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Abstract: Exfoliated black phosphorus (bP) embedded into a polymer is preserved from oxidation,
is stable to air, light, and humidity, and can be further processed into devices without degrading
its properties. Most of the examples of exfoliated bP/polymer composites involve a single poly-
mer matrix. Herein, we report the preparation of biphasic polystyrene/poly(methyl methacrylate)
(50/50 wt.%) composites containing few-layer black phosphorus (fl-bP) (0.6–1 wt.%) produced by
sonicated-assisted liquid-phase exfoliation. Micro-Raman spectroscopy confirmed the integrity of
fl-bP, while scanning electron microscopy evidenced the influence of fl-bP into the coalescence of
polymeric phases. Furthermore, the topography of thin films analyzed by atomic force microscopy
confirmed the effect of fl-bP into the PS dewetting, and the selective PS etching of thin films revealed
the presence of fl-bP flakes. Finally, a block copolymer/fl-bP composite (1.2 wt.%) was prepared
via in situ reversible addition–fragmentation chain transfer (RAFT) polymerization by sonication-
assisted exfoliation of bP into styrene. For this sample, 31P solid-state NMR and Raman spectroscopy
confirmed an excellent preservation of bP structure.

Keywords: few-layer black phosphorus; polymer blend composites; in situ RAFT
polymerization; morphology

1. Introduction

The recent attention given to black phosphorus (bP), an anisotropic layered p-type
semiconductor material, is essentially due to the outstanding electronic properties of its
two-dimensional (2D) form known as phosphorene or 2D-phosphane [1–6]. Exfoliated bP
has a thickness-dependent tunable direct bandgap, which varies from 0.3 eV (bulk) to 2 eV
(monolayer), anisotropic transport properties, high charge carrier mobility, high conduc-
tivity, and good current saturation in field-effect devices [7,8]. Owing to these fascinating
properties, both monolayer and few-layer forms of bP are attracting a continuously grow-
ing interest for applications in optoelectronics and electronics, photocatalysis, photonic,
medical, and thermoelectric devices [9–16]. On the other hand, a few factors still limit the
full exploitation of the technological potential of phosphorene. In particular, bP is much
harder to exfoliate as compared to other precursors of 2D materials, and it is quite difficult
to obtain large-area sheets with a controllable thickness [17,18]. bP can be mechanically
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exfoliated into ultrathin films by repetitive cleaving of a bulk crystal using an adhesive
tape [18] even if the method is not scalable and is generally used only for research purposes.
Liquid phase exfoliation (LPE) of bulk bP is an alternative method for the large-scale
preparation of bP nanosheets. Different solvents have been used to exfoliate the bP, such
as N-methyl-2-pyrrolidone (NMP), N-cyclohexyl-2-pyrrolidone (CHP), and dimethyl sul-
foxide (DMSO) [19–21]. Monolayer and few-layer bP (fl-bP) are environmentally unstable
because of their high reactivity to oxygen, water, and light, which cause undesired reac-
tions degrading the material and altering its chemical–physical properties [22]. Interesting
advances about fl-bP stability have been achieved by encapsulation into a polymer matrix.
This method represents an effective way to prevent fl-bP degradation by oxidation [23]
and improve the dispersion, as already proved for other 2D-precursor materials, such as
layered clays [24]. Moreover, polymers, in particular, thermoplastic polymers, are attractive
supports, because they can be easily processed and fabricated into solid-state forms such
as thin films, as often required in most sensor applications.

To date, only a few articles describe the preparation of polymer/fl-bP composites due
to the instability of fl-bP and demanding procedures required to exfoliate bP in scalable
amounts. Del Rio Castillo et al. [25] reported the dispersion of exfoliated and functional-
ized flakes of bP into poly(methyl methacrylate) (PMMA), showing an increase in Young’s
modulus. Ni et al. [26] described the encapsulation of bP nanosheets into poly(vinyl alco-
hol) (PVA) obtaining reinforced and air-stable PVA nanocomposites. Tiouitchi et al. [27]
dispersed exfoliated bP into poly(vinylidene fluoride), evidencing an improvement in
rigidity and thermostability. Qiu et al. [28] showed that the inclusion of bP flakes into
UV-curable polyurethane acrylate (PUA) improves the flame resistance and mechanical
strength of PUA coatings, and, similarly, Ren et al. [29] demonstrated the flame resistance of
phosphorene-waterborne polyurethane composites. Furthermore, He et al. [30] described
the exfoliation of bP by electrochemical cathodic method with simultaneous modification
of flake surface. This method improves the compatibility between bP and waterborne
polyurethane matrix by improving the mechanical properties and flame retardancy. Fur-
thermore, a very efficient flame retardant for this type of composite was obtained by
combining bP and boron nitride [31]. Recently, it has also been shown that bP can improve
both the mechanical properties and flame retardancy of epoxy resins [32,33]. Advances
have been achieved through functionalization of bP by adsorption of organic molecules [34]
or surface coordination of metal ligands [35,36]. For example, bP was coordinated with a
ruthenium sulfonate and a lanthanide metal ligand, respectively, achieving excellent stability
in ambient conditions and common solvents, and increasing the dispersibility in epoxy resin.
The functionalized bP/epoxy resin composites showed a significant improvement in flame
retardancy and thermal conductivity. In addition, the synergistic effect of bP and multi-walled
carbon nanotubes (MCNTs) further improved the flame retardancy of epoxy resin [37].

We have recently investigated the incorporation of fl-bP flakes in a polymer matrix by
following two different approaches: solution blending and in situ polymerization [38,39].
With the first approach, we demonstrated that fl-bP embedded into polystyrene (PS) or
PMMA is preserved from oxidation, is stable to air, light, and humidity, and can be pro-
cessed into devices without degrading its properties. Furthermore, the samples showed im-
proved thermal stability compared to neat polymer and were resistant to photo-degradation.
The in situ polymerization was used to promote further exfoliation and dispersion of the
stacked phosphorene layers due to the energy developed during polymerization. In addi-
tion, this method provides intimate contact between the nanosheets and polymer chains
growing in proximity. Again, efficient devices were fabricated [40].

The incorporation of 2D nanoparticles in polymer blends or block copolymers is
a strategy adopted to promote the selective distribution of nanoparticles in one of the
two phases or at the interfacial region [41,42]. New collective properties can emerge
from the confinement of nanoparticles in a narrow region. In addition, in the case of
co-continuous morphology of the polymer matrix, nanoparticles can arrange in percolation
paths incrementing specific properties such as conductivity and barrier features. In im-
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miscible binary polymer blends, for example, nanoparticles can be selectively distributed
in one of the two phases or at the interface depending on their size, shape, and chemical
characteristics enabling the preferential interaction with one of the two polymers [41].
Gelfer et al. [43] reported the preferential location of clay layers in the PMMA phase of
PS/PMMA (50/50 wt.%) blend due to the match in polarity. This distribution increases the
viscosity of the PMMA phase and reduces the PS domain size. Mao et al. [44] investigated
the dispersion of graphene nanosheets in PS/PMMA (50/50 wt.%) blend, showing that
0.5 wt.% of functionalized graphene provided the formation of a co-continuous structure
of PS and PMMA phases and that graphene nanosheets were selectively located and per-
colated in the PS phase. In this condition, a conductive composite with a low electrical
percolation threshold was obtained. Similarly, Bai et al. [45] demonstrated that reduced
graphene oxide could be trapped in the form of multilayers at the interface of co-continuous
poly(lactic acid)/PS blends, stabilizing the morphology and increasing the conductivity
with a low electrical percolation threshold.

The dispersion of bP into a block copolymer with a well-ordered microstructure is also
an interesting method to obtain new materials with specific functional properties. These
materials can find applications in several sectors such as catalysis, sensors, and electronic
devices, as demonstrated for other types of nanoparticles [42,46]. The block copolymer
can be used as a template to sequester the nanoparticles into a particular region of the
matrix, as well as to orient them by the desired application. Most examples refer to 0D
metal nanoparticles or quantum dots with length scales smaller than the dimensions of
the block copolymer microstructure. However, sheet-like nanoscale fillers have also been
added to block copolymers. Exfoliated clay sheets, for example, were embedded into a
styrene-ethylene/butylene-styrene triblock copolymer, evidencing a preferential wetting
of the sheets by the PS block [47]. Furthermore, it was demonstrated that exfoliated clay
sheets influence the orientation of block copolymer lamellae due to their size and shape
relative to that of the microdomains.

To the best of our knowledge, the embedding of fl-bP into immiscible polymer blends
or block copolymers has not been investigated yet. Therefore, we report the dispersion
of fl-bP into a PS/PMMA blend (50/50 wt.%) to investigate the influence of fl-bP on
the morphology of the blend, the possible arrangement of fl-bP at the interphase, or
its preferential segregation in one of the two phases. Furthermore, we describe for the
first time the preparation of a block copolymer/fl-bP nanocomposite (PMMA-b-PS/fl-
bP) via in situ reversible addition–fragmentation chain transfer (RAFT) polymerization
with direct sonication-assisted exfoliation of bP into styrene (Figure 1). Micro-Raman
and 31P solid-state NMR (SSNMR) spectroscopies are used to investigate the integrity
and the distribution of fl-bP, while the morphology is studied by optical microscopy,
scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic
force microscopy (AFM). Thermal properties are also measured by thermo-gravimetric
analysis (TGA) and differential scanning calorimetry (DSC) to provide information about
the thermal stability of composites and thermal transitions of polymer phases.
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Figure 1. Schematic depiction of proposed methods of preparation of fl-bP polymer composites:
solution blending and in situ RAFT polymerization.

2. Materials and Methods
2.1. Materials

Styrene (Sty) ≥99% and methyl methacrylate (MMA) 99% (Sigma-Aldrich, Schnelldorf,
Germany) were vacuum-distilled and stored under N2. The 2,2′-azobis(2-methylpropionitrile)
(AIBN) 98% and 2-cyano-2-propyl benzodithioate (CPDB) (Sigma-Aldrich, Schnelldorf, Ger-
many) were used as received. The solvents N-cyclohexyl-2-pyrrolidone (CHP) 99%, toluene
≥99.7%, cyclohexane ≥99.5%, chloroform 99.0–99.4%, methanol ≥99.9%, 2-propanol
≥99.5%, ethanol absolute ≥99.8%, acetone ≥99.6%, and glacial acetic acid ACS for analysis
(Sigma-Aldrich, Schnelldorf, Germany) were used as received. bP crystals were prepared
according to the procedure developed by Köpf et al. as previously described [48]. General-
purpose polystyrene (PS), also known as crystal polystyrene with Mn = 90,000 g/mol
(Repsol, Madrid, Spain), and poly(methyl methacrylate) (PMMA) with Mn = 120,000 g/mol
(Sigma-Aldrich, Schnelldorf, Germany) were used as obtained. Boron-doped silicon wafers
with oxide layer of 300 nm, <100> orientation, resistivity 1–5 Ω·cm, single side polished
(ssp), squared slides with size 15× 15 mm2, and 675± 25 µm thickness (MicroFabSolutions
S.r.l., Trento, Italy) were used after ultrasonic cleaning in acetone for 5 min and, then, in
acetone and 2-propanol for an additional 5 min each.

2.2. Preparation of PS/PMMA/fl-bP Composites by Solution Blending
2.2.1. bP Exfoliation

In a typical procedure, 10 mg of bulk bP were weighed and crushed under a nitrogen
atmosphere and, then, put into a test tube containing 10 mL of degassed CHP. The sus-
pension was probe-sonicated under nitrogen flow for 8 h using an Ultrasonic Processor
UP200St (200 W, 26 kHz) (Hielscher Ultrasonics GmbH, Teltow, Germany) equipped with a
titanium 2 mm sonotrode (S26d2), which was used at 50% of the maximum amplitude at an
effective power density of 4 W·cm−2. The temperature inside the tube was kept low by us-
ing an ice-water bath. After exfoliation, the suspension was used as it is (fl-bP0, 1 mg/mL),
or after centrifugation at 3000 and 5000 rpm, respectively, for 20 min, thus separating small
flakes in the supernatant from larger ones in the sediment. In both cases, the supernatants,
fl-bP3000 and fl-bP5000, were collected and analyzed with dynamic light scattering (DLS).
The quantity of material settled on the bottom of the tube after centrifugation at 3000 and
5000 rpm was roughly determined by weighing, and it resulted in about 50% and 70% of the
initial quantity of bP. Accordingly, the concentration of flakes in fl-bP3000 was 0.5 mg/mL
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whereas that of fl-bP5000 was 0.3 mg/mL. The average hydrodynamic diameter of flakes
by DLS analysis was 358 ± 56 nm for fl-bP0, 270 ± 26 nm, and 212 ± 24 nm for fl-bP3000
and fl-bP5000, respectively. A summary of fl-bP suspensions is provided in Table S1.

2.2.2. Preparation of PS/PMMA/fl-bP Composites

PS/PMMA ratio of 50/50 wt.% was selected. For comparison purposes, a blank
sample of PS/PMMA was prepared by introducing 250 mg of PMMA and 10 mL of
CHCl3 into a 100 mL two-necked round-bottom flask, equipped with a magnetic stir-
rer and backfilled three times with nitrogen. The solution was magnetically stirred in a
continuous stream of nitrogen until polymers were completely dissolved. Then, under
nitrogen flow, 5 mL of CHP were added to the PS/PMMA solution, and the mixture
was left stirring for 15 min. Finally, the polymer blend was recovered by precipitation
in methanol, and the solid was filtered and dried in a vacuum oven at 45 ◦C until con-
stant weight. Three PS/PMMA/fl-bP composites (i.e., PS/PMMA/fl-bP0, PS/PMMA/fl-
bP3000, and PS/PMMA/fl-bP5000) were prepared by keeping constant the PS/PMMA
ratio (50/50 wt.%). The sample PS/PMMA/fl-bP0 was prepared by introducing 250 mg of
PS and 250 mg of PMMA and 10 mL of CHCl3 into a 100 mL two-necked round-bottom
flask, equipped with a magnetic stirrer and backfilled three times with nitrogen. The
solution was magnetically stirred in a continuous stream of nitrogen until polymers were
completely dissolved. Then, under nitrogen flow, 5 mL of the suspension fl-bP0 (1 mg/mL)
in CHP, obtained after sonication, were added dropwise to the PS/PMMA solution and
the mixture was left stirring for 15 min. Finally, PS/PMMA/fl-bP0 nominally containing
1 wt.% of fl-bP0 was recovered by precipitation in methanol, and the solid was filtered and
dried in a vacuum oven at 45 ◦C until constant weight. The samples PS/PMMA/fl-bP3000
and PS/PMMA/fl-bP5000 were prepared with the following procedure: into a 50 mL
two-necked round-bottom flask, equipped with a magnetic stirrer and backfilled three
times with nitrogen, were introduced 125 mg of PS, 125 mg of PMMA, and 5 mL of CHCl3.
The solution was magnetically stirred in a continuous stream of nitrogen until polymers
were completely dissolved. Then, under nitrogen flow, 5 mL of CHP suspension fl-bP3000
(0.5 mg/mL) or 5 mL of CHP suspension bP5000 (0.3 mg/mL) were added dropwise to the
PS/PMMA solution and the mixture was left stirring for 15 min. Finally, the composites
were recovered by precipitation in methanol, and the solids were filtered and dried in a vac-
uum oven at 45 ◦C until constant weight. PS/PMMA/fl-bP3000 and PS/PMMA/fl-bP5000
nominally contain 1 wt.% and 0.6 wt.% of fl-bP3000 and fl-bP5000, respectively. Finally,
film samples of 20–30 µm thickness were prepared by compression molding using a Carver
press model 4386 (Wabash, IN, USA) preheated at the temperature of 180 ◦C and used for
further analysis. A summary of PS/PMMA/fl-bP composites is provided in Table S1.

2.3. Preparation of PMMA-b-PS/fl-bP Composite via In Situ RAFT Polymerization

The copolymerization was conducted in bulk and in two steps [49]. In the first step,
1.6 mL of MMA (15 mmol), 13 mg of CPDB (0.06 mmol), and 5 mg of AIBN (0.03 mmol) were
introduced into a Schlenk tube (10 mL) equipped with a magnetic stirrer and backfilled
three times with nitrogen. The stoichiometry of reagents was MMA:CPDB:AIBN = 250:1:0.5.
The tube was degassed by three freeze–pump–thaw cycles, left under nitrogen, and then,
heated at 70 ◦C for 20 h. Polymerization was stopped by cooling the content to room
temperature and exposing it to air. The PMMA-CPDB (macro-RAFT agent) was purified
from the unreacted monomer and polymerization byproducts by dissolving the crude
reaction mixture in CHCl3 and recovering the polymer by precipitation into a large excess
of MeOH. The polymer was filtered, dried in a vacuum oven, and then, analyzed (Table 1).
Next, the PMMA-CPDB sample was split in two fractions: one part was used to prepare
the block copolymer PMMA-b-PS, whereas the second fraction was used to prepare the
PMMA-b-PS/fl-bP composite (Table 1).
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Table 1. Polymerizations: monomer conversion and molecular weight.

Sample Conversion 1

(%)
Mn

(g/mol) Mw/Mn

PMMA-CPDB 67 29,700 1.25
PMMA-b-PS 67 + 34 56,900 1.34

PMMA-b-PS/fl-bP 67 + 24 50,400 1.44
1 Monomer conversion was determined by weight method.

In the case of PMMA-b-PS, PMMA-CPDB (500 mg) was dissolved in Sty (1.5 mL,
13.1 mmol) with the addition of AIBN (1.4 mg, 0.008 mmol). The stoichiometry of reagents
was Sty:macro-RAFT:AIBN = 780:1:0.5. The theoretical Mn value of the Sty block was
50,000 g/mol. The tube was degassed by three freeze-pump-thaw cycles, left under nitro-
gen, and then, heated at 80 ◦C for 20 h. Polymerization was stopped by cooling the content
to room temperature and exposing it to air. The block copolymer PMMA-b-PS was purified
from the unreacted monomer and polymerization byproducts by dissolving the crude
reaction mixture in CHCl3 and recovering the polymer by precipitation into a large excess
of MeOH. The polymer was filtered, dried in a vacuum oven, and then, analyzed (Table 1).

The PMMA-b-PS/fl-bP sample was prepared as follows: 10 mg of bP were weighed
and crushed under nitrogen atmosphere and, then, put into a test tube containing 1.5 mL
of degassed Sty (13.1 mmol). The suspension was probe-sonicated under nitrogen flow for
90 min using a Hielscher Ultrasonic Processor UP200St (200 W, 26 kHz) equipped with a
titanium 2 mm sonotrode (S26d2), which was used at 50% of the maximum amplitude at
an effective power density of 4 W·cm−2. The temperature inside the tube was kept low by
using an ice-water bath. The average hydrodynamic diameter of flakes by DLS analysis
was 550 ± 80 nm. Then, 500 mg of PMMA-CPDB and 1.4 mg of AIBN (0.008 mmol) were
introduced into the tube. The tube was degassed by three freeze–pump–thaw cycles, left
under nitrogen, and then, heated at 80 ◦C for 20 h. The product PMMA-b-PS/fl-bP was
purified from the unreacted monomer and polymerization byproducts by dissolving the
crude reaction mixture in CHCl3 and recovering the polymer composite by precipitation
into a large excess of MeOH. The composite was filtered, dried in a vacuum oven, and
then, analyzed (Table 1). Considering the polymerization yield shown in Table 1 and
assuming that all of the fed bP remained in the composite during the preparation steps,
PMMA-b-PS/fl-bP contains approximately 1.2% fl-bP by weight. A summary of samples
prepared by RAFT polymerization is provided in Table S1.

2.4. Characterization

Dynamic light scattering (DLS) measurements were performed with a NanoZetaSizer
apparatus model: ZEN1600 (Malvern, Worcestershire, UK) equipped with a HeNe laser
(633 nm, 4 mW) and an avalanche photodiode detector with an angle of 173◦. The hydro-
dynamic diameter values and polydispersity index (PDI) were extracted from cumulant
analysis and multimodal size distribution algorithm non-negative least square (NNLS).
For each measurement, autocorrelation functions were averaged and evaluated by the
Dispersion Technology Software (DTS) (Malvern Instruments Ltd., Malvern, UK).

Raman spectroscopy was performed using an inVia instrument (Renishaw, Wotton-
Under-Edge, UK) coupled with an optical Leica DLML microscope (Leica Microsystems,
Wetzlar, Germany), equipped with an NPLAN objective 50× (spot size of about 5 µm in
diameter). The instrument has an Nd: YAG laser source at λ = 532 nm wavelength. The
spectrometer consists of a single grating monochromator (1800 lines/mm), coupled with a
CCD detector, a RenCam 578 × 400 pixels (22 µm × 22 µm) cooled by a Peltier element.
The spectral calibration of the instrument was performed on the 520.5 cm−1 band of a
silicon wafer. The spectral resolution was 0.5 cm−1, and the spectral range was between
100 and 3200 cm−1. Polymer samples were analyzed as films obtained by compression
molding (as described above) or by spin-coating on a silicon wafer (as described below). To
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improve the signal-to-noise ratio, the data were accumulated over 3 or more acquisitions
with an exposure time of 10 s per acquisition.

Scanning electron microscopy (SEM) of blends and composites was carried out by
using a dual-beam instrument Gaia 3 (TESCAN, Brno, Czech Republic). The elemental
analysis on the surface of the samples was carried out by an energy-dispersive X-ray
(EDAX) system interfaced with SEM (AMETEK, Mahwah, NJ, USA, software TEAM EDS
Basic Suite). The micrographs were acquired on liquid nitrogen fractured films, which were
prepared by compression molding, as described above. Both secondary electrons (SE) and
backscattered electrons (BSE) detectors were used. Films of samples were also characterized
after etching of the PS phase with cyclohexane. For performing this experiment, the
fractured surface of the films was immersed in cyclohexane at 60 ◦C for 7 h. At the end, the
film was washed with fresh cyclohexane and, then, dried under vacuum at 50 ◦C before
being analyzed by SEM.

Atomic force microscopy (AFM) was carried out by using a hybrid system made of a
commercial SMENA head (NT-MDT, Moscow, Russia) with electronics and control software
developed in-house, and of a digital HF2LI lock-in amplifier (Zurich Instruments, Zurich,
Switzerland) to collect the data. AFM has been operated in the so-called tapping mode
at ambient temperature and employing the cantilever HQ:NSC35 (MikroMasch, Wetzlar,
Germany) with a nominal spring constant of around 5 N·m−1 and 150 kHz. The color code
of the images is the following: a brighter color corresponds to a higher region. Films of both
polymer blends and composites were prepared by spin-casting 60 mL aliquots of a toluene
solution (5% wt./vol or 1% wt./vol) under ambient conditions onto a polished silicon wafer,
which was rotated at 500 rpm for 30 s and 3000 rpm for 60 s. A WS-400-6NPP-LITE spin
processor (Laurel Technologies Corporation, North Wales, PA, USA) was used. The specimens
were subsequently annealed at 150 ◦C in a vacuum oven for 24 h and characterized before and
after etching of PS phase with cyclohexane and etching of PMMA phase with acetic acid. The
RMS roughness (the root mean square average of height deviations from the mean data plane)
and hmax (the maximum height of the bumps) were measured.

Transmission electron microscopy (TEM) was performed by HR-TEM 200 kV ZEISS
LIBRA 200 FE (Carl Zeiss AG, Jena, Germany) equipped with a second-generation in col-
umn Ω filter, HAADF detector. The energy dispersive X-ray analysis (EDX) was performed
by EDX, OXFORD X-Stream 2, and INCA software (Oxford Instruments Analytical, High
Wycombe, Buckinghamshire, UK). The samples were prepared by dropping a toluene solution
of PS/PMMA/bP5000 (2 mg/mL) on a lacey carbon copper grid and letting it dry overnight.

Thermogravimetric analysis (TGA) was performed using a SII ETG/DTA 7200 EXS-
TAR (Seiko instrument, Chiba, Japan). Polymer blends and composites (5–10 mg) were
placed in alumina sample pans (70 µL), and runs were carried out at the standard rate of
10 ◦C·min−1 from 30 to 700 ◦C under nitrogen (200 mL·min−1). The onset temperature
(Tonset) of the TG curve, calculated as the temperature of intercept of tangents before and
after the degradation step, and the temperature of the maximum degradation rate (Tmdr),
calculated as the maximum of the peak in the DTG curve, were determined.

Differential scanning calorimetry (DSC) measurements were performed on 5–10 mg
samples under nitrogen atmosphere (nitrogen flow was 50 mL·min−1 for all the experi-
ments) by using a DSC-4000 differential scanning calorimeter thermal analyzer (Perkin-
Elmer, Waltham, MA, USA) equipped with a 3-stage cooler able to reach −130 ◦C. Pre-
viously, the instrument was calibrated by using indium (m.p. 156.6 ◦C, ∆H = 28.5 J/g)
and zinc (m.p. 419.5 ◦C). Polymer blends and polymer composites were heated from 30 to
180 ◦C at 10 ◦C/min (1st heating), cooled to 30 ◦C at the same scan rate (1st cooling), then,
heated again to 180 ◦C at 10 ◦C/min (2nd heating). Glass transition temperature (Tg) of
both polymer blends and polymer composites was measured from the inflection point in
the 2nd heating thermogram.

Size exclusion chromatography (SEC) analysis was carried out by the Agilent Tech-
nologies 1260 Series instrument equipped (Agilent Technologies, Santa Clara, CA, USA)
with an Agilent degasser, an isocratic high-performance liquid chromatography (HPLC)
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pump, an Agilent refractive index (RI) detector, one pre-column PLgel 5 µm guard, and
two PLgel MiniMIX-D 5 µm columns conditioned at 35 ◦C. CHCl3 was used as the mobile
phase at a flow rate of 0.3 mL/min. The system was calibrated with PS standards in a range
from 500 to 3 × 105 g/mol. Samples (i.e., PMMA-CPDB, PMMA-b-PS, PMMA-b-PS/fl-bP)
were dissolved in CHCl3 (2–4 mg/mL) and filtered through a 0.20 µm syringe filter before
analysis. This latter step involves a possible fractionation of the polymer with retention on
the filter of recombination chains, as well as partially cross-linked, branched, or entangled
polymer chains. However, this step is necessary in the case of composite, because it allows
removing from the solution any microaggregates due to the presence of bP-flakes. Mn and
Mw were determined using Agilent ChemStation software.

31P solid-state NMR (SSNMR) experiments were carried out with an Infinity Plus 400
spectrometer (Varian, Palo Alto, CA, USA) operating at Larmor frequencies of 400.34 and
162.07 MHz for 1H and 31P nuclei, respectively. Spectra were acquired using a 3.2 mm probe
head, exploiting the direct excitation (DE) pulse sequence, under high power decoupling
from 1H nuclei, using a recycle delay of 120 s, and accumulating 1320 transients. All the
experiments were carried out under magic angle spinning (MAS), with a frequency of
12 kHz, using air as spinning gas, and at a temperature of 20 ◦C. 31P chemical shift scale
was referred to the signal of H3PO4 (85%) at 0 ppm.

Infrared spectra were recorded with a Spectrum Two Fourier Transform Infrared Spectrom-
eter (PerkinElmer, Waltham, MA, USA) over the wavenumber range of 400–4000 cm−1 with
a resolution of 4 cm−1 using 16 scansions. The spectra were registered on thin films of poly-
mer samples obtained by solution casting on a KBr window of chloroform solutions prepared
by dissolving 5 mg of each sample in 1 mL of chloroform. The composition of PMMA-b-PS
and PMMA-b-PS/fl-bP was accomplished by using a calibration curve, which was prepared
by acquiring FT-IR spectra of PS/PMMA blends of known compositions. The FT-IR spectra
of PS/PMMA blends show two well-resolved bands at 1730 and 698 cm−1 due to the C=O
stretching of the ester group of PMMA and C-C bending out of the plane of PS, respectively. The
ratio between the area of these bands was reported versus the molar composition.

3. Results
3.1. PS/PMMA/fl-bP Composites by Solution Blending

Three PS/PMMA/fl-bP composites were prepared by keeping the PS/PMMA weight
ratio constant (50/50 wt.%) and adding three different fl-bP suspensions, respectively. Each
of the three suspensions contains flakes with different average hydrodynamic diameters:
fl-bP0 (CHP suspension after exfoliation), fl-bP3000, and fl-bP500, which were selected
by centrifugation. The amount of fl-bP in PS/PMMA/fl-bP0 was 1 wt.%, whereas in
PS/PMMA/fl-bP3000 and PS/PMMA/fl-bP5000, it was estimated to be about 1 wt.% and
0.6 wt.%, respectively.

The PS/PMMA/fl-bP composites were characterized by micro-Raman spectroscopy.
The optical microscopy images show bright inclusions of micrometric size consisting of fl-
bP, as reported previously (Figure 2) [39]. This result shows that fl-bP is present in the form
of flake aggregates, although the presence of single flakes cannot be excluded by this test.
Dispersion and spatial distribution of inclusions within composites depend on the type of
fl-bP suspension and its concentration. The optical image of PS/PMMA/fl-bP0 (Figure 2a)
shows large aggregates (1–5 µm) due to the large size of fl-bP flakes in the fl-bP0 suspension
(the hydrodynamic diameter is ca. 360 nm and non-exfoliated bP is likely present, as
reported in the Materials and Methods section) as well as possible aggregation between the
flakes. The optical image of PS/PMMA/fl-bP3000 reveals a finer distribution of fl-bP flakes
(below 1 µm) and the presence of only a few aggregates due to the smaller hydrodynamic
diameter of the fl-bP3000 suspension (Figure 2b). Additionally, no evidence of aggregates
can be observed in the optical microscopy image of PS/PMMA/bP5000 (Figure 2c), even
though the Raman spectrum confirms the presence of fl-bP. Notably, Raman spectra of
the three composites show vibrational modes of both PS and PMMA [PS: 620 cm−1 (ring
deformation mode), 999 cm−1 (ring breathing mode), 1197 cm−1, 1583 cm−1 (C=C stretch),
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1600 cm−1 (ring-skeletal stretch), 2908 cm−1 (tertiary CH stretching), 3052 cm−1 (aromatic
CH stretching); PMMA: 599 cm−1, 810 cm−1, 1448 cm−1 (CH2 deformation), 1726 cm−1

(C=O stretching), 2851 cm−1 (CH2 symmetric stretching), 2951 (CH3 symmetric stretching)
cm−1], and also three distinct bands at about 360, 430, and 460 cm−1 corresponding to the
out-of-plane A1

g phonon mode, to the in-plane modes along the zig-zag direction B2g, and
along the armchair direction A2

g of bP (Figure 2d) [50].

Nanomaterials 2021, 11, x FOR PEER REVIEW 9 of 24 
 

 

of fl-bP flakes (below 1 μm) and the presence of only a few aggregates due to the smaller 
hydrodynamic diameter of the fl-bP3000 suspension (Figure 2b). Additionally, no 
evidence of aggregates can be observed in the optical microscopy image of 
PS/PMMA/bP5000 (Figure 2c), even though the Raman spectrum confirms the presence 
of fl-bP. Notably, Raman spectra of the three composites show vibrational modes of both 
PS and PMMA [PS: 620 cm−1 (ring deformation mode), 999 cm−1 (ring breathing mode), 
1197 cm−1, 1583 cm−1 (C=C stretch), 1600 cm−1 (ring-skeletal stretch), 2908 cm−1 (tertiary CH 
stretching), 3052 cm−1 (aromatic CH stretching); PMMA: 599 cm−1, 810 cm−1, 1448 cm−1 (CH2 
deformation), 1726 cm−1 (C=O stretching), 2851 cm−1 (CH2 symmetric stretching), 2951 
(CH3 symmetric stretching) cm−1], and also three distinct bands at about 360, 430, and 460 
cm−1 corresponding to the out-of-plane A1g phonon mode, to the in-plane modes along the 
zig-zag direction B2g, and along the armchair direction A2g of bP (Figure 2d) [50].  

 

 
 Figure 2. Representative optical microscopy images of (a) PS/PMMA/fl-bP0, (b) PS/PMMA/fl-bP3000,

and (c) PS/PMMA/fl-bP5000. Representative Raman spectra (λ = 532 nm) of PS/PMMA and PS/PMMA/fl-bP com-
posites (d) and blow up of the Raman spectra of PS/PMMA/fl-bP composites in the 320–500 cm−1 range (e).

The retention of bP vibrational modes in the Raman spectra suggests that fl-bP was
not degraded. Additionally, the blow-up of the 320–500 cm−1 range (Figure 2e) indi-
cates that the three Raman bands of bP shifted to the blue from PS/PMMA/fl-bP0 to
PS/PMMA/fl-bP3000 and PS/PMMA/fl-bP5000. This result is consistent with a decrease
in the hydrodynamic diameter from the fl-bP0 to the fl-bP5000 suspension and with a
corresponding lower average number of layers of fl-bP flakes [19]. Raman spectra collected
in different discrete locations, including bright inclusions and portions of the samples
apparently bP-free, are provided in the Supplementary Materials Figure S1). The Raman
spectrum of bright inclusions confirmed that it consists of bP showing intense signals
of Raman active modes of bP and weak vibrational modes due to the polymeric phase,
as in the case of PS/PMMA/fl-bP3000 (Figure S1a). Additionally, spectra collected in
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areas apparently bP-free exhibited vibrational modes of both fl-bP and polymers. In the
case of the sample PS/PMMA/bP5000, bright inclusions with smaller dimensions were
observed, but it was not possible to limit the acquisition of the Raman spectrum only to
their area. However, by comparing spectra acquired at different locations, the character-
istic vibrational modes of bP and PMMA/PS blend can be observed in all the analyzed
areas (Figure S1b). Therefore, the presence of the three bP peaks also in regions that are
apparently bP-free indicates good dispersion of fl-bP, especially in the case of the sample
PS/PMMA/fl-bP5000 for which this condition is satisfied in the whole area [39].

The morphology of the polymer phase was investigated using SEM to determine
whether the fl-bP caused a variation compared to the PS/PMMA blend. SEM micro-
graphs were registered on cryofractured and PS etched samples. The PMMA/PS blend
(Figure 3a) shows a continuous structure of the PMMA phase and elongated PS cavities
inter-connected, suggesting a co-continuous or quasi co-continuous microstructure, as pre-
viously reported [51]. The addition of fl-bP coarsened the microstructure. Micrographs of
composites show a slight increase in the size of PS domains compared with the PS/PMMA
blend (Figure 3b,c), and the effect was more evident using fl-bP5000 suspension with a
lower hydrodynamic diameter of the flakes. No evidence of fl-bP was observed in SEM
micrographs of composites collected before etching (Figure S2, Supplementary Materials),
while micrographs of fractured and etched PS/PMMA/fl-bP0 and PS/PMMA/fl-bP3000
confirmed the presence of micrometric fl-bP aggregates previously observed by optical
microscopy (Figure 3b,c). However, no fl-bP, as aggregates or single flakes, were detected
from the micrograph of etched PS/PMMA/fl-bP5000 (Figure 3d), which is likely due to the
small size of flakes contained in the fl-bP5000 suspension and to the lower concentration of
fl-bP in this composite (0.6 wt.%).
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Figure 3. SEM images of selectively extracted PS/PMMA (a), PS/PMMA/fl-bP0 (b), PS/PMMA/fl-
bP3000 (c), and PS/PMMA/fl-bP5000 (d). The black domains represent the cyclohexane-etched PS
phase. The arrows in the images (b,c) indicate the fl-bP.

The presence of fl-bP in the PS/PMMA/fl-bP5000 sample was verified by STEM and
TEM analysis. Micrographs of the sample showed typical squared fl-bP flakes of about
200 nm (Figure 4a), connected or aggregated (Figure 4d,e), and several smaller flakes
(average size less than 50 nm). These nanostructures are fl-bP flakes surrounded by carbon,
as evidenced by EDX elemental maps (Figure 4b,c). The flakes, with a size distribution
ranging between 10 and 400 nm, appeared uniformly distributed in the polymer matrix
(Figure S3, Supplementary Materials), although it was not possible to distinguish the
two polymeric phases. The presence of small fl-bP flakes could be due to the prolonged
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sonication of bP used for fl-bP preparation. During sonication, cavitation can break the
larger sheets, thus forming small fragments that coexist with the larger flakes [52–54].
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Figure 4. Sample PS/PMMA/fl-bP5000: STEM image of a squared fl-bP (a), EDX map of the fl-bP
sheet (b), in green the P map, and in red the C map of the area that surrounds the fl-bP sheet (c).
Conventional TEM (d) and STEM (e) images of a large agglomerate of fl-bP.

As the principal application of these materials is as ultrathin films for devices and
membranes [39,40], AFM analysis was used to investigate the surface morphology (topog-
raphy). AFM images of PS/PMMA blend and PS/PMMA/fl-bP composites were collected
on spin-cast film before and after the annealing process (150 ◦C in a vacuum oven for 24 h).
Before annealing, the AFM image of the PS/PMMA blend showed a granular surface with
bumps (Figure 5a).
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Figure 5. AFM topography images of PS/PMMA blend and PS/PMMA/fl-bP0 before and af-
ter annealing: (a) PS/PMMA, 1% wt./vol toluene (thin film), spin-cast, and (a’) after annealing;
(b) PS/PMMA/fl-bP0, 1% wt./vol toluene, spin-cast, and (b’) after annealing. The RMS roughness
and maximum height of bumps (hmax) are reported.
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To demonstrate the nature of the bumps, films of PS/PMMA on silicon wafers were
immersed in cyclohexane and acetic acid to remove PS and PMMA, respectively. The AFM
images after the etching processes revealed the residual PMMA phase in one case and the
residual PS phase in the other (Figure S4, Supplementary Materials). After dissolving PS in
cyclohexane, the topography still showed a granular structure with increased height of the
bumps, while after dissolving PMMA in acetic acid, the film was detached from the wafer
surface and its topography appeared pitted with PS as the continuous phase. This result,
in agreement with the literature, suggests that bumps are made of PMMA [55–57].

Upon annealing above the glass transition temperatures of the two polymers, the
PS/PMMA surface appeared relatively flat (as confirmed by low RMS value) with a few
pits (Figure 5a’). This effect is due to the surface segregation of PS by dewetting that
minimizes the polymer–air interfacial free energy giving a relatively flat surface [58]. The
PS/PMMA/fl-bP0 showed a topography with bumps of irregular shape and dimensions
from less than 1 micron to several microns (Figure 5b). In addition, the image showed
small structures segregated in the PMMA phases, which are likely fl-bP sheets or fl-bP
agglomerates. However, upon annealing, these fl-bP sheets/agglomerates were not more
visible probably because they were submerged by the dewetted PS phase and segregated
into the PMMA phase (Figure 5b’). This result may indicate a more favorable interaction of
fl-bP with PMMA compared to PS.

The topography of PS/PMMA/fl-bP3000 and PS/PMMA/fl-bP5000 films (Figure 6)
was similar to that of the unfilled blend: the bumps were regular and homogeneously
distributed. However, the average diameter of the bumps in the PS/PMMA/fl-bP3000
sample was higher than that of the PS/PMMA blend, and the number of domains was
lower (Figure 6b); the roughness was also higher than that of the blend, as well as the
height of the bumps. Conversely, the addition of fl-bP5000 suspension, with the lowest
average hydrodynamic diameter of fl-bP flakes (ca. 212 nm), reduced the diameter of the
bumps and increased their number within the measured area (Figure 6c); in addition, the
roughness was lower compared to the blend as well as the height of the bumps. A possible
reason for the observed behavior may be a change in the rheological behavior of PMMA,
where the fl-bP flakes were likely preferentially located with an increase in the viscosity
of the PMMA phase that causes the decrease in the diameter of PMMA domains [59]. In
particular, the effect is more evident for the smaller fl-bP flakes that better match the size
of the polymer phase. Interestingly, after the annealing process, the topography of both
composites remained granular, suggesting that the PS dewetting was delayed by fl-bP
(Figure 6a’–c’). However, fl-bP was not directly visible on the surface of the films, either
before or after the annealing.

To check the distribution of fl-bP within the PS/PMMA matrix in both PS/PMMA/fl-
bP3000 and PS/PMMA/fl-bP5000, AFM images were acquired after cyclohexane and acid
acetic etching (Figures 7 and 8). Notably, after cyclohexane etching of the PS/PMMA/fl-bP3000
film, structures of 100–200 nm of diameter and 5–20 nm thickness appeared at the bottom of
the bumps. These structures are made of fl-bP, as confirmed by micro-Raman spectroscopy.
On the contrary, no evidence of fl-bP was observed on the acetic acid-etched surface, which is
consistent with the preferential localization of fl-bP flakes into the PMMA phase.

Similar results were achieved for the PS/PMMA/fl-bP5000 composite (Figure 8). In
this case, the AFM topography in elastic contrast showed small flakes (h = 20–50 nm)
dispersed in the PMMA phase after PS etching and an agglomerate of stacked bP layers
(h = 150 nm), as confirmed by EDX-SEM analysis (Figure 9). Agglomerates may have
formed due to the etching process. The cyclohexane decreases the PS viscosity that becomes
a convenient medium of diffusion of the flakes. In this condition, fl-bP can migrate and
may be subjected to coarsening and coalescence.



Nanomaterials 2021, 11, 1996 13 of 22
Nanomaterials 2021, 11, x FOR PEER REVIEW 13 of 23 
 

 

 

Figure 6. AFM topography of PS/PMMA (a,a’), PS/PMMA/fl-bP3000 (b,b’), and PS/PMMA/fl-

bP5000 (c,c’), 5% wt./vol toluene, as spin-cast (a,b,c), and upon annealing (a’,b’,c’). The RMS 

roughness and the maximum height of the bumps (hmax) are reported. 

To check the distribution of fl-bP within the PS/PMMA matrix in both PS/PMMA/fl-

bP3000 and PS/PMMA/fl-bP5000, AFM images were acquired after cyclohexane and acid 

acetic etching (Figures 7 and 8). Notably, after cyclohexane etching of the PS/PMMA/fl-

bP3000 film, structures of 100–200 nm of diameter and 5–20 nm thickness appeared at the 

bottom of the bumps. These structures are made of fl-bP, as confirmed by micro-Raman 

spectroscopy. On the contrary, no evidence of fl-bP was observed on the acetic acid-etched 

surface, which is consistent with the preferential localization of fl-bP flakes into the 

PMMA phase. 

Figure 6. AFM topography of PS/PMMA (a,a’), PS/PMMA/fl-bP3000 (b,b’), and PS/PMMA/fl-
bP5000 (c,c’), 5% wt./vol toluene, as spin-cast (a–c), and upon annealing (a’–c’). The RMS roughness
and the maximum height of the bumps (hmax) are reported.
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Figure 7. AFM topography of annealed PS/PMMA/fl-bP3000 films after acetic acid (a) and cyclo-
hexane (b) etching, respectively. Films were prepared from 5% wt./vol toluene solution. The inset
shows the blow-up of the cyclohexane-etched film, and the arrows indicate the fl-bP flakes.
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Figure 9. SEM images of PS/PMMA/fl-bP5000 thin film on a silicon wafer after cyclohexane etching (a). EDXS spectra
collected on a bP-free area (b) and on an fl-bP agglomerate (c).

The thermal stability of PS, PMMA, PS/PMMA blend (50/50 wt.%), and PS/PMMA/fl-
bP composites was evaluated by TGA. Thermogravimetric (TG) and derivative thermo-
gravimetric (DTG) curves are shown in Figure 10 and Figure S5 (Supplementary Materials),
and data are reported in Table 2. PS degraded in a single step with an onset temperature of
394 ◦C and a maximum degradation rate of 414 ◦C. The thermogravimetric curve of PMMA
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revealed two main steps of weight loss with a maximum degradation rate at 282 and 389 ◦C
(random scission initiation), respectively, as reported previously [60]. The decomposition
of PS/PMMA occurred in two steps in the temperature range of 300–500 ◦C.
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Figure 10. TG (a) and DTG (b) curves of PS/PMMA, PS/PMMA/fl-bP0, PS/PMMA/fl-bP3000, and
PS/PMMA/fl-bP5000 carried out under nitrogen flow.

Table 2. DSC and TGA results: glass transition temperature (Tg), onset temperature of decomposition
(Tonset), and temperature corresponding to the maximum decomposition rate (Tmdr).

Sample Tg,PS
1

(◦C)
Tg,PMMA

1

(◦C)
Tonset

2

(◦C)
Tmdr

3

(◦C)

PS 105.3 − 394 414
PMMA − 122.4 261 282; 389

PS/PMMA 103.6 119.8 223 251; 411
PS/PMMA/fl-bP0 105.0 125.0 275 294; 422

PS/PMMA/fl-bP3000 107.0 124.5 264 292; 415
PS/PMMA/fl-bP5000 104.4 122.0 274 295; 417

1 Tg was calculated from the second heating scan. 2 The onset temperature was calculated from the degradation
step above 200 ◦C as the intercept of tangents before and after the degradation step. The weight loss before 200 ◦C
was attributed to loss of the trapped solvent. 3 The temperature corresponding to the maximum decomposition
rate was determined from DTG curves as the maximum of the peak.

The first step can be attributed to the degradation of PMMA and the second to a
combination of PS and PMMA degradation. Similarly, TG/DTG curves of PS/PMMA/fl-
bP composites showed two main steps of degradation that can be explained as for the
blend. Remarkably, the fl-bP degradation occurs between 410 and 480 ◦C, overlapped
with the second degradation step of the polymers [39,61]. Interestingly, the initial de-
composition temperature of the composites increased significantly compared to the blend
(about 40–50 ◦C) indicating higher thermal stability [26]. Composites also showed an in-
crement of the temperature corresponding to the maximum degradation rate (Table 2).
These encouraging results about the improved thermal stability of the PS/PMMA blend
agree with previous data indicating that fl-bP inhibits mass transfer and provides thermal
insulation to shield the underlying polymer from the heat source [26,28–37]. Similar results
have also been reported for other types of ultrathin 2D nanomaterials dispersed both in
thermoplastic and thermosetting polymers [62–64].

Furthermore, to verify possible interactions between PS, PMMA, and fl-bP, and to
investigate how the PS/PMMA miscibility is affected by fl-bP, the glass transition tem-
perature (Tg) of composites was measured by DSC and compared with that of the neat
blend and pure components (Table 2). The DSC thermogram of PS/PMMA blend showed
two separated glass transitions corresponding to PS and PMMA phases, respectively,
indicating the non-miscibility of the blend. This condition was maintained even after
the fl-bP addition, since the thermograms of PS/PMMA/fl-bP0, PS/PMMA/fl-bP3000,
and PS/PMMA/fl-bP5000 composites still showed two distinguishable Tg (Figure S6,
Supplementary Materials). These results are consistent with SEM morphology showing
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polymer phase separation for the two composites as well. However, glass transition tem-
peratures were higher for the composites than for the pure blend, suggesting an additional
separation effect of the two phases induced by the presence of fl-bP.

3.2. PMMA-b-PS/fl-bP Composite via In Situ RAFT Polymerization

To probe the possibility of embedding fl-bP into a block copolymer, as a method of en-
capsulation allowing us to obtain a wide range of hybrid structures with possible confined
geometry, a PMMA-b-PS/fl-bP composite was prepared by in situ RAFT polymerization
carried out in bulk after LPE of bP into styrene (Figure 11a). First, we prepared a macro-
RAFT agent by in-bulk RAFT polymerization of MMA using a dithiobenzoate RAFT agent
(CPDB) with a predetermined degree of polymerization targeted through the monomer
to RAFT agent ratio, as reported by Jana et al. [49]. Then, a PMMA-b-PS copolymer, as a
blank, was prepared by reaction between the macro-RAFT and styrene. A quite narrow
dispersed PMMA was synthesized, and when the PMMA chain was extended with the
polymerization of styrene to yield the di-block copolymer, while styrene conversion was
relatively low, quite good control of molecular weight and dispersity was maintained
(Table 1, Figure 11b).
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RAFT polymerization: (a) general reaction scheme; (b) SEC traces of PMMA-b-PS and PMMA-b-PS/fl-bP.

When the styrene suspension containing fl-bP and prepared by LPE was used to
synthesize the PS block from the macro-RAFT, the styrene conversion was further reduced
compared to the diblock copolymer, but molecular weight distribution was enough con-
trolled. A PMMA-b-PS/fl-bP composite containing 1.2 wt.% of fl-bP was obtained. Notably,
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for both PMMA-b-PS and PMMA-b-PS/fl-bP samples, the molecular weight of the PS
block was lower than expected, and a relatively high dispersity was found. Probably, the
high viscosity generated in the bulk systems plays a critical role in polymerization control,
limiting the diffusion of the molecules, giving lower mobility to radicals, and favoring
termination reactions. Additionally, fl-bP may interfere with the mechanism of transfer of
the RAFT agent also determining chain end by radical coupling reaction [65,66].

Optical microscopy images of PMMA-b-PS/fl-bP showed a wide range of size distri-
bution of fl-bP into the copolymer. Big agglomerates of a few microns can be observed
(Figure 12a), and the corresponding Raman spectrum (Figure 12b, spectrum B) confirms
that they consist of bP.

Figure 12. Representative optical microscopy of PMMA-b-PS/fl-bP (a) and Raman spectra recorded
in two different points (A,B) and compared with the Raman spectrum of the diblock copolymer
PMMA-b-PS (b).

As previously reported for PS/PMMA/fl-bP samples, the Raman spectrum collected
in an apparently bP-free area showed all the characteristic vibrational modes of the
copolymer and the three distinct bands corresponding to A1

g, B2g, and A2
g modes of

bP (Figure 12b, spectrum A). This result likely indicates that smaller fl-bP flakes not vis-
ible with the optical microscopy are also dispersed into the matrix. However, while
the AFM topography of the copolymer showed an irregular wormlike network struc-
ture with a roughness of 0.7 nm, the AFM image of PMMA-b-PS/fl-bP is dominated by
brighter regions with a height of about 500 nm that are the aggregates of fl-bP (Figure S7,
Supplementary Materials). Hence, the surface roughness was not uniform throughout the
entire film, confirming that the size of fl-bP differed and it was not possible to recognize a
preferential localization in one of the two polymeric phases.
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Interestingly, in agreement with previous studies [39], this sample confirmed that the
in situ polymerization is very powerful in avoiding the oxidation of bP. Indeed, 31P SSNMR
spectrum of PMMA-b-PS/fl-bP shows a signal at 18 ppm, typical of fl-bP (Figure 13). Weak
broad signals are also observable between 0 and 10 ppm, which can be ascribed to products of
degradative oxidation of fl-bP, including different phosphorus oxyacid anions such as HPO3

2−

and PO4
3−. From 31P-signal integration, it is possible to estimate that P atoms of the oxidation

products account for only 6% of the whole amount of P atoms, indicating a very good control
of the bP preservation from oxidation during all preparation steps and confirming that the in
situ polymerization method is very successful in preserving the bP structure.
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In addition, TGA showed an increment of the thermal stability of PMMA-b-PS/fl-bP
compared to PMMA-b-PS with an increase in Tmdr (Figure S8, Supplementary Materials).
The TGA residue of the composite was higher than that of the block copolymer (2.90
and 3.75 wt.% at 550 ◦C, respectively) suggesting that fl-bP flakes contributed to the char
residue. However, considering the bP degradation between 400 and 550 ◦C [39,67], it was
not possible to estimate the amount of fl-bP from the TGA residue.

4. Conclusions

In conclusion, this study describes the first example of fl-bP inclusion into a biphasic
polymer blend made of PS/PMMA (50/50 wt.%) and into a block PMMA-b-PS copolymer.
First, bulk bP was exfoliated by LPE in CHP using a probe sonicator, and the suspension
was used as it is or after centrifugation at a different speed for selecting fl-bP popula-
tions with a relatively low and narrow average hydrodynamic size distribution. Second,
PS/PMMA/fl-bP composites were prepared by solution blending. Micro-Raman spec-
troscopy demonstrated that fl-bP remained crystalline and not oxidized, thus preserving
its potential outstanding properties. In addition, fl-bP was dispersed and distributed into
the polymer blend based on its size and concentration. SEM analysis of PS/PMMA/fl-
bP composites showed that fl-bP suppressed the coalescence of PS and PMMA phases
revealing the localization of the flakes at the interface. TEM and STEM micrographs of
PS/PMMA/fl-bP5000 prepared with the smallest fl-bP flakes showed typical squared fl-bP
flakes of about 200 nm, connected or aggregated. This analysis revealed the presence of
several smaller flakes of spherical shape with an average size less than 50 nm. Furthermore,
AFM analysis showed that fl-bP incorporation into PS/PMMA determined a change in
topography of the blend by delaying the PS dewetting. In addition, the selective etching
of PS generated the isolation of PMMA bumps and the appearance of fl-bP flakes at the
basis of the bumps. This evidence revealed the possible generation of percolation patterns.
PS/PMMA/fl-bP composites also exhibited improved thermal stability with decreasing
average hydrodynamic size of fl-bP flakes, thus confirming that fl-bP successfully inhibits
the mass transfer and provides thermal insulation.



Nanomaterials 2021, 11, 1996 19 of 22

Finally, a block copolymer/fl-bP composite (PMMA-b-PS/fl-bP) was prepared via
in situ reversible RAFT polymerization with direct sonication-assisted exfoliation of bP
into styrene. This sample showed an excellent preservation of bP structure as confirmed
by 31P SSNMR and Raman spectroscopy, even though the fl-bP dispersion was limited
by the heterogeneous size of fl-bP. The versatility of this approach may be exploited in
future synthesis of amphiphilic block copolymers containing small-size fl-bP flakes, which
may be assembled into different morphologies. In the case of both binary polymer blend
composites and block copolymer composites, future efforts might usefully focus on the
properties of devices made of these materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11081996/s1, Table S1: List of all the samples prepared: sample name, method of prepara-
tion, and fl-bP concentration; Figure S1: Representative optical microscopy images of PS/PMMA/fl-
bP3000 and PS/PMMA/fl-bP5000 (a,b, left side). Representative Raman spectra of PS/PMMA/fl-
bP3000 and PS/PMMA/fl-bP5000 (a,b, right side) recorded in different areas and compared with the
Raman spectrum of PS/PMMA blend; Figure S2: Representative SEM micrographs of PS/PMMA
blend (a,b), PS/PMMA/fl-bP3000 (c,d), and PS/PMMA/fl-bP5000 (e,f); Figure S3: (a) STEM image of
the sample PS/PMMA/fl-bP5000: the green rectangular highlights the area where the EDX elemental
map was collected; (b) phosphorus STEM-EDX map; (c) EDX spectrum corresponding to the map
reported in b; Figure S4: AFM topography of PS/PMMA blend, 5% wt./vol toluene, spin-cast film
(a), acetic acid-etched film (b), and cyclohexane-etched film (c). Schemes illustrating the profile
of surface topography are reported in the three cases; Figure S5: TG and DTG curves of PS and
PMMA under nitrogen flow; Figure S6: DSC curves second heating scan of PS (a), PS/PMMA (b),
PS/PMMA/fl-bP0 (c), PS/PMMA/fl-bP3000 (d), PS/PMMA/fl-bP5000 (e), and PMMA (f); Figure S7:
AFM topography of PMMA-b-PS (a) and PMMA-b-PS/fl-bP (b) 5% wt./vol toluene, as spin-cast;
Figure S8: TG and DTG curves of PMMA-b-PS and PMMA-b-PS/fl-bP under nitrogen flow.

Author Contributions: Conceptualization, S.C., F.C. and E.P.; methodology, S.C., S.P., F.C. and E.P.;
investigation, S.C., F.C., S.P., S.L., S.B., F.D., A.M.F., M.C. and M.S.-R.; resources, E.P. and M.P.;
writing—original draft preparation, S.C.; writing—review and editing, all authors; visualization,
S.C.; supervision, S.C. and F.C.; project administration, S.C.; funding acquisition, M.P., E.P. and M.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially founded by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program, project PHOSFUN “Phosphorene
functionalization: a new platform for advanced multifunctional materials”, Grant Agreement No.
670173 and by Italian Ministry of Education, University and Research (MIUR), project PRIN 2017
FERMAT “Fast ElectRon dynamics in novel hybrid organic-2D MATerials”, 2017KFY7XF.

Data Availability Statement: The data presented in this study are available on request from the authors.

Acknowledgments: Dario Smacchia (CNR-ICCOM Pisa) is gratefully acknowledged for his assis-
tance in RAFT polymerizations. Giulia Lorenzetti (CNR-ICCOM Pisa) and Beatrice Campanella
(CNR-ICCOM Pisa) are acknowledged for their contribution to Raman measurements. Enrico Berretti,
Laura Capozzoli, and Alessandro Lavacchi (CNR-ICCOM Firenze) are acknowledged for their help
and assistance during SEM analysis. Roberto Spiniello (CNR-ICCOM Pisa) is kindly acknowledged
for his assistance during thermal analysis. S.C. wishes to thank Simona Bronco (CNR-IPCF Pisa) for
making the DLS and the spin coating apparatus available.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gusmão, R.; Sofer, Z.; Pumera, M. Black phosphorus rediscovered: From bulk material to monolayers. Angew. Chem. Int. Ed.

2017, 56, 8052–8072. [CrossRef]
2. Peruzzini, M.; Bini, R.; Bolognesi, M.; Caporali, M.; Ceppatelli, M.; Cicogna, F.; Coiai, S.; Heun, S.; Ienco, A.; Benito, I.I.; et al.

A perspective on recent advances in phosphorene functionalization and its applications in devices. Eur. J. Inorg. Chem. 2019, 2019,
1476–1494. [CrossRef]

3. Eswaraiah, V.; Zeng, Q.; Long, Y.; Liu, Z. Black phosphorous nanosheets: Synthesis, characterization and applications. Small
2016, 12, 3480–3502. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/nano11081996/s1
https://www.mdpi.com/article/10.3390/nano11081996/s1
http://doi.org/10.1002/anie.201610512
http://doi.org/10.1002/ejic.201801219
http://doi.org/10.1002/smll.201600032
http://www.ncbi.nlm.nih.gov/pubmed/27225670


Nanomaterials 2021, 11, 1996 20 of 22

4. Dhanabalan, S.C.; Ponraj, J.S.; Guo, Z.; Li, S.; Bao, Q.; Zhang, H. Emerging trends in phosphorene fabrication towards next
generation devices. Adv. Sci. 2017, 4, 1600305. [CrossRef]

5. Kou, L.; Chen, C.; Smith, S.C. Phosphorene: Fabrication, properties, and applications. J. Phys. Chem. Lett. 2015, 6, 2794–2805.
[CrossRef] [PubMed]

6. Ren, X.; Lian, P.; Xie, D.; Yang, Y.; Mei, Y.; Huang, X.; Wang, Z.; Yin, X. Properties, preparation and application of black
phosphorous/phosphorene for energy storage: A review. J. Mater. Sci. 2017, 52, 10364–10386. [CrossRef]

7. Pang, J.; Bachmatiuk, A.; Yin, Y.; Trzebicka, B.; Zhao, L.; Fu, L.; Mendes, R.G.; Gemming, T.; Liu, Z.; Rummeli, M.H. Applications
of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater. 2017, 8, 1702093. [CrossRef]

8. Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J.O.; Narasimha-Acharya, K.L.; Blanter, S.I.; Groenendijk, D.J.; Buscema, M.;
Steele, G.A.; Alvarez, J.V. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001. [CrossRef]

9. Woomer, A.H.; Farnsworth, T.W.; Hu, J.; Wells, R.A.; Donley, C.L.; Warren, S.C. Phosphorene: Synthesis, scale-up, and quantitative,
optical spectroscopy. ACS Nano 2015, 9, 8869–8884. [CrossRef] [PubMed]

10. Qiu, M.; Ren, W.X.; Jeong, T.; Won, M.; Park, G.Y.; Sang, D.K.; Liu, L.; Zhang, H.; Kim, J.S. Omnipotent phosphorene: A next-
generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem. Soc. Rev. 2018, 47, 5588–5601.
[CrossRef]

11. Li, Q.; Wu, J.T.; Liu, Y.; Qi, X.M.; Jin, H.G.; Yang, C.; Liu, J.; Li, G.L.; He, Q.G. Recent advances in black phosphorus-based
electrochemical sensors: A review. Anal. Chim. Acta 2021, 1170, 338480. [CrossRef]

12. Zhu, Y.; Xie, Z.; Li, J.; Liu, Y.; Li, C.; Liang, W.; Huang, W.; Kang, J.; Cheng, F.; Kang, L.; et al. From phosphorus to phosphorene:
Applications in disease theranostics. Coord. Chem. Rev. 2021, 446, 214110. [CrossRef]

13. Sui, Y.; Zhou, J.; Wang, X.; Wu, L.; Zhong, S.; Li, Y. Recent advances in black-phosphorus-based materials for electrochemical
energy storage. Mater. Today 2021, 42, 117–136. [CrossRef]

14. Shen, Z.K.; Yuan, Y.J.; Pei, L.; Yu, Z.T.; Zou, Z. Black phosphorus photocatalysts for photocatalytic H2 generation: A review.
Chem. Eng. J. 2020, 386, 123997. [CrossRef]

15. Sakthivel, T.; Huang, X.; Wu, Y.; Rtimi, S. Recent progress in black phosphorus nanostructures as environmental photocatalysts.
Chem. Eng. J. 2020, 379, 122297. [CrossRef]

16. Pica, M.; D’Amato, R. Chemistry of Phosphorene: Synthesis, Functionalization and Biomedical Applications in an Update Review.
Inorganics 2020, 8, 29. [CrossRef]

17. Tran, V.; Soklaski, R.; Liang, Y.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus.
Phys. Rev. B 2014, 89, 235319. [CrossRef]

18. Khandelwal, A.; Mani, K.; Karigerasi, M.H.; Lahiri, I. Phosphorene—The two-dimensional black phosphorous: Properties,
synthesis and applications. Mater. Sci. Eng. B 2017, 221, 17–34. [CrossRef]

19. Guo, Z.; Zhang, H.; Lu, S.; Wang, Z.; Tang, S.; Shao, J.; Sun, Z.; Xie, H.; Wang, H.; Yu, X.-F.; et al. From black phosphorus to
phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater.
2015, 25, 6996–7002. [CrossRef]

20. Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C.; Asadi, M.; Tuschel, D.; Indacochea, J.E.; Klie, R.F.; Salehi-Khojin, A. High-quality
black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 2015, 27, 1887–1892. [CrossRef]

21. Late, D.J. Liquid exfoliation of black phosphorus nanosheets and its application as humidity sensor. Microporous Mesoporous Mater.
2016, 225, 494–503. [CrossRef]

22. Kuriakose, S.; Ahmed, T.; Balendhran, S.; Bansal, V.; Sriram, S.; Bhaskaran, M.; Walia, S. Black phosphorus: Ambient degradation
and strategies for protection. 2D Mater. 2018, 5, 032001. [CrossRef]

23. Li, Q.; Zhou, Q.; Shi, L.; Chen, Q.; Wang, J. Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials
under ambient conditions and their passivation strategies. J. Mater. Chem. A 2019, 7, 4291–4312. [CrossRef]

24. Coiai, S.; Passaglia, E.; Pucci, A.; Ruggeri, G. Nanocomposites based on thermoplastic polymers and functional nanofiller for
sensor applications. Materials 2015, 8, 3377–3427. [CrossRef]

25. Del Río Castillo, E.; Reyes-Vazquez, C.D.; Rojas-Martinez, L.E.; Thorat, S.B.; Serri, M.; Martinez-Hernandez, A.L.;
Velasco-Santos, C.; Pellegrini, V.; Bonaccorso, F. Single-step exfoliation and functionalization of few-layers black phosphorus and
its application for polymer composites. Flat. Chem. 2019, 18, 100131. [CrossRef]

26. Ni, H.; Liu, X.; Cheng, Q. A new strategy for air-stable black phosphorus reinforced PVA nanocomposites. J. Mater. Chem. A
2018, 6, 7142–7147. [CrossRef]

27. Tiouitchi, G.; Raji, M.; Mounkachi, O.; Ali, M.A.; Mahmoud, A.; Boschini, F.; Essabir, H.; Bouhfid, R.; Qaiss, A. Black phosphorus-
based polyvinylidene fluoride nanocomposites: Synthesis, processing and characterization. Comp. Part B Eng. 2019, 175, 107165.
[CrossRef]

28. Qiu, S.; Zou, B.; Sheng, H.; Guo, W.; Wang, J.; Zhao, Y.; Wang, W.; Yuen, R.K.; Kan, Y.; Hu, Y. Electrochemically exfoliated
functionalized black phosphorene and its polyurethane acrylate nanocomposites: Synthesis and applications. ACS Appl.
Mater. Interfaces 2019, 11, 13652–13664. [CrossRef]

29. Ren, X.; Mei, Y.; Lian, P.; Xie, D.; Yang, Y.; Wang, Y.; Wang, Z. A novel application of phosphorene as a flame retardant. Polymers
2018, 10, 227. [CrossRef] [PubMed]

http://doi.org/10.1002/advs.201600305
http://doi.org/10.1021/acs.jpclett.5b01094
http://www.ncbi.nlm.nih.gov/pubmed/26266865
http://doi.org/10.1007/s10853-017-1194-3
http://doi.org/10.1002/aenm.201702093
http://doi.org/10.1088/2053-1583/1/2/025001
http://doi.org/10.1021/acsnano.5b02599
http://www.ncbi.nlm.nih.gov/pubmed/26256770
http://doi.org/10.1039/C8CS00342D
http://doi.org/10.1016/j.aca.2021.338480
http://doi.org/10.1016/j.ccr.2021.214110
http://doi.org/10.1016/j.mattod.2020.09.005
http://doi.org/10.1016/j.cej.2019.123997
http://doi.org/10.1016/j.cej.2019.122297
http://doi.org/10.3390/inorganics8040029
http://doi.org/10.1103/PhysRevB.89.235319
http://doi.org/10.1016/j.mseb.2017.03.011
http://doi.org/10.1002/adfm.201502902
http://doi.org/10.1002/adma.201405150
http://doi.org/10.1016/j.micromeso.2016.01.031
http://doi.org/10.1088/2053-1583/aab810
http://doi.org/10.1039/C8TA10306B
http://doi.org/10.3390/ma8063377
http://doi.org/10.1016/j.flatc.2019.100131
http://doi.org/10.1039/C8TA00113H
http://doi.org/10.1016/j.compositesb.2019.107165
http://doi.org/10.1021/acsami.8b22115
http://doi.org/10.3390/polym10030227
http://www.ncbi.nlm.nih.gov/pubmed/30966262


Nanomaterials 2021, 11, 1996 21 of 22

30. He, L.; Zhou, X.; Cai, W.; Xiao, Y.; Chu, F.; Mu, X.; Fu, X.; Hu, Y.; Song, L. Electrochemical exfoliation and functionalization
of black phosphorene to enhance mechanical properties and flame retardancy of waterborne polyurethane. Compos. B Eng.
2020, 202, 108446. [CrossRef]

31. Yin, S.; Ren, X.; Lian, P.; Zhu, Y.; Mei, Y. Synergistic effects of black phosphorus/boron nitride nanosheets on enhancing the
flame-retardant properties of waterborne polyurethane and its flame-retardant mechanism. Polymers 2020, 12, 1487. [CrossRef]
[PubMed]

32. Cai, W.; Wang, B.B.; Wang, X.; Zhu, Y.L.; Li, Z.X.; Xu, Z.M.; Song, L.; Hu, W.Z.; Hu, Y. Recent Progress in Two-dimensional
Nanomaterials Following Graphene for Improving Fire Safety of Polymer (Nano) composites. Chin. J. Polym. Sci. 2021, 39, 935–956.
[CrossRef]

33. Li, C.; Cui, X.; Gao, X.; Liu, S.; Sun, Q.; Lian, H.; Zu, L.; Liu, Y.; Wang, X.; Cui, X. Electrochemically prepared black phosphorene
micro-powder as flame retardant for epoxy resin. Compos. Interfaces 2021, 28, 693–705. [CrossRef]

34. Qu, Z.; Wu, K.; Jiao, E.; Chen, W.; Hu, Z.; Xu, C.; Sci, J.; Wang, S.; Tan, Z. Surface functionalization of few-layer black phosphorene
and its flame retardancy in epoxy resin. Chem. Eng. J. 2020, 382, 122991. [CrossRef]

35. Qu, Z.; Wu, K.; Meng, W.; Nan, B.; Hu, Z.; Xu, C.A.; Tan, Z.; Zhang, Q.; Meng, H.; Shi, J. Surface coordination of black phosphorene
for excellent stability, flame retardancy and thermal conductivity in epoxy resin. Chem. Eng. J. 2020, 397, 125416. [CrossRef]

36. Qu, Z.; Xu, C.A.; Hu, Z.; Li, Y.; Meng, H.; Tan, Z.; Shi, J.; Wu, K. (CF3SO3)3Er-decorated black phosphorene for robust ambient
stability and excellent flame retardancy in epoxy resin. Compos. B Eng. 2020, 202, 108440. [CrossRef]

37. Zou, B.; Qiu, S.; Ren, X.; Zhou, Y.; Zhou, F.; Xu, Z.; Zhao, Z.; Song, L.; Hu, Y.; Gong, X. Combination of black phosphorus
nanosheets and MCNTs via phosphoruscarbon bonds for reducing the flammability of air stable epoxy resin nanocomposites.
J. Hazard. Mater. 2020, 383, 121069. [CrossRef]

38. Passaglia, E.; Cicogna, F.; Lorenzetti, G.; Legnaioli, S.; Caporali, M.; Serrano-Ruiz, M.; Ienco, A.; Peruzzini, M. Novel polystyrene-
based nanocomposites by phosphorene dispersion. RSC Adv. 2016, 6, 53777–53783. [CrossRef]

39. Passaglia, E.; Cicogna, F.; Costantino, F.; Coiai, S.; Legnaioli, S.; Lorenzetti, G.; Borsacchi, S.; Geppi, M.; Telesio, F.; Heun, S.; et al.
Polymer-based black phosphorus (bP) hybrid materials by polymerization in situ: A suitable tool to exfoliate bP and stabilize bP
nanoflakes. Chem. Mater. 2018, 30, 2036–2048. [CrossRef] [PubMed]

40. Telesio, F.; Passaglia, E.; Cicogna, F.; Costantino, F.; Serrano-Ruiz, M.; Peruzzini, M.; Heun, S. Hybrid nanocomposites of
2D black phosphorus nanosheets encapsulated in PMMA polymer material: New platforms for advanced device fabrication.
Nanotechnology 2018, 29, 295601. [CrossRef]

41. Zhang, H.; Zuo, M.; Zhu, W.; Zhao, A.; Shi, X.; Zhang, X.; Song, Y.; Zheng, Q. Control of selective location of homopolymer-brush
grafted nanoparticles in binary polymer blends. Comp. Sci. Technol. 2020, 200, 108439. [CrossRef]

42. Sarkar, B.; Alexandridis, P. Block copolymer–nanoparticle composites: Structure, functional properties, and processing.
Prog. Polym. Sci. 2015, 40, 33. [CrossRef]

43. Gelfer, M.Y.; Hyun, H.S.; Liu, L.; Benjamin, S.H.; Benjamin, C.; Rafailovich, M.; Mayu, S.; Vladimir, Z. Effects of organoclays on
morphology and thermal and rheological properties of polystyrene and poly(methyl methacrylate) blends. J. Polym. Sci. Part B
2003, 41, 44. [CrossRef]

44. Mao, C.; Zhu, Y.T.; Jiang, W. Design of electrical conductive composites: Tuning the morphology to improve the electrical
properties of graphene filled immiscible polymer blends. ACS Appl. Mater. Interfaces 2012, 4, 5281–5286. [CrossRef] [PubMed]

45. Bai, L.; He, S.; Fruehwirth, J.W.; Stein, A.; Macosko, C.W.; Cheng, X. Localizing graphene at the interface of cocontinuous polymer
blends: Morphology, rheology, and conductivity of cocontinuous conductive polymer composites. J. Rheol. 2017, 61, 575–587.
[CrossRef]

46. Bockstaller, M.R.; Mickiewicz, R.A.; Thomas, E.L. Block copolymer nanocomposites: Perspectives for tailored functional materials.
Adv. Mater. 2005, 17, 1331–1349. [CrossRef]

47. Hasegawa, N.; Usuki, A. Arranged Microdomain Structure Induced by Clay Silicate Layers in Block Copolymer-Clay Nanocom-
posites. Polym. Bull. 2003, 51, 77–83. [CrossRef]

48. Köpf, M.; Eckstein, N.; Pfister, D.; Grotz, C.; Krüger, I.; Greiwe, M.; Hansen, T.; Kohlmann, H.; Nilges, T. Access and in situ
growth of phosphorene-precursor black phosphorus. J. Cryst. Growth 2014, 405, 6–10. [CrossRef]

49. Jana, S.; Parthiban, A.; Chai, C.L.L. Narrow disperse polymers using amine functionalized dithiobenzoate RAFT agent and easy
removal of thiocarbonyl end group from the resultant polymers. J. Polym. Sci. 2011, 49, 1494. [CrossRef]

50. Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C.S.; Berner, N.C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z.; et al.
Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun.
2015, 6, 8563. [CrossRef]

51. Lee, J.K.; Han, C.D. Evolution of a dispersed morphology from a co-continuous morphology in immiscible polymer blends.
Polymer 1999, 40, 2521–2536. [CrossRef]

52. Liscio, A.; Kouroupis-Agalou, K.; Diez Betriu, X.; Kovtun, A.; Treossi, E.; Pugno, N.M.; De Luca, G.; Giorgini, L.; Palermo, V.
Evolution of the size and shape of 2D nanosheets during ultrasonic fragmentation. 2D Mater. 2017, 4, 025017. [CrossRef]

53. Egerton, R.F.; Li, P.; Malac, M. Radiation damage in the TEM and SEM. Micron 2004, 35, 399–409. [CrossRef]
54. Caporali, M.; Serrano-Ruiz, M.; Telesio, F.; Heun, S.; Verdini, A.; Cossaro, A.; Dal Miglio, M.; Goldoni, A.; Peruzzini, M. Enhanced

ambient stability of exfoliated black phosphorus by passivation with nickel nanoparticles. Nanotechnology 2020, 31, 275708.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.compositesb.2020.108446
http://doi.org/10.3390/polym12071487
http://www.ncbi.nlm.nih.gov/pubmed/32635235
http://doi.org/10.1007/s10118-021-2575-2
http://doi.org/10.1080/09276440.2020.1812944
http://doi.org/10.1016/j.cej.2019.122991
http://doi.org/10.1016/j.cej.2020.125416
http://doi.org/10.1016/j.compositesb.2020.108440
http://doi.org/10.1016/j.jhazmat.2019.121069
http://doi.org/10.1039/C6RA10133J
http://doi.org/10.1021/acs.chemmater.7b05298
http://www.ncbi.nlm.nih.gov/pubmed/29887671
http://doi.org/10.1088/1361-6528/aabd8d
http://doi.org/10.1016/j.compscitech.2020.108439
http://doi.org/10.1016/j.progpolymsci.2014.10.009
http://doi.org/10.1002/polb.10360
http://doi.org/10.1021/am301230q
http://www.ncbi.nlm.nih.gov/pubmed/22950786
http://doi.org/10.1122/1.4982702
http://doi.org/10.1002/adma.200500167
http://doi.org/10.1007/s00289-003-0196-2
http://doi.org/10.1016/j.jcrysgro.2014.07.029
http://doi.org/10.1002/pola.24572
http://doi.org/10.1038/ncomms9563
http://doi.org/10.1016/S0032-3861(98)00496-0
http://doi.org/10.1088/2053-1583/aa57ff
http://doi.org/10.1016/j.micron.2004.02.003
http://doi.org/10.1088/1361-6528/ab851e
http://www.ncbi.nlm.nih.gov/pubmed/32235041


Nanomaterials 2021, 11, 1996 22 of 22

55. Rohini, R.; Bose, S. Electromagnetic interference shielding materials derived from gelation of multiwall carbon nanotubes in
polystyrene/poly(methyl methacrylate) blends. ACS Appl. Mater. Interfaces 2014, 6, 11302–11310. [CrossRef] [PubMed]

56. Harirchian-Saei, S.; Wang, M.C.P.; Gates, B.D.; Moffitt, M.G. Directed polystyrene/poly (methyl methacrylate) phase separation
and nanoparticle ordering on transparent chemically patterned substrates. Langmuir 2012, 28, 10838–10848. [CrossRef]

57. Dekeyser, C.M.; Biltresse, S.; Marchand-Brynaert, J.; Rouxhet, P.G.; Dupont-Gillain, C.C. Submicrometer-scale heterogeneous
surfaces by PS-PMMA demixing. Polymer 2004, 45, 2211–2219. [CrossRef]

58. Ton-That, C.; Shard, A.G.; Daley, R.; Bradley, R.H. Effects of annealing on the surface composition and morphology of PS/PMMA
blend. Macromolecules 2000, 33, 8453–8459. [CrossRef]

59. Malwela, T.; Ray, S.S. Study of morphology and crystal growth behaviour of nanoclay-containing biodegradable polymer blend
thin films using atomic force microscopy. Polymer 2012, 53, 2705–2716. [CrossRef]

60. Kashiwagi, T.; Inaba, A.; Brown, J.E.; Hatada, K.; Kitayama, T.; Masuda, E. Effects of weak linkages on the thermal and oxidative
degradation of poly(methyl methacrylates). Macromolecules 1986, 19, 2160–2168. [CrossRef]

61. Zhang, Z.; Xin, X.; Yan, Q.; Li, Q.; Yang, Y.; Ren, T.-L. Two-step heating synthesis of sub-3 millimeter-sized orthorhombic black
phosphorus single crystal by chemical vapor transport reaction method. Sci. China Mater. 2016, 59, 122–134. [CrossRef]

62. Liu, C.; Wu, W.; Shi, Y.; Yang, F.; Liu, M.; Chen, Z.; Yu, B.; Feng, Y. Creating MXene/reduced graphene oxide hybrid towards
highly fire safe thermoplastic polyurethane nanocomposites. Comp. B Eng. 2020, 203, 108486. [CrossRef]

63. Shi, Y.; Liu, C.; Duan, Z.; Yu, B.; Liu, M.; Song, P. Interface engineering of MXene towards super-tough and strong polymer
nanocomposites with high ductility and excellent fire safety. Chem. Eng. J. 2020, 399, 125829. [CrossRef]

64. Shi, Y.; Liu, C.; Liu, L.; Fu, L.; Yu, B.; Lv, Y.; Yang, F.; Song, P. Strengthening, toughing and thermally stable ultra-thin MXene
nanosheets/polypropylene nanocomposites via nanoconfinement. Chem. Eng. J. 2019, 378, 122267. [CrossRef]

65. Barton, D.H.R.; Vonder Embse, R.A. The invention of Radical reactions. Part 39. The Reaction of White Phosphorus with
Carbon-Centered Radicals. An Improved procedure for the Synthesis of Phosphonic Acids and Further Mechanistic Insights.
Tetrahedron 1998, 54, 12475–12496. [CrossRef]

66. Barton, D.H.R.; Zhu, J. Elemental White Phosphorus as a Radical Trap: A New and General Route to Phosphonic Acids. J. Am.
Chem. Soc. 1993, 115, 2071–2072. [CrossRef]
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