1	Estradiol Mediates Greater Germinal Center Responses to Influenza Vaccination in
2	Female than Male Mice
3	Santosh Dhakal ^{a,†,*} , Han-Sol Park ^{a,*} , Kumba Seddu ^a , John Lee ^a , Patrick S. Creisher ^a ,
4	Kimberly M. Davis ^a , Isabella R. Hernandez ^b , Robert W. Maul ^b , Sabra L. Klein ^a #
5	
6	^a W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns
7	Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
8	^b Laboratory of Molecular Biology and Immunology, National Institute on Aging,
9	National Institutes of Health, Baltimore, Maryland, USA
10	
11	Running Head: Sex Differences in Influenza Immunity
12	
13	#Address correspondence to Sabra L. Klein, sklein2@jhu.edu.
14	[†] Present address: Department of Diagnostic Medicine/Pathobiology, College of
15	Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
16	*equal contribution to this work, with order determined based on role in designing,
17	planning, and executing experiments, analyses, and manuscript writing.
18 19 20	Abstract word count: 246 Importance statement: 110 Main text word count: 4154

21 Number of figures: 622 Number of references: 44

Dhakal, Park et al.

2

23 Abstract

24 Adult females of reproductive ages develop greater antibody responses to inactivated 25 influenza vaccine (IIV) than males. How sex, age, and sex steroid changes impact B cells 26 and durability of IIV-induced immunity and protection over 4-months post-vaccination 27 (mpv) was analyzed. Vaccinated adult females had greater germinal center (GC) B cell 28 and plasmablast frequencies in lymphoid tissues, higher neutralizing antibody responses 29 1-4 mpv, and better protection against live H1N1 challenge than adult males. Aged mice, 30 regardless of sex, had reduced B cell frequencies, less durable antibody responses, and 31 inferior protection after challenge than adult mice, which correlated with diminished 32 estradiol among aged females. To confirm that greater IIV-induced immunity was caused 33 by sex hormones, four core genotype (FCG) mice were used, in which the testes 34 determining gene, Sry, was deleted from ChrY and transferred to Chr3, to separate 35 gonadal sex (i.e., ovaries or testes) from sex chromosome complement (i.e., XX or XY 36 complement). Vaccinated, gonadal female FCG mice (XXF and XYF) had greater 37 numbers of B cells, higher antiviral antibody titers, and reduced pulmonary virus titers 38 following live H1N1 challenge than gonadal FCG males (XYM and XXM). To establish 39 that lower estradiol concentrations cause diminished immunity, adult and aged females 40 received either a placebo or estradiol replacement therapy prior to IIV. Estradiol 41 replacement significantly increased IIV-induced antibody responses and reduced 42 morbidity after the H1N1 challenge among aged females. These data highlight that 43 estradiol is a targetable mechanism mediating greater humoral immunity following 44 vaccination among adult females.

Dhakal, Park et al.

3

46 Importance

47	Females of reproductive ages develop greater antibody responses to influenza vaccines
48	than males. We hypothesized that female-biased immunity and protection against
49	influenza was mediated by estradiol signaling in B cells. Using diverse mouse models
50	ranging from advanced age mice to transgenic mice that separate sex steroids from sex
51	chromosome complement, those mice with greater concentrations of estradiol
52	consistently had greater numbers of antibody producing B cells in lymphoid tissue,
53	higher antiviral antibody titers, and greater protection against live influenza virus
54	challenge. Treatment of aged female mice with estradiol enhanced vaccine-induced
55	immunity and protection against disease, suggesting that estradiol signaling in B cells is
56	critical for improved vaccine outcomes in females.
57	

Dhakal, Park et al.

4

58 Introduction

59 Human and animal studies illustrate that after receipt of either seasonal or 60 pandemic influenza vaccines, adult females produce significantly greater quantity and 61 quality of antibodies, which in turn provide better protection after influenza virus 62 infection than males, at least in mice (1-6). With aging, antibody production after vaccination and protection from live influenza virus infection is reduced (3, 7, 8), with 63 64 evidence that the age-associated decline in immunity is greater for females than males in 65 response to seasonal influenza vaccines in humans (9), the pandemic monovalent 2009 66 H1N1 vaccine in humans (3), and universal influenza vaccine candidates in mice (10). Several studies illustrate that the effectiveness of the influenza vaccine decreases over an 67 influenza season, likely due to waning levels of virus-specific antibodies (11-13), but 68 69 whether age and sex influence the waning of influenza vaccine-induced antibody 70 responses and protection has not been reported.

