relevant subnetwork of
expression-active genes.

Recently, we have reported transcriptome analysis of
human macrophage cell line THP-1 infected by different M.
tb W-Beijing strains and have identified a core interferon-
related transcriptional signature [6]. This core host tran-
scriptional response seemed to be positively correlated with
in vivo transcriptome data from patients with active pul-
monary tuberculosis (PTB) and to some extent this signature
decreased following clinical therapy of PTB [6]. Here, by
reanalyzing our previously reported interferon-related sig-
nature with a new hub-based network analysis strategy, we
aimed to produce a refined signature that was biologically
and clinically more correlative with PTB patients. Inter-
estingly, the new signature also showed greater correlation
with patients with acquired immunodeficiency syndrome
(AIDS) and malaria but not with patients with several other
infections or inflammatory conditions. We propose that the
improved interferon-related signature can be an attractive
alternative to the established large interferon-related sig-
nature and should be more accessible to TB investigators
interested in host cell response research.

2. Methods

2.1. Protein Interaction Network Data. The protein inter-
action information used in this study was obtained from
the STRING database [16]. STRING contains both physical

and functional interactions between proteins in a variety
of organisms. We extracted these interactions from the
human specific network where there was a combined score
of at least 0.7. This criterion ensured high coverage without
compromising data quality [16].

2.2. Derivation of a Network-Based Signature from Original
THP1r2Mtb-Induced Signature. We first identified a number
of genes (referred to herein as hubs) that made a minimum
𝑖 number of direct connections in the STRING database
with genes in our previously identified active interferon-
related signature (THP1r2Mtb-induced) [12]. We then used
this set of hubs to select all the interacting genes in
THP1r2Mtb-induced signature and grouped them into a new
subset known as THP1r2Mtb-iNet[𝑖]. Genes in THP1r2Mtb-
induced signature excluded from THP1r2Mtb-iNet[𝑖] were
then grouped into THP1r2Mtb-iEx[𝑖]. We then assessed the
biological relevance of each subset by its aggregate 𝑧-score
[17]. The calculation of aggregate 𝑧-score was similar to that
described in the original paper [13]. In general, the 𝑧-score
of an individual gene was calculated from the significance
(adjusted 𝑝) of the change in gene expression by subtracting
it from 1 (see our previous work for the adjusted 𝑝 values for
4 h versus 18 h after infection [6]) and this was then divided
by the normal cumulative distribution function (CDF).Then
the aggregate 𝑧-score was calculated as the summation of 𝑧-
scores from genes in a subset divided by the square root of
the number of genes in a subset. In essence, the aggregate 𝑧-
score reflected the expression levels of a signature and allowed
comparison of putative signatures with different numbers
of genes. The higher the aggregate 𝑧-score of a signature
was, the more transcriptionally active the signature was. The
signature with the highest aggregate 𝑧-score was visualized
using Cytoscape [18].

2.3. Enrichment Analysis of Transcription Factor Binding
Sites (TFBSs). PRomoter Integration in Microarray Analysis
(PRIMA) was applied for TFBS enrichment analysis for
genes in the derived signatures [14]. The analysis was based
on the promoter region spanning from 2,000 bp upstream
to 200 bp downstream of transcription start sites, using
the entire EntrezGenes as testing background. Enrichments
with Bonferroni-corrected 𝑃 value < 0.01 were declared as
significant.

2.4. KEGG Pathway Enrichment Analysis. The analysis was
done in the web-accessible Database for Annotation, Visu-
alization and Integrated Discovery (DAVID) v6.7, based
on Benjamini and Hochberg-derived False Discovery Rate
(FDR) [17].

2.5. Gene Set Enrichment Analysis (GSEA) against Transcrip-
tomes from Patients with PTB or Other Diseases. GSEA is
a nonparameter method for determining whether signature
genes are overrepresented at the top or bottom of a pre-
defined list of ranked genes (genes are ranked from high
to low according to their expression levels) [19]. The list
of ranked genes was predefined according to the available
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transcriptome data. A total of nine transcriptome datasets
were retrieved for GSEA analysis from NCBI GEO with
accession numbers GSE19491 [2], GSE31348 [20], GSE6269
[21], GSE11907 [15], GSE4124 [22], GSE6740 [23], GSE5418
[24], GSE40184 [25], and GSE7123 [26]. Among these pub-
licly available datasets, we chose the first two (GSE19491
and GSE31348) datasets to determine the correlation of our
signatures because both datasets contained transcriptome
data that compare PTB against latent tuberculosis (LTB) or
healthy control (HC) and followed the course of PTB therapy.
In particular, GSE19491 contains whole blood transcriptome
data from a large number of PTB patients, LTB patients, and
HC recruited from London in the UK and Cape Town in
South Africa. These samples were grouped into 5 cohorts: (1)
training set, London volunteers with PTB, LTB, and healthy
controls; (2) test set, London volunteers with PTB, LTB,
and healthy controls; (3) validation set, Cape Town volun-
teers with PTB and LTB; (4) Test set seperated, neutrophils
(Neut), monocytes (Mono), CD4+ T cells (CD4), and CD8+
T cells (CD8) separated from the blood of the test set PTB
patients and healthy controls; and (5) longitudinal study,
patients after 2months (PTB 2m) and 12months (PTB 12m)
of treatment and healthy controls [2]. GSE31348 contains
whole blood transcriptome data from PTB patients in Cape
Town, South Africa, at diagnosis (before drug treatment,
week 0) and at 1, 2, 4, and 26 weeks of treatment [20].

Other datasets involving patients with other infections
or inflammatory conditions were included in our analyses
to determine the specificity of our network-derived gene
signature.GSE6269 contains transcriptomedata of peripheral
blood mononuclear cells (PBMCs) from young patients.
In these young patients, the infecting pathogens were (1)
Escherichia coli, (2) influenza A, (3) Staphylococcus aureus,
or (4) Streptococcus pneumonia [21]. GSE11907 contains
transcriptome data of PBMCs from patients with one of the
following conditions: (1) E. coli infection; (2) systemic juve-
nile idiopathic arthritis; (3) systemic lupus erythematosus;
(4) liver-transplant recipient undergoing immunosuppressive
therapy; (5) metastatic melanoma; (6) type I diabetes; and
(7) Staphylococcus aureus infection [15]. GSE4124 contains
transcriptome data of PBMCs from HIV-1 positive/negative
mothers with infants in Botswana, Africa. These mothers
could be divided into the following three categories: (1) HIV-1
negative mother; (2) HIV-1 positive mother who perinatally
transmitted the virus to her infant; and (3) HIV-1 positive
mother who did not transmit the virus to her infant [22].
For GSE6740, CD4+ or CD8+ T cells were purified from four
groups of participants: Group 1: HIV-1-negative volunteers;
Group 2: individuals with HIV-1 infection within 6 months
of study and asymptomatic when blood was drawn (acute
HIV); Group 3: individuals with chronic progressive HIV-1
infection for at least 1 year and asymptomatic (chronic HIV);
andGroup 4: nonprogressor individuals withHIV-1 infection
for at least 3 years (nonprogressor HIV) [23]. GSE5418
contains two groups of donors: one group is malaria patients
from Cameroon, West Africa, where blood was obtained for
PBMCs separation before and after chloroquine treatment;
the other group includes healthy individuals from the USA
who were experimentally challenged with malaria-infected

mosquitos. PBMCs were obtained from these subjects before
mosquito challenge and when a single parasite was identified
by blood smear microscopy [24]. GSE40184 contains tran-
scriptome data of PBMCs from treatment-näıve chronic hep-
atitis C virus- (HCV-) infected patients or healthy controls
[25]. GSE7123 contains transcriptome data of PBMCs from
African-American/black (AA) orCaucasian-American/white
(CA) patients with chronic HCV infection and undergo-
ing therapy with pegylated interferon-2a (peginterferon).
Treatment doses were 180 𝜇g weekly by self-administered
subcutaneous injection and ribavirin orally in a dose of 1,000
or 1,200mg daily based on body weight of less than 75 kg or
equal to or greater than 75 kg. PBMCs were separated from
patients prior to therapy (day 0) and on days 1 (after injection
of peginterferon), 2, 7, 14, and 28. In addition, these patients
were divided into three categories based on their change in
HCV levels as detected by a quantitative PCR-based assay:
(1) marked, defined as a decrease in virus RNA levels of
more than 3.5 log

10
IU/mL on day 28 relative to baseline; (2)

intermediate, decrease of 1.4 to 3.5 log
10
IU/mL; and (3) poor,

decrease of less than 1.4 log
10
IU/mL [26].

GSEA results are reported as normalized enrichment
score (NES) and FDR. A gene signature with a positive
score is overrepresented at the top of a ranked gene list
and indicates a positive correlation (upregulated expression)
in the gene list, whereas a gene signature with a negative
NES is underrepresented at the bottom of a ranked gene
list and indicates the negative correlation (downregulated
expression) in the gene list. An FDR of 0.05 or less indicates
statistical significance of NES [19].

3. Results

3.1. Derivation of an Integrated Signature Capturing Essential
Characteristics of a Previously Identified Interferon-Related
Signature. Previously, we identified an active interferon-
related signature (THP1r2Mtb-induced) as a common tran-
scriptional response of THP-1 cells to infection by different
M. tb W-Beijing strains [6]. Since gene products func-
tion within the context of networks and perturbation of
such networks often changes cell phenotype [8], we rea-
soned that the transcriptional core response could be bet-
ter described/refined when integrated with protein-protein
interaction data. To this end, we combined the previous data
with protein-protein interaction network data to refine the
original signature (Figure 1). We sought to identify which of
the genes that showed a dominant expression pattern during
M. tb infection were also highly linked among themselves
or via a hub in the human interaction/association network.
Then, the highly linked signature and the excluded signature,
as well as the original THP1r2Mtb-induced signature, were
subject to gene set enrichment analysis (GSEA) on publicly
available patient-derived transcriptome data for validation
and comparison (Figure 1). A hub was selected from the
STRING protein interaction database based on the biological
relevance of the hub, which was defined by the number of
direct interactions (referred to herein as the degree of interac-
tion) the hubmadewith expression-active gene products (i.e.,
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Figure 1: A network-based strategy to refine an expression signature. The expression signature of THP-1 macrophages in response to Mtb
infection (THP1r2Mtb-induced) was used in this study [6]. To extract expression-active genes (pink dots) that are functionally linked genes,
STRING protein-protein interaction data were used to select expression-active genes that interacted directly among themselves or interacted
indirectly via a third protein that was defined thereby as a hub (grey dots).The degree of a hub corresponds to the number of direct interactions
the hub makes. In the refined signature example, one hub has a degree of 4 and another has a degree of 3; thus the minimum degree of hubs
in the example signature is 3.The selection of the minimum degree of hubs determines how transcriptionally active the refined signature will
be. The final refined set was the most transcriptionally active one (i.e., TMtb-iNet, which is refined based on hubs with minimum degree 14).
TMtb-iNet and the original signature (i.e., THP1r2Mtb-induced) as well as the cognate excluded genes (i.e., TMtb-Ex) were then analyzed for
their correlations with other patient-derived transcriptome datasets by GSEA.

gene products of THP1r2Mtb-induced).We grouped together
all highly expressed genes, whose gene products mutually
interacted directly or interacted indirectly via at least one of
the hubs that had a minimum of 𝑖 degrees of interaction,
into the refined subset signature THP1r2Mtb-iNet[𝑖]. As the
minimum degree required for inclusion of hubs in a subset
was increased, the number of hubs (Figure S1A) and the
total number of interactions in the subset decreased dra-
matically (Figure S1B) (Supplementary Material is available
online at http://dx.doi.org/10.1155/2014/713071). Also, more
highly expressed genes were excluded from the new subset
(Figure S1C). These excluded highly expressed genes were
grouped into THP1r2Mtb-iEx[𝑖].The expression level of each
THP1r2Mtb-iNet[𝑖] as a whole was then assessed by aggregate
𝑧-score. This score allows comparison among gene groups
with different sizes. The higher the aggregate 𝑧-score, the
higher level of expression of THP1r2Mtb-iNet[𝑖]. Figure 2(a)
displays the distribution of aggregate 𝑧-scores as a function
of minimum degree of hubs. The aggregate 𝑧-score for
THP1r2Mtb-iNet[𝑖] reached the highest when hubs had at
least 14 degrees. We refer to the signature with 14 minimum
degrees as TMtb-iNet and the cognate excluded signature as
TMtb-iEx. Figure 2(b) indicated that the TMtb-iNet genes
were expressed at significantly higher levels than the TMtb-
iEx genes.

In our previous study, we showed that the promoter
regions of genes in THP1r2Mtb-induced signature are signifi-
cantly enriched for transcription factor binding sites (TFBSs)
of interferon-related regulators (i.e., ISRE, IRF-7, and IRF-1)
[6]. To validate that TMtb-iNet genes were still representative
of THP1r2Mtb-induced signature, we also looked for signif-
icant enrichment of these three putative TFBSs. Regardless
of which minimum degree of hubs was utilized, we always
observed the superior enrichment of ISRE and IRF-7 in
promoter regions of genes in THP1r2Mtb-iNet[𝑖] compared
to genes in THP1r2Mtb-iEx[𝑖] (corrected 𝑃 < 0.05) (Figures
3(a) and 4(b)). In contrast, IRF-1 was significantly enriched
in promoter regions of genes in both THP1r2Mtb-iNet[𝑖] and
THP1r2Mtb-iEx[𝑖] (corrected 𝑃 < 0.05) independent of the
minimum degree of hubs (Figure 3(c)). We especially noted
that the TFBS of IRF-7 was exclusively enriched in promoter
regions of genes in THP1r2Mtb-iNet[𝑖] but not of genes in
THP1r2Mtb-iEx[𝑖] (Figure 3(b)). Figure 3(d) illustrates the
consistent and superior significant enrichment of TFBSs in
the promoter regions of genes in TMtb-iNet compared to
genes in TMtb-iEx, derived using hubswithminimumdegree
14.

Figure 4(a) illustrates the layout of TMtb-iNet plus its
cognate hubs with minimum degree 14 according to the sub-
cellular localization of their gene products. In this layout, the
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Figure 2: Aggregate z-scores of THP1r2Mtb-iNet[𝑖] and box-plotting. Sets of integrated THP1r2Mtb-iNet[𝑖] were extracted with involvement
of different sets of hubs with minimum degree 𝑖. The adjusted 𝑃 values of genes in THP1r2Mtb-iNet[𝑖] at 18 h after infection relative to 4 h
after infection were converted into 𝑧-scores. The aggregate 𝑧-scores of THP1r2Mtb-iNet[𝑖] as a whole were then calculated, which enabled
comparison among signatures with different sizes [13]. The sizes of the relevant signatures based on hubs with minimum degree 14 were also
enumerated (a). Then the signature with the highest aggregate 𝑧-score (TMtb-iNet), the cognate excluded signature (TMtb-iEx), and the
parent signature (THP1r2Mtb-induced) were box-plotted for mutual comparison of their expressions (b).

expression changes of all genes were color-coded, showing
the overwhelming induction (upregulation) especially at 18 h
after M. tb infection (Figure 4(b)). TMtb-iNet significantly
enriched the pathways of cytokine-cytokine receptor interac-
tion, chemokine signaling, and NOD-like receptor signaling
compared to THP1r2Mtb-induced signature (Figure 5 and
Table S5). By contrast, TMtb-iEx did not enrich any pathway.

In summary, by utilizing hubs with minimum degree
14, we obtained the network-based signature of TMtb-
iNet that displayed the highest expression significance (the
highest aggregate 𝑧-score), without losing the enrichment of
interferon-related TFBSs of ISRE, IRF-7, and IRF-1 in their
promoter regions.

3.2. TMtb-iNet Contains more Interferon-Related Genes than
TMtb-iEx. Interferon-related genes are expected to func-
tion in the context of interferon-relevant molecular net-
works. Since THP1r2Mtb-induced signature correlates with
interferon-related processes, we determined whether TMtb-
iNet contained more interferon-related genes than TMtb-iEx
did. Based on transcriptional profiling of whole blood from
a large number of pulmonary tuberculosis (PTB) or latent
tuberculosis (LTB) patients and healthy volunteers, Berry et
al. reported a PTB specific interferon-inducible neutrophil-
driven blood transcriptional signature (393 transcripts rep-
resenting 307 unique Entrez Genes) compared to LTB and
healthy controls [2]. We reported earlier that 55 of these
signature genes were significantly (𝑃 < 10−5) present in the
THP1r2Mtb-induced signature [6].We found that 36 of the 55

overlapped genes were also present in TMtb-iNet, whereas
only 19were present in TMtb-iEx (𝑃 = 2.65×10−4) (Figure 6).
Chaussabel et al. constructed an array of gene modules that
are expressed commonly across multiple diseases.These gene
modules were associated with certain functional characteris-
tics as clarified by literature profiling [15, 29]. THP1r2Mtb-
induced signature harbors nearly half (44/95) of the genes in
the interferon-relatedmodule (M3.1) [6]. We found that 33 of
these THP1r2Mtb-induced genes were also present in TMtb-
iNet, whereas only 11 of such THP1r2Mtb-induced genes
were in TMtb-iEx (𝑃 = 4.32 × 10−6) (Figure 7). Ingenuity
pathway analysis also indicated that interferon signaling was
enriched in TMtb-iNet and THP1r2Mtb-induced signature
with the highest significances, but not in TMtb-iEx (−log

10
(𝑃

value) = 9.28 for TMtb-iNet and –log
10
(𝑃 value) = 6.9 for

THP1r2Mtb-induced). Taken together, our analyses validated
that the network-based signature of TMtb-iNet contained
more interferon-related genes than the excluded signature of
TMtb-iEx and confirmed that our approach could select a
network-based signature that retained the original signature’s
biological representation.

3.3. TMtb-iNet Displays Equivalent Positive Correlation with
PTB Patients but Higher Positive Correlation with Separated
Cell Populations of PTB Patients Compared to THP1r2Mtb-
Induced Signature or TMtb-iEx. We have previously indi-
cated the high positive correlation of THP1r2Mtb-induced
signature with a public transcriptional dataset on PTB
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Figure 3: TFBS enrichment profiles of THP1r2Mtb-iNet[𝑖]. Putative enrichment of TFBSs (i.e., ISRE (a), IRF-7 (b), and IRF-1 (c)) in the
promoter regions of THP1r2Mtb-iNet[𝑖] and THP1r2Mtb-iEx[𝑖] (2,000 bp upstream to 200 bp downstream of transcription start site) was
analyzed with Expander [14]. (d)The TFBS enrichment in TMtb-iNet and TMtb-iEx. See Table S2 for detailed Bonferroni-corrected 𝑃 values.

patients [6]. We therefore examined whether the network-
based signature of TMtb-iNet still inherited the significant
degree of positive correlation with PTB patients. As shown
in Table 1 (also in Figure 8), like THP1r2Mtb-induced sig-
nature, TMtb-iNet showed similar positive correlation with

PTB more than with LTB and healthy controls (e.g., for
the training set, PTB versus HC showed NES = 3.23 in
THP1r2Mtb-induced signature, and NES = 3.30 in TMtb-
iNet). This was the case for any of the three datasets (i.e.,
London patient-based training set, London patient-based
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Figure 4: Illustration of TMtb-iNet in the context of the molecular network. (a) TMtb-iNet and its cognate hubs are laid out according to the
information about subcellular localization as annotated inNCBIGO.Those nodes shown as circles are genes fromTMtb-iNet and those nodes
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Figure 5: KEGG pathway analysis of TMtb-iNet and THP1r2Mtb-induced signature. KEGG pathways enriched in the two signatures (TMtb-
iNet and THP1r2Mtb-induced) are displayed (FDR < 0.01). The refined genes in TMtb-iNet are listed on the right. Also see the gene list in
Table S5.

Table 1: GSEA using transcriptome data of whole blood from human PTB patients.

Cohort1 Group comparison2 THP1r2Mtb-induced TMtb-iNet TMtb-iEx
NES3 FDR4 Correlation4 NES3 FDR4 Correlation4 NES3 FDR4 Correlation4

Training set
PTB versus HC 3.23 0.000 Positive 3.30 0.000 Positive 2.66 0.000 Positive
PTB versus LTB 3.00 0.000 Positive 3.01 0.000 Positive 2.53 0.000 Positive
LTB versus HC −1.22 0.071 Null −0.91 0.902 Null −1.37 0.062 Null

Test set
PTB versus HC 3.46 0.000 Positive 3.48 0.000 Positive 2.86 0.000 Positive
PTB versus LTB 3.12 0.000 Positive 3.23 0.000 Positive 2.51 0.000 Positive
LTB versus HC 2.37 0.000 Positive 2.25 0.000 Positive 2.11 0.000 Positive

Validation set PTB versus LTB 3.27 0.000 Positive 3.28 0.000 Positive 2.59 0.000 Positive
1Training set and test set: all donors were from London, UK; PTB: pulmonary TB; LTB: latent TB; HC: healthy controls; validation set: all donors were from
Cape Town, South Africa [2].
2Group-group contrasted and ranked by LIMMA-based method [27, 28].
3(+) NES for positive correlation, (−) NES for negative correlation.
4A FDR of 0.05 or lower was regarded as statistically significant for NES (“positive” or “negative”), otherwise “Null.”
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Figure 6: TMtb-iNet preserved more genes overlapped with those
in the active PTB signature. Of the 55 genes overlapped between
the THP1r2Mtb-induced and active PTB signatures, 36 were still
present inTMtb-iNet, whereas only 19were inTMtb-iEx.This biased
distribution is statistically significant (𝑃 = 1.13×10−3, Fisher’s exact
test).

test set, and Cape Town patient-based validation set). In
comparison, the correlation of TMtb-iEx to PTB was lower
(e.g., PTB versus HC showed NES = 2.66 in the training set).
Our analysis indicated that the network-based signature of
TMtb-iNet, but not the excluded signature of TMtb-iEx, was
overall as expression-active as THP1r2Mtb-induced signature
in the whole blood of PTB patients.

We then examined whether TMtb-iNet also showed
positive correlation with specific cell populations including
neutrophils, monocytes, and CD4+ and CD8+ T cells from
PTB patients. We found that, similar to THP1r2Mtb-induced
signature, TMtb-iNet showed positive and significant cor-
relation with each of the four cell populations (Table 2 and
Figure 8). However, with CD4+ and CD8+ T cells, TMtb-
iNet displayed higher positive correlation than THP1r2Mtb-
induced signature (NES = 2.36 for TMtb-iNet versus NES
= 1.86 for THP1r2Mtb-induced signature in CD4+ T cells;
NES = 2.23 for TMtb-iNet versus NES = 1.70 for THP1r2Mtb-
induced signature in CD8+ T cells).These higher correlations
of TMtb-iNet were specific to CD4+ and CD8+ T cells
because, with neutrophils or monocytes, TMtb-iNet did not
show higher correlation than THP1r2Mtb-induced signature
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Figure 7: TMtb-iNet overlapped more genes with an interferon-related module. The interferon-related module (M3.1) contained 94 genes,
almost half of which (44/94) were present in the THP1r2Mtb-induced signature (depicted as the proportion of black in the circle at position
M3.1). Of these 44 genes, 33 were also present in TMtb-iNet, whereas only 11 were in TMtb-iEx. This biased distribution is statistically
significant (𝑃 = 7.43 × 10−6, Fisher’s exact test). Functional clarification of each module is indicated in the lower panel [15].

Table 2: GSEA using transcriptome data of separated cell populations from human PTB patients.

Group comparison1 THP1r2Mtb-induced TMtb-iNet TMtb-iEx
NES2 FDR3 Correlation3 NES2 FDR3 Correlation3 NES2 FDR3 Correlation3

Neut PTB versus Neut HC 3.27 0.000 Positive 3.08 0.000 Positive 2.92 0.000 Positive
Mono PTB versus Mono HC 2.98 0.000 Positive 2.93 0.000 Positive 2.67 0.000 Positive
CD4 PTB versus CD4 HC 1.86 0.000 Positive 2.36 0.000 Positive 0.99 0.484 Null
CD8 PTB versus CD8 HC 1.70 0.000 Positive 2.23 0.000 Positive 1.07 0.238 Null
1Neut: purified neutrophils; Mono: purified monocytes; CD4: purified CD4+ T cells; CD8: purified CD8+ T cells [2].
2,3The same as Table 1.

did.Thus, when compared to THP1r2Mtb-induced signature,
TMtb-iNet was more expression-active in CD4+ and CD8+
T cells, but not in neutrophils or in monocytes. TMtb-
iEx showed less correlation with neutrophils and monocytes
than either TMtb-iNet or THP1r2Mtb-induced signature,
indicating that TMtb-iEx was less expression-active in these
two cell populations. More importantly, TMtb-iEx displayed
no correlation with CD4+ and CD8+ T cells, which indicated
that TMtb-iEx was not expression-active in T cells (Table 2).
Taken together, our results indicated that the network-based
signature of TMtb-iNet provided equivalent correlation with
PTB patients and higher correlation with CD4+ and CD8+
T cells, when compared to THP1r2Mtb-induced signature or
the excluded signature of TMtb-iEx.

3.4. TMtb-iNet Decreases More than Either THP1r2Mtb-
Induced Signature Or TMtb-iEx during Treatment of PTB.
Gene set enrichment analysis (GSEA) on the datasets from
PTB patients receiving treatment indicated that TMtb-iNet
showed decreased, but still significant, positive correlation
after two months of treatment (PTB 0m versus HC with
NES = 3.29 and FDR = 0 before treatment; PTB 2m ver-
sus HC showed NES = 2.83 and FDR = 0 at 2 months
after treatment), and the correlation of TMtb-iNet became
insignificant at 12 months after treatment (PTB 12m versus
HC with NES = 1.15 and FDR = 0.182) (Table 3 and Figure 8).
By contrast, both THP1r2Mtb-induced signature and TMtb-
iEx still had significant positive correlation at 12 months after
treatment, even though they showed decreasing correlation
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Table 3: GSEA using transcriptome data of whole blood from human PTB patients undergoing clinical therapy.

Group comparison1 THP1r2Mtb-induced TMtb-iNet TMtb-iEx
NES2 FDR3 Correlation3 NES2 FDR3 Correlation3 NES2 FDR3 Correlation3

PTB 0m versus HC 2.95 0.000 Positive 3.29 0.000 Positive 2.31 0.000 Positive
PTB 2m versus HC 2.62 0.000 Positive 2.83 0.000 Positive 2.43 0.000 Positive
PTB 12m versus HC 1.43 0.000 Positive 1.15 0.182 Null 1.49 0.005 Positive
PTB 2m versus PTB 0m −2.08 0.000 Negative −2.36 0.000 Negative −1.53 0.000 Negative
PTB 12m versus PTB 0m −2.96 0.000 Negative −3.16 0.000 Negative −2.29 0.000 Negative
1PTB 0m: PTB patients before drug treatment; PTB 2m: 2 months after initiation of drug treatment; PTB 12m: 12 months after initiation of drug treatment
[2].
2,3The same as Table 1.
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Table 4: GSEA using another transcriptome data of whole blood from human PTB patients undergoing clinical therapy.

Group comparison1 THP1r2Mtb-induced TMtb-iNet TMtb-iEx
NES2 FDR3 Correlation3 NES2 FDR3 Correlation3 NES2 FDR3 Correlation3

PTB wk1 versus PTB wk0 −1.96 0.000 Negative −1.82 0.000 Negative −1.87 0.000 Negative
PTB wk2 versus PTB wk0 −2.04 0.000 Negative −2.00 0.000 Negative −1.80 0.000 Negative
PTB wk4 versus PTB wk0 −2.54 0.000 Negative −2.37 0.000 Negative −2.31 0.000 Negative
PTB wk26 versus PTB wk0 −2.71 0.000 Negative −2.68 0.000 Negative −2.38 0.000 Negative
1PTB wk0: PTB patients before drug treatment; PTB wk1: 1 week after initiation of drug treatment; PTB wk2: 2 weeks after initiation of drug treatment;
PTB wk4: 4 weeks after initiation of drug treatment; PTB wk26: 26 weeks after initiation of drug treatment [20].
2,3The same as Table 1.

Table 5: GSEA using transcriptome data of PBMCs from AIDS mothers with infants.

Group comparison1 THP1r2Mtb-induced TMtb-iNet TMtb-iEx
NES2 FDR3 Correlation3 NES2 FDR3 Correlation3 NES2 FDR3 Correlation3

Non Tr HIV M versus Neg M 2.93 0.000 Positive 3.16 0.000 Positive 1.98 0.000 Positive
Tr HIV M versus Neg M 2.20 0.000 Positive 2.32 0.000 Positive 1.44 0.011 Positive
1Non Tr HIV M: HIV-1 positive mothers who did not transmit the virus to their infants; Tr HIV M: HIV-1 positive mothers who perinatally transmitted the
virus to their infants; Neg M: HIV negative mothers.
2,3The same as Table 1.

Table 6: GSEA using transcriptome data of CD4+ or CD8+ T cells from AIDS patients.

Group comparison1 THP1r2Mtb-induced TMtb-iNet TMtb-iEx
NES2 FDR3 Relevance3 NES2 FDR3 Correlation3 NES2 FDR3 Correlation3

CD4 acute HIV versus CD4 HC 2.61 0.000 Positive 2.82 0.000 Positive 1.75 0.000 Positive
CD4 chronic HIV versus CD4 HC 3.06 0.000 Positive 3.35 0.000 Positive 1.59 0.006 Positive
CD4 nonprogressor HIV versus CD4 HC −0.70 1.000 Null −0.66 1.000 Null −0.62 1.000 Null
CD8 acute HIV versus CD8 HC 2.59 0.000 Positive 2.78 0.000 Positive 1.46 0.013 Positive
CD8 chronic HIV versus CD8 HC 2.70 0.000 Positive 3.34 0.000 Positive −0.75 0.912 Null
CD8 nonprogressor HIV versus CD8 HC 1.73 0.000 Positive 1.87 0.000 Positive 1.13 0.127 Null
1Acute HIV: early infection; chronic HIV: chronic, no treatment; nonprogressor: long-term nonprogressor.
2,3The same as Table 1.

during the course of treatment (Table 3). Consistently, TMtb-
iNet showed lower negative correlation with PTB 2m and
PTB 12mwhen compared to the pretherapy (PTB 0m) (NES
=−3.16 for TMtb-iNet, NES =−2.96 for THP1r2Mtb-induced,
and NES = −2.29 for TMtb-iEx in PTB 12m versus PTB 0m)
(Table 3). Similarly, TMtb-iNet showed lower negative corre-
lation than TMtb-iEx with therapy of PTB at weeks 2, 4, and
26 after treatment compared to the pretherapy (PTB wk0),
but not at week 1 after treatment at another dataset (e.g.,
NES = −2.68 for TMtb-iNet and NES = −2.38 for TMtb-
iEx in PTB wk26 versus PTB wk0) (Table 4 and Figure S2).
THP1r2Mtb-induced signature showed the lowest negative
correlation with PTB therapy at weeks 1, 2, and 4 but showed
almost the same degree of negative correlation with TMtb-
iNet with PTB therapy at week 26 (e.g., NES = −2.71 for
THP1r2Mtb-induced signature and NES = −2.68 for TMtb-
iNet in PTB wk26 versus PTB wk0) (Table 4 and Figure S2).
These results collectively demonstrated that the network-
based signature of TMtb-iNet seemed to be more responsive
to the therapy of PTB than the original THP1r2Mtb-induced
signature or the excluded signature of TMtb-iEx.

3.5. Correlation Analysis of TMtb-iNet, THP1r2Mtb-Induced,
and TMtb-iEx Signatures to Several Other Infections and
Inflammatory Conditions. HIV, malaria, and TB are the
top infectious diseases imposing the heaviest burden on
health care systems [30]. We therefore examined whether
THP1r2Mtb-induced signature, TMtb-iNet, and TMtb-iEx
were correlated with or well represented in transcriptome
datasets from patients with HIV or malaria. We found that
all the three signatures displayed general positive correlation
in the transcriptome datasets of PBMCs from patients with
HIV-1 infection (Table 5). Specifically, TMtb-iNet displayed
higher positive correlation than THP1r2Mtb-induced signa-
ture and TMtb-iEx (e.g., NES = 3.16 for TMtb-iNet versus
NES = 2.93 for THP1r2Mtb-induced signature and NES =
1.98 for TMtb-iEx) (Table 5 and Figure 8). Since HIV/TB
coinfection imposes a severe death threat to patients and
the underlying mechanism is the dysfunction of T cells [30],
we then further applied the GSEA against transcriptome
datasets from T cells (both CD4+ and CD8+) of patients
with acute and chronic forms of HIV infection. All three
signatures displayed general positive correlation in the T cell
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Table 7: GSEA using transcriptome data of PBMCs from malaria patients.

Group comparison1 THP1r2Mtb-induced TMtb-iNet TMtb-iEx
NES2 FDR3 Correlation3 NES2 FDR3 Correlation3 NES2 FDR3 Correlation3

aMalaria Cameroon versus tMalaria Cameroon 1.50 0.005 Positive 1.60 0.003 Positive 1.23 0.100 Null
ExpeMalaria USA versus Uninfected USA 2.59 0.000 Positive 2.73 0.000 Positive 1.71 0.001 Positive
1aMalaria Cameroon: acutemalaria patients fromCameroon; tMalaria Cameroon: treatedmalaria patients fromCameroon; ExpeMalaria USA: Experimental
malaria donors from USA; Uninfected USA: baseline uninfected donors from USA.
2,3The same as Table 1.

Table 8: GSEA using transcriptome data of PBMCs from patients with chronic HCV infection.

Group comparison1 THP1r2Mtb-induced TMtb-iNet TMtb-iEx
NES2 FDR3 Correlation3 NES2 FDR3 Correlation3 NES2 FDR3 Correlation3

HCV versus HC 2.32 0.000 Positive 2.30 0.000 Positive 2.05 0.000 Positive
1HCV: treatment-näıve chronic HCV-infected patients. HC: healthy controls.
2,3The same as Table 1.

Table 9: GSEA using transcriptome data of PBMCs from human patients with acute infections.

Group comparison1 THP1r2Mtb-induced TMtb-iNet TMtb-iEx
NES2 FDR3 Correlation3 NES2 FDR3 Correlation3 NES2 FDR3 Correlation3

Strep versus HC −0.58 0.996 Null −0.81 1.000 Null 1.14 0.225 Null
Staph versus HC −0.77 0.871 Null −0.97 1.000 Null 0.72 0.945 Null
Influenza A versus HC −0.88 0.688 Null −1.05 1.000 Null 0.68 0.952 Null
E. coli versus HC −0.65 0.963 Null −0.70 1.000 Null 1.05 0.364 Null
1Strep: Streptococcus pneumonia infection; Staph: Staphylococcus aureus infection.
2,3The same as Table 1.

transcriptome datasets. By contrast, in the nonprogressor
HIV group all the three signatures displayed no correlation
with CD4+ T cells and lowest positive correlation with CD8+
T cells (Table 6). Notably, among the three signatures TMtb-
iNet showed the highest positive correlation with both CD4+
and CD8+ T cells from acute and chronic forms of HIV infec-
tion (e.g., in CD4 chronic HIV, NES = 3.35 for TMtb-iNet
versus NES = 3.06 for THP1r2Mtb-induced signature or NES
= 1.59 for TMtb-iEx) (Table 6 and Figure 8). Similarly, all the
three signatures displayed positive correlation with malaria
from either the natural malaria infection in Cameroon or
the experimental challenge malaria in USA, and once again
higher positive correlation was seen with TMtb-iNet (e.g., in
ExpeMalaria, NES = 2.73 for TMtb-iNet versus NES = 2.59
for THP1r2Mtb-induced signature and NES = 1.71 for TMtb-
iEx) (Table 7 and Figure 8). In summary, blood samples from
TB patients produced an interferon-related signature similar
to those signatures seen in blood from patients with AIDS or
malaria.

Since TMtb-iNet showed correlation with non-TB condi-
tions that also produce a similar interferon-related signature
(AIDS andmalaria here), we then further applied GSEAwith
TMtb-iNet, along with THP1r2Mtb-induced signature and
TMtb-iEx, against other infections and inflammatory condi-
tions [15, 21, 26]. All the three signatures showed strong pos-
itive correlation with datasets of PBMCs from chronic HCV-
infected patients before drug treatment (Table 8) or during
the therapy with pegylated interferon-2a (peginterferon-
2a) and ribavirin, no matter whether the patients were

African-American or Caucasian-American or were in any
drug response category (i.e., marked, intermediate, or poor)
(Table S4). No clear difference in correlation was observed
between TMtb-iNet and THP1r2Mtb-induced signature,
although both of them showed higher positive correlation
than TMtb-iEx did (Tables 8 and S4 and Figures 8 and S3).
However, all the three signatures showed no correlation with
transcriptome datasets from patients with acute infections
of Streptococcus pneumonia, Staphylococcus aureus, influenza
A, or E. coli (Table 9) or from patients with inflammatory
conditions of type I diabetes, liver transplant undergoing
immunosuppressive therapy, metastatic melanoma, systemic
lupus erythematosus, or systemic juvenile idiopathic arthritis
(Table 10 and Figure 8). Thus, blood samples from patients
with TB, AIDS, malaria, or hepatitis C displayed a common
interferon-related signature that could be represented by
our signatures, especially by the network-based signature of
TMtb-iNet.

4. Discussion

In this study, we combined our previously identified
interferon-related THP1r2Mtb-induced signature with
STRING protein-protein interaction data to generate a
more refined version of TMtb-iNet. The refined TMtb-iNet
still inherited key characteristics of THP1r2Mtb-induced
signature. Promoter regions of genes in TMtb-iNet were
enriched with the TFBSs of ISRE, IRF-7, and IRF-1, and
the whole TMtb-iNet signature significantly overlapped
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Table 10: GSEA using transcriptome data of PBMCs from human patients with other inflammatory or pathological conditions.

Group comparison1 THP1r2Mtb-induced TMtb-iNet TMtb-iEx
NES2 FDR3 Correlation3 NES2 FDR3 Correlation3 NES2 FDR3 Correlation3

Type I diabetes versus HC −1.34 0.112 Null −1.21 0.329 Null −1.13 0.336 Null
Staph versus HC −1.09 0.305 Null −1.29 0.334 Null 1.00 0.441 Null
Liver-transplant versus HC −0.79 0.892 Null −0.92 1.000 Null 0.90 0.647 Null
E. coli versus HC −0.91 0.646 Null −1.02 1.000 Null 1.20 0.156 Null
Melanoma versus HC −0.91 0.641 Null −0.92 1.000 Null 0.92 0.622 Null
SLE versus HC −1.14 0.396 Null −1.22 0.540 Null −1.04 0.490 Null
JIA versus HC −0.74 1.000 Null −0.76 1.000 Null −0.73 0.908 Null
1Staph: Staphylococcus aureus infection; liver-transplant: liver-transplant undergoing immunosuppressive therapy; melanoma: metastatic melanoma; SLE:
systemic lupus erythematosus; JIA: systemic juvenile idiopathic arthritis.
2,3The same as Table 1.

with the interferon-inducible gene signature with PTB and
interferon-related module (Figures 3, 6, and 7). Additionally,
TMtb-iNet showed strong positive correlation in PTB blood
and its separated cell subpopulations, as well as patterns of
decreasing positive correlation during the course of anti-TB
therapy (Tables 1–4, Figure 8).

A complete set of protein-protein interactions com-
prises a summation of knowledge on functional modularity
and network interconnectivity within cells [31]. Therefore,
network-based interpretation of “omics” data should bemore
rational and biology oriented than one based solely on
transcriptomics [10–12, 32, 33]. Here we identified charac-
teristic protein-protein connections within the THP1r2Mtb-
induced profile with the involvement of a third factor (hub)
(Figures 2 and 3, Figure S1). By integration of protein-
protein interaction data, we refined a subset of genes from
the interferon-related THP1r2Mtb-induced transcriptome
signature [6] to obtain TMtb-iNet and discarded the rest
into TMtb-iEx (Figure 4 and Table S3). Compared with
THP1r2Mtb-induced signature or TMtb-iEx, TMtb-iNet con-
sistently enriched interferon signaling and interferon-related
TFBSs of ISRE, IRF-1, and IRF-7 in the promoter regions of its
genes (Figure 3), as well as harboringmore interferon-related
genes (Figures 6 and 7). In addition, TMtb-iNet showed
greater positive correlation with the separated cells from PTB
patients (neutrophils, monocytes, and CD4+ and CD8+ T
cells) (Table 2) and specifically displayed a decreasing pattern
of positive correlation during therapy of PTB (Table 3).
All these results indicated the reliability of the hub-based
network approach for identifying a functionally enriched
signature.

A key finding was that there exists a universal core
of functionally associated host responses irrespective of
immune cell type. Transcriptional responses of immune and
adaptive immune cells during human M. tb infection have
been studied by others. After migrating to tissues (e.g.,
lung), monocytes can differentiate into macrophages and
dendritic cells which are major phagocytes that engulf M.
tb and induce adaptive immunity [34, 35]. CD4+ and CD8+
T cells are both important adaptive immune cells in TB
and dysfunction of either significantly abrogates control of
TB infection [34]. Neutrophils can also be a prominent cell

type infected by M. tb [36]. Circulating monocytes undergo
functional and phenotypic changes in TB patients, although
the presence of different subtypes of monocytes in peripheral
blood may have reverse implications for TB control at sites of
infection [37, 38]. As a refined signature of function, TMtb-
iNet showed a higher degree of positive correlation with all
the four separated peripheral blood cell populations of PTB
patients (i.e., neutrophils, monocytes, and CD4+ and CD8+
T cells) with the highest positive correlation with neutrophils
(Table 2, Figure 8). Thus, a common host response existed
among these immune cells in PTB patients, irrespective
of cell type or in vitro (i.e., THP-1) or in vivo (i.e., PTB)
conditions. This was consistent with other reports showing
that immune cells often exhibit a core gene expression profile
when exposed to various microorganisms [39–42]. Another
key finding was the decreased pattern of correlation of TMtb-
iNet during clinical therapy of PTB patients (Table 3), which
suggested that this set of genes (TMtb-iNet) or the biological
process behind their activity (probably an interferon-related
process) was strongly involved in the generation/treatment of
PTB as also reported by others [2, 3, 43, 44]. The interferon-
based nature of the TMtb-iNet and the THP1r2Mtb-induced
signatures was indirectly validated by the strong positive
correlation with the therapy of chronic hepatitis C; type 1
interferon-related processes were inevitably activated in these
patients because they were treated with peginterferon-2a
(Table S4, Figure S3).

Interestingly, TMtb-iNet also displayed stronger positive
correlation with AIDS and malaria, as well as with hepatitis
C (Tables 5–8, Figure 8), but not with several other acute
infections or inflammatory conditions (Tables 9 and 10,
Figure 8). This indicated that a similar host response (an
interferon-related process being most likely in this case)
is shared when a host is fighting/adjusting against these
three pathogens of diverse phyla. Coinfection with HIV
is known to increase latent TB reactivation about 20-fold
[30]. T cells are vital in adaptive control of M. tb infection
[45]; however, HIV infection can gradually deplete CD4+ T
cells, some of which can be M. tb-specific [30] and CD4+
T cell depletion is a key factor contributing to latent TB
reactivation [30, 46]. Other changes in host cells caused by
HIV can also facilitate M. tb survival, such as disruption of
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bactericidal activities of macrophages [47, 48] and deregula-
tion of chemotaxis [49]. GSEA analysis (Tables 1–4, Figure 8)
and transcriptome analysis on PTB patients confirmed that
interferon-related processes are dynamically regulated in the
pathogenesis/treatment of PTB [2]. We demonstrated a pos-
itive correlation of TMtb-iNet with CD4+ and CD8+ T cells
fromPTB patients or AIDS patients (acute and chronic forms
of HIV infection), forming a transcriptome bridge of simi-
larity (i.e., an interferon-related process) between these two
diseases [23]. However, the functional significance of such
similarity remains elusive in TB/HIV coinfection patients.
Detailed transcriptional profilingwith high-throughput anal-
yses is needed to unravel the sophisticatedmutual correlation
and potential for clinical utility in TB, HIV, and TB/HIV
coinfection patients. A recent network-based transcriptome
study based on mouse models noted strong overlap between
genes regulated during cerebral malaria and genes regulated
during M. tb infections [50]. These observations indicate
caution before using transcriptional signatures alone for TB
diagnosis or prognosis.

The observation that TMtb-iNet represented a transcrip-
tional response related to patients with AIDS, malaria, and
HCV (Tables 5–8) might suggest that the microorganismM.
tb expressed a molecular pattern which was also expressed
by the other disease agents during infections. Innate immune
recognitions of HIV and HCV primarily involve sensing
of nucleic acids. A DNA-containing protein complex from
Plasmodium falciparum, the causative agent of malaria, is
also known to be the major trigger of the innate immune
response [51]. In a study based on mouse macrophages it was
shown thatM. tb activates a nucleic acid sensing pathway [52].
Thus, nucleic acids of M. tb, malaria, HIV, and HCV might
produce the common transcriptional response in immune
cells represented by TMtb-iNet. It is of note that TMtb-
iNet does not reflect a generic interferon-related signature.
Other pathogens, such as S. pneumoniae [53] and influenza A
[54], also trigger nucleic acid-dependent immune responses,
but they failed to induce a TMtb-iNet-related transcriptional
signature (Tables 9 and 10).

In summary, we derived a refined network signature
(TMtb-iNet) from the original transcriptional signature
(THP1r2Mtb-induced) based on their directions among
themselves or through a group of hubs. The refined signa-
ture TMtb-iNet was a highly connected signature induced
by M. tb infections in vitro. It showed positive correla-
tion with clinical TB. We believe that the gene products
of TMtb-iNet, especially those gene products with higher
degrees of interaction, as well as the connecting hubs, are
major regulators of immune responses to TB. The shared
correlation of TMtb-iNet with other important infectious
diseases deserves the attention of investigators involved in
developing transcriptome-based TB diagnostic or prognostic
tests.
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