71 Greater vaccine-induced immunity and protection among adult females appear to 72 be mediated by differential regulation of genes associated with B cell function. Toll-like 73 receptor 7 (Tlr7) plays an important function in antibody isotype switching and antibody 74 production in the germinal centers (GC) (14, 15). Adult female mice have a greater 75 expression of the X-linked Tlr7 gene in splenic B cells following vaccination as 76 compared to adult males, with deletion of *Tlr7* eliminating sex differences in vaccine-77 induced immunity and protection (4). Increased DNA methylation in the promoter of *Tlr7* 78 contributes to greater *Tlr7* expression in B cells from vaccinated female than male mice 79 (4), but with known and putative estrogen response elements in the promoter of Tlr7 (16), 80 regulation of *Tlr7* expression by estrogen receptor signaling cannot be ruled out.

Dhakal, Park et al.

5

81 Expression of activation-induced cytidine deaminase (Aicda) mRNA, the gene 82 that encodes activation-induced deaminase (AID) enzyme, is involved in somatic 83 hypermutation (SHM), and shows greater expression in splenic B cells isolated from 84 vaccinated adult females than adult male mice, with deletion of Aicda eliminating sex 85 differences vaccine-induced immunity and protection (6). These data suggest that sex differences humoral immunity is dependent on greater class switch recombination and 86 87 SHM in B cells from female than male mice. Regulation of these processes in B cells by 88 sex steroids has been established in autoimmune disease mouse models (17, 18), but less 89 so in the context of inactivated vaccines, where humoral immunity is the correlate of 90 protection (19). Both in humans and mice, estradiol is positively, and testosterone is 91 negatively, associated with antibody titers after influenza vaccination (2, 3). Moreover, in 92 adult mice, sex differences in vaccine-induced immunity are eliminated by removal of the 93 gonads and restored by exogenous sex steroid replacement in gonadectomized male and 94 female mice (3). The contributions of gonadal sex versus sex chromosome complement 95 to sex differences in influenza vaccine-induced immunity and protection have not been 96 systematically investigated. Because the estrogenic changes with aging affect vaccine-97 induced immunity (3), we hypothesized that sex steroids more than sex chromosome 98 complement would mediate sex differences in influenza vaccine-induced immunity and 99 protection against infection. Whether changes in sex steroid concentrations affect 100 numbers of antibody producing B cells, titers of antiviral antibody, or both was further 101 explored. Finally, consideration was given to the therapeutic use of estrogen replacement 102 therapy for improving vaccine-induced immunity and protection in aged female mice.

Dhakal, Park et al.

6

104 **Results**

105 Vaccinated adult females have greater numbers of antibody producing B cells,

106 **antibody responses, and protection against influenza than males, which changes**

107 with advanced age

108 Previous studies from our group reveal that after receipt of an inactivated 2009 109 H1N1 vaccine, adult females have greater neutralizing antibody responses, more cross-110 reactive IgG antibodies, more GC B cells in spleens, and greater SHM frequencies in 111 regions of the recombined V genes in splenic GC B cells than males (3, 4, 6). Whether 112 these sex differences in humoral immunity change with aging has not been explored. In 113 draining lymph nodes (i.e., inguinal, and popliteal) (20) collected at 35 dpv (i.e., 14-days 114 post boost) from vaccinated animals, frequencies and total numbers of GC B cells and 115 plasmablasts were determined by flow cytometry (Fig. 1A). Adult mice had significantly 116 greater frequencies and numbers of GC B cells (Fig. 1B-C) and plasmablasts (Fig. 1D-E) 117 in their draining lymph nodes than aged mice. Adult females had significantly greater 118 numbers of GC B cells (Fig. 1C) as well as greater frequencies and numbers of 119 plasmablasts (Fig. 1D-E) in draining lymph nodes than adult males. Sex differences in B 120 cell numbers and proportions were not observed in lymph nodes from aged mice (Fig. 121 **1B-E**). The frequencies and numbers of GC B cells were also determined at 35 dpv in the 122 spleen. As observed in the lymph nodes, the frequencies, and numbers of GC B cells in 123 the spleens of vaccinated mice were greater among adult than aged mice, with adult 124 females having more GC B cells than adult males (Fig. 1F-G). Splenic GC B cells were 125 sorted and the J_H4 intronic regions of the recombined V genes were sequenced. Consistent with previous results (6), the mutation frequency in the J_H4 intronic region 126

Dhakal, Park et al.

7

127 showed a trend of greater frequencies in splenic GC B cells from adult females than adult 128 males (**Fig. 1H**, p=0.1), with the sex difference in SHM not observed among aged 129 animals who generally had greater variability in SHM frequencies in splenic GC B cells 130 than among adult animals (**Fig. 1H**). These data illustrate an age-associated reduction in 131 the numbers of GC B cells and plasmablasts, but not in SHM, with adult females having 132 greater numbers of GC B cells and plasmablasts in lymphoid tissues than adult males, 133 which is mitigated with aging.

134 In addition to having more antibody producing cells in draining lymph nodes and 135 spleens at 1-mpv, vaccinated adult females had greater titers of anti-2009 H1N1-specific 136 IgG, IgG2c, and virus neutralizing, but not IgG1, antibodies than adult males (Fig. 2A-137 **D**). While adult mice had greater antibody responses than aged mice, no sex differences 138 in antibody titers were observed among aged mice (Fig. 2A-D). Concentrations of 139 estradiol were greater in adult females than either males or aged females (Fig. 2E), 140 reflecting the patterns observed for both antibodies producing cells and antibody titers. In 141 contrast, adult males had greater testosterone concentrations than either females or aged 142 males (Fig. 2F), which did not reflect the patterns of vaccine-induced immunity. These 143 data suggest that numbers of antibody producing B cells and titers of antiviral antibody 144 are greatest in the animals that have the highest circulating concentrations of estradiol.

145

146 Sex differences in vaccine-induced antiviral antibody responses are durable over
147 time among adult, but not aged, mice

148 To explore sex and age differences in the durability of vaccine-induced antibody 149 responses and protection, vaccinated adult and aged male and female mice were followed

Dhakal, Park et al.

8

150 for 4-mpy, and plasma samples were collected at each month to measure anti-2009 H1N1 151 antibody responses. Adult mice maintained highly detectable anti-2009 H1N1 IgG, 152 IgG2c, and nAb titers for up to 4-mpv, with females maintaining greater antibody 153 responses than males for the duration of the study (Fig. 3A-C). In contrast, after 1-mpv 154 anti-2009 H1N1 IgG, IgG2c, and nAb titers fell below the limits of assay detection 155 among aged mice, with no sex differences observed (Fig. 3A-C). Vaccinated adult and 156 aged male and female mice were challenged with a 2009 H1N1 drift variant virus at 157 either 1 or 4 mpv. Infectious virus titers were measured in the lungs at 3 dpc and were 158 significantly lower among adult than aged mice, with adult females having lower 159 pulmonary virus titers than either adult males or aged males and females both at 1 and 4 160 mpv (Fig. 4A, C). Subsets of mice were followed for 14 dpc for morbidity. At 1 mpv, 161 vaccinated aged mice lost significantly more body mass compared with adult mice, with 162 adult males losing more body mass than adult females after challenge with 2009 H1N1 163 drift variant virus (Fig. 4B). In contrast, after live virus challenge at 4 mpv, sex 164 differences in protection from disease were not observed either in adult or aged animals, but adult mice were still better protected from morbidity than aged mice (Fig. 4D). Taken 165 166 together, these data suggest that the greater vaccine-induced immunity and protection 167 against infection, but not disease, in adult female mice were durable over time, but lost 168 with age.

169

170 Sex steroids more than chromosomal complement cause sex differences in influenza

171 vaccine-induced antibody responses and protection

Dhakal, Park et al.

9
-

172	Our previous work illustrated that adult females develop greater 2009 H1N1
173	vaccine-induced immunity and protection against 2009 H1N1 drift variant virus, which is
174	mediated by both greater expression of the X-linked gene Tlr7 in B cells and estrogenic
175	enhancement of immune responses (3, 4, 6). Our current work (Fig. 1-4) also indicated
176	that greater estradiol concentrations were associated with more durable antibody
177	responses and protection against infection. To determine the contribution of sex steroids
178	versus sex chromosome complement to sex differences in vaccine-induced immunity and
179	protection, we used the FCG mouse model. The FCG mouse model involves deletion of
180	Sry from ChrY and insertion of a Sry transgene on Chr3, resulting in: XX gonadal
181	females (XXF), XY- gonadal females (XYF), XXSry gonadal males (XXM), and XY-Sry
182	gonadal males (XYM). The immunity phenotype of these FCG mice can be compared in
183	2x2 experimental design to separate the contribution of gonadal sex and sex steroid (i.e.,
184	testes or ovaries that produce high concentrations of androgens or estrogens, respectively)
185	from sex chromosome complement (i.e., XX or XY) (21).
186	Among gonadally intact adult FCG mice, estradiol concentrations were greater in
187	gonadal females (XXF and XYF) than gonadal males (Fig. 5A) and testosterone
188	concentrations were greater in gonadal males (XYM and XXM) than gonadal females
189	(Fig. 5B). At 28 dpv, we measured IgG and IgG2c binding to 2009 H1N1 as well as
190	neutralizing antibody responses against the vaccine virus and observed that gonadal
191	females (XXF and XYF) produce significantly greater antibody titers than gonadal males
192	(XYM and XXM) (Fig. 5C-E). At 35 dpv, gonadal females (XXF and XYF) also had
193	greater numbers of GC B cells and plasmablasts in the draining lymph nodes than
194	gonadal males (XYM and XXM) (Fig. 5F-G).

Dhakal, Park et al. 10

195	Vaccinated FCG mice were challenged with a drift variant of 2009 H1N1 virus,
196	and five days later euthanized to extract lungs to measure pulmonary titers of virus.
197	Gonadal females (XXF and XYF) had lower pulmonary titers of virus than gonadal males
198	(XYM and XXM) (Fig. 5H). A separate cohort of vaccinated and infected FCG mice was
199	followed for morbidity (i.e., mass loss after infection) as a measure of how well
200	vaccination protected not only against infection but also disease. Vaccine-induced
201	protection against disease revealed a gonadal sex by sex chromosome complement
202	interaction, in which while gonadal males experienced greater disease than gonadal
203	females, among gonadal females, XXF mice suffered significantly less morbidity than
204	XYF mice (Fig. 5I). Taken together, these data suggest that sex steroids have a greater
205	effect on vaccine-induced antibody producing B cells and protection against infection
206	than sex chromosome complement.
207	
208	Estradiol supplementation in aged females improves influenza vaccine-induced
209	antibody response and protection
210	Both the aging and FCG models illustrated that sex steroids are critical regulators

iging Έ 211 of vaccine-induced humoral immunity and protection against infection with influenza 212 virus. If reduced estradiol concentrations, in particular, cause worse vaccine-induced 213 immunity and protection, then estradiol supplementation in aged females might rescue 214 immunity by improving antibody responses after vaccination and protection against 215 infection. To test this hypothesis, adult and aged female mice were implanted either with 216 placebo or estradiol-filled capsules and vaccinated with inactivated 2009 H1N1 vaccine. 217 At 35 dpv, IgG and IgG2c binding to 2009 H1N1 as well as neutralizing antibody

Dhakal, Park et al.

11

218	responses against the vaccine virus were measured. Estradiol supplementation in aged
219	females significantly improved anti-2009 H1N1 IgG, IgG2c, and neutralizing antibody
220	responses after vaccination (Fig. 6A-C). Specifically, vaccinated aged females with
221	estradiol produced antiviral antibody responses that were comparable to adult females
222	with either endogenous (i.e., placebo) or exogenous estradiol and were greater than aged
223	females that received placebo treatment. Vaccinated adult and aged female mice were
224	challenged with 2009 H1N1 drift variant virus at 42 dpv, and infectious virus titers were
225	measured in the lungs at 3 dpc. Estradiol supplementation in aged female mice did not
226	significantly reduce replicating virus titers in the lungs of vaccinated mice as compared
227	with aged females that received placebo treatment (Fig. 6D). In contrast, among mice that
228	were followed for 14 dpc for morbidity, estradiol supplementation significantly reduced
229	infection-induced morbidity as compared with placebo treatment in aged female mice
230	(Fig. 6E). Vaccinated aged females treated with estradiol were as protected against
231	severe influenza disease as vaccinated adult females that had either endogenous or
232	exogenous estradiol. Taken together, these data highlight that estradiol replacement
233	improves vaccine-induced antibody responses and reduces the burden of disease, but not
234	virus replication, after infection in aged female mice.
0.05	

235

236 **Discussion**

Using diverse mouse models and hormone replacement, we explored how sex and aging impact the cellular mechanisms and durability of immunity and protection to inactivated influenza vaccine (IIV). Following vaccination, greater numbers and frequencies of GC B cells and plasmablasts, as well as antiviral antibody responses are

Dhakal, Park et al.

241	
241	associated with better protection against infection and disease following influenza virus
242	challenge. The novelty of our work is that we show that elevated estradiol concentrations
243	more than other biological factors are a strong predictor of better B cell-mediated
244	immunity and protection against infection in females as compared with males. Loss of
245	estradiol either through aging or through use of transgenic mice significantly impairs B
246	cell immunity and long-term protection against influenza infection and disease.
247	Both aged males and females have lower numbers of plasmablasts and GC B
248	cells, less durable antibody responses, and reduced protection against both infection and
249	disease following live virus challenge as compared with adult mice. Due to the waning of
250	antibodies, influenza virus vaccine effectiveness declines significantly even within the
251	same influenza season (11, 22). Such antibody waning after influenza virus infection or
252	vaccination is more prominent among older than younger adults (13, 23). The age-
253	associated decline in antibody responses can be broadly attributed to geriatric
254	immunosenescence, with several B cell-specific defects associated (7, 24). After
255	vaccination, activated B cells undergo rapid proliferation and differentiation in the GCs
256	within the secondary lymphoid tissues, including the spleen and lymph nodes (25). SHMs
257	and class switch recombination (CSR) occurs within the GC and together underly the
258	production of high-affinity class-switched antibodies (26). Reduced serum antibody titers
259	are observed among older compared to younger individuals after receipt of seasonal
260	influenza vaccination, which is associated with lower numbers of plasmablasts (27). In
261	humans receiving seasonal influenza vaccination, aged individuals have reduced SHM of
262	plasmablasts as compared with younger aged individuals that results in an inability to
263	mount antibody responses to the drifted epitopes of influenza virus (28). Reduced SHM

Dhakal, Park et al. 13

264	was not observed with aging in our mice, which might reflect species-specific differences
265	or kinetic differences in the timing of sample collection.
266	Sex chromosome complement (i.e., having XX or XY) can directly cause sex
267	differences in a phenotype (e.g., humoral immunity) through an imbalance in the
268	expression of X and Y genes that can affect immunity (29). For example, <i>Tlr7</i> is encoded
269	on the X chromosome, can escape X inactivation in immune cells from females (30), and
270	has greater expression in B cells from females than males following influenza vaccination
271	(4). Sex chromosome complement also can indirectly cause sex differences in a
272	phenotype by altering concentrations of sex steroids that can bind to nuclear receptors in
273	immune cells to transcriptionally regulate immune cell function (31). For example,
274	elevated testosterone in males dampens inflammatory (32) and antibody responses (2) to
275	alter the outcome of influenza virus infection and vaccination. There can also be
276	combined effects of genes and hormones; some X-linked genes, e.g., Tlr7, contain
277	estrogen response elements and their expression can be regulated by sex steroids (16).
278	Using the FCG mouse model, we explored whether sex differences in humoral immunity
279	to IIV is caused by direct effects of sex chromosome complement, effects of sex steroids
280	on immune cell function, or both. While gonadal sex, especially production of higher
281	levels of estradiol, in adult females mediated higher levels of vaccine-induced antibody
282	production and pulmonary virus clearance, combination of gonadal sex and sex
283	chromosome complement appeared to modulate protection from severe disease, at least in
284	females.
285	We showed that estradiol treatment can improve IIV-induced antibody production
296	in an effert for Developer studies illestants that extendial terrations of it. (1.1)

286 in aged females. Previous studies illustrate that estradiol treatment increases antibody

Dhakal, Park et al.

287	response and protects female mice from influenza virus infection and these effects are
288	mediated through ER α signaling (33). In a postmenopausal mouse model, estradiol
289	treatment restored antibody production after vaccination with an inactivated influenza
290	virus split vaccine (34). Because B cells have estrogen receptors, estrogens, including
291	17β -estradiol, can transcriptionally regulate cellular activity and function (35), in part by
292	binding to estrogen response elements in the promoter region of estrogen-responsive
293	genes, such as Aicda and directly activating AID transcription resulting in increased CSR
294	and SHM (36, 37). In contrast, testosterone suppresses splenic B cells function by
295	dowregulating BAFF, which is a cytokine essential for survival of splenic B cells (38).
296	Greater serum testosterone concentrations also are associated with reduced antibody
297	response during malaria vaccination (39).
298	Estradiol treatment in aged females was able to improve disease outcomes, but
299	not virus replication, after influenza virus infection, indicating that estradiol treatment
300	can rescue some, but not all, aspects of age-associated reductions in IIV-induced
301	immunity. The inability of estradiol treatment to improve pulmonary virus clearance in
302	aged mice is likely associated with age-specific changes in the pulmonary integrity and
303	function, which are irreversible with hormone treatment. For example, in aged female
304	mice, influenza virus infection-induced inflammation promotes fibrosis in a greater
305	extent than in adult female mice (40). Aged female mice also have neutrophils in the
306	lungs with altered chemotactic gene expression and tissue localization, and lymphocytes
307	with impaired effector and memory functions as compared with adult females (40).
308	Overall, our study highlights that estradiol is a biological factor contributing to
309	improved outcomes to IIV vaccine. Future studies must consider how to harness this for

Dhakal, Park et al.

310	adjuvants or other treatments to improve vaccine outcomes in post-menopausal women.
311	Future studies also must consider the mechanisms by which estrogens and even
312	androgens alter the activity of B cells to impact antibody responses, which are the
313	primary correlate of protection from influenza. Consistent observations of sex-specific
314	effects of aging on antibody responses, we are now showing sex-specific effects of aging
315	on numbers of antibody producing cells, including GC B cells and plasmablasts, which
316	should be considered during the design and dosing of seasonal and universal influenza
317	vaccines.
318	Future studies should explore the role of sex steroids in genetic and epigenetic
319	regulation of GC B cell and plasmablast activity. Although AID enzyme activity was not
320	measured in this study, the observation that IIV-specific IgG2c, but not IgG1, was greater
321	among adult females than males and regulated by gonadal steroids highlights a
322	fundamental role of biological sex differences in CSR. Future studies will need to
323	consider the differential effects of gonadal steroids on the kinetics of the secretory
324	functions of GC B cells and plasmablasts and B cell proliferation.
325	In humans, prior immunity caused by previous exposure to influenza viruses
326	through infection or vaccination plays an important role in determining immune
327	responses after subsequent influenza vaccination (41, 42). In the current study, influenza-
328	naïve mice were used, which does not incorporate the impact of pre-existing immunity on
329	sex or age differences in vaccine effectiveness. High-dose or adjuvanted vaccines are
330	recommended in aged individuals for influenza and we and others have shown that
331	females maintain greater season to season antibody durability than males among
332	individuals 75+ years of age (9). Whether high-dose or adjuvanted vaccines could

Dhakal, Park et al.

16

overcome the deficiency in GC B cells and plasmablasts numbers and functions in

individuals with lower circulating estrogens should be explored.

335

336 Materials and Methods

337 *Mice.* Adult (8-10 weeks old) male and female C57BL/6CR mice were purchased 338 from Charles River Laboratories (Frederick, MD) while the aged (17 months old) mice, 339 originating from the Charles River Laboratories, were obtained from the National 340 Institute on Aging (NIA). Dr. Arthur P. Arnold gifted breeder males for the FCG mouse 341 model from the University of California, Los Angeles (43). The FCG mouse colony was 342 maintained in-house by mating XY⁻ males with wild-type C57BL/6J females purchased 343 from the Jackson Laboratory (Bar Harbor, ME). Genotypes were determined at weaning 344 (i.e., at 3 weeks) by PCR analysis for the presence or absence of the Sry gene as 345 described (44). Pups of the same genotype were housed together and were used at 8-10 346 weeks of age. Mice were housed 5/cage under standard biosafety level (BSL)-2 347 conditions in the Johns Hopkins Bloomberg School of Public Health animal facility with 348 ad libitum food and water. All animal procedures were approved by the Johns Hopkins 349 University Animal Care and Use Committee (MO20H236).

Vaccination, challenge, and morbidity measurement. Mice were vaccinated twice, at 3-week intervals, with $20\mu g$ of mouse-adapted A/California/04/09 H1N1 (ma2009 H1N1) inactivated vaccine through the intramuscular route in the right thigh muscle (3, 4, 6). Blood samples were collected at different time points after vaccination through the retroorbital route under isoflurane anesthesia. Vaccinated mice were challenged with 10^5 TCID₅₀ of a mouse-adapted A/California/04/09 H1N1 drift variant

Dhakal, Park et al.

virus (ma2009 H1N1dv) through the intranasal route under ketamine-xylazine anesthesia
(3, 4, 6). To measure morbidity, body mass of the virus-challenged animals was recorded
daily for a period of 14 days post-challenge (dpc).

359 *Hormone supplement.* For estradiol supplement, adult (8-10 weeks old) or aged 360 (17 months old) female C57BL/6CR mice were implanted subcutaneously either with an 361 empty silastic capsule (i.e., placebo) or with a capsule loaded with 17β-estradiol (5mm 362 long), prepared as described (3).

363 Antibody measurements. The levels of anti-2009 H1N1 IgG, IgG1, and IgG2c 364 antibodies in plasma samples collected at different time points after vaccination were 365 measured using our in-house enzyme-linked immunosorbent assays (ELISAs) (3, 4, 6). 366 Briefly, plates were coated with 50µL/well of sodium carbonate and sodium bicarbonate 367 coating buffer containing 2µg/mL of mouse-adapted 2009 H1N1 whole virus protein and 368 were incubated overnight at 4°C. Next day, plates were washed 3-times, blocked with 369 10% skim milk solution for 1h at 37°C, and then serially diluted plasma samples were 370 added. After 1hr incubation at 37°C, plates were washed and horse-radish peroxidase 371 (HRP)-conjugated secondary IgG (Invitrogen), IgG1 (Invitrogen), and IgG2c antibodies 372 (Invitrogen) were added. After 1hr incubation at 37°C, plates were washed and reactions 373 were developed using 3,3',5,5'-tetramethylbenzidine (TMB, BD Biosciences) for 20min, 374 stopped using 1 N hydrochloric acid (HCL). Plates were read at 450nm wavelength using 375 the ELISA plate reader (Molecular Devices) and the endpoint titer was calculated as the 376 highest serum dilution with an average optical density (OD) value greater than 3-times 377 the average OD of negative controls. Likewise, the virus-neutralizing antibody (nAb) 378 titers on plasma samples, against the vaccine virus (i.e., ma2009 H1N1 virus), were

Dhakal, Park et al.

18

measured using a Madin-Darby canine kidney (MDCK) cells-based microneutralization
assay, as previously described (3, 4, 6).

Sex steroid measurement. Concentrations of sex steroids on plasma samples were
measured using commercial testosterone (IBL America, Minneapolis, MN) and estradiol
(Calbiotech Inc., El Cajon, CA) ELISA kits, as per the manufacturer's instructions (3,
10).

Virus titration in lungs. For virus titration, lung samples collected at 3 or 5-dpc were homogenized, lung-homogenates were 10-fold serially diluted in serum-free media and then transferred in six replicates in 96-well cell culture plates confluent with MDCK cells. Plates were incubated for 6 days at 32°C followed by fixation with 4% formaldehyde, staining with naphthol blue-black solution, and virus titer calculation by Reed and Muench method (6, 10).

391 Flow cytometry. The number of GC B cells $(CD4^{-}B220^{+}CD38^{-}GL7^{+})$ and 392 plasmablasts (CD4⁺B220⁺CD138⁺) in the lymph nodes (i.e., mix of popliteal and 393 inguinal) or spleens collected at 35dpv were determined using flow cytometry (6). 394 Antibodies used were PerCP-cy5.5 rat anti-mouse CD4 (#55095, clone: RM4-5, BD 395 Biosciences), PE-Cy7 rat anti-mouse CD45R/B220 (#552772, clone RA3-6B2, BD 396 Biosciences), BV421 rat anti-mouse CD38 (#562768, clone 90/CD38, BD Biosciences), 397 FITC rat anti-mouse T- and B-cell activation antigen (clone GL7, #553666, BD 398 Biosciences), and APC rat anti-mouse CD138 (#558626, clone 281-2, BD Biosciences). 399 Cells were acquired using the LSR II instrument (BD Biosciences) and analyzed using 400 FlowJo software v.10.8.1 (BD Life Sciences).

Dhakal, Park et al. 19

401 Somatic hypermutation (SHM). For SHM, splenic GC B cells (B220⁺CD38⁻ 402 GL7⁺) were sorted at 35dpv using BD FACS Aria Fusion (BD Biosciences). Sorted cells 403 were then lysed in a digestion buffer, genomic DNA was isolated by phenol/chloroform 404 extraction and ethanol precipitation, and the J_H4 intronic region was amplified using a 405 nested polymerase chain reaction (PCR) protocol. The J_H4 intronic DNA (492 bp) was 406 sequenced and mutations in the unique VDJ clones were analyzed as described earlier 407 (6).

408 *Statistical analysis.* Data were analyzed in GraphPad Prism version 10.1.0. Sex 409 steroids concentration, antibody titers, virus titers in the lungs, numbers of GC B cells 410 and plasmablasts, and SHM frequencies were compared using two-way ANOVA 411 followed by Tukey's multiple comparisons. Antibody responses up to 4-mpv and change 412 in body mass after virus challenge were compared using repeated measures ANOVA 413 (mixed effects model) with Tukey's multiple comparisons. Data were considered 414 statistically significant at p < 0.05.

415 Data availability. All data will be made publicly available upon publication and upon
416 request for peer review.

417 Acknowledgements. We thank Alice Mueller, Henning Jacobsen, Abhinaya Ganesan,

418 Stephanie Peralta, and Sharvari Deshpande for their assistance with breeding, animal

- 419 work, and some assays. We thank Art Arnold at UCLA for providing transgenic male
- 420 FCG mice for breeding at Johns Hopkins. We are grateful to members of the Davis,
- 421 Klein, and Pekosz labs at Johns Hopkins Bloomberg School of Public Health for their

422 feedback on this work.

Dhakal, Park et al. 20

423	Funding. NIH/NIA Johns Hopkins Specialized Center of Research Excellence in sex and
424	age differences in immunity to influenza (U54AG062333, S.L.K.) and in part by the
425	Intramural Research Program of the National Institute on Aging (R.W.M.).
426	Author contributions. Santosh Dhakal, Robert Maul, and Sabra Klein conceived the
427	experimental questions contained in the funded NIH application. Santosh Dhakal, Han-
428	Sol Park, Kumba Seddu, and Patrick Creisher conducted all mouse work. Santosh
429	Dhakal, Kumba Seddu, and John Lee conducted antibody assays and Kumba Seddu and
430	Patrick Creisher conducted steroid assays. Santosh Dhakal, Han-Sol Park, and Kumba
431	Seddu conducted all flow cytometry and Santosh Dhakal and Han-Sol Park did all flow
432	cytometry analyses. Robert Maul and Isabella Hernandez conducted FACS sorting of

433 germinal center B cells. Han-Sol Park and Kimberly Davis conducted analyses of

434 germinal center B cells. Santosh Dhakal and Han-Sol Park organized all data, conducted

435 all statistical analyses, and created all figures. Santosh Dhakal and Sabra Klein wrote the

436 manuscript and all authors approved of the final draft.

437 References

438 Engler RJ, Nelson MR, Klote MM, VanRaden MJ, Huang CY, Cox NJ, Klimov 1. 439 A, Keitel WA, Nichol KL, Carr WW, Treanor JJ. 2008. Half- vs full-dose 440 trivalent inactivated influenza vaccine (2004-2005): age, dose, and sex effects on 441 immune responses. Arch Intern Med 168:2405-14. 442 2. Furman D, Hejblum BP, Simon N, Jojic V, Dekker CL, Thiébaut R, Tibshirani 443 RJ, Davis MM. 2014. Systems analysis of sex differences reveals an 444 immunosuppressive role for testosterone in the response to influenza vaccination. 445 Proc Natl Acad Sci U S A 111:869-74. 446 3. Potluri T, Fink AL, Sylvia KE, Dhakal S, Vermillion MS, Vom Steeg L, 447 Deshpande S, Narasimhan H, Klein SL. 2019. Age-associated changes in the 448 impact of sex steroids on influenza vaccine responses in males and females. NPJ 449 Vaccines 4:29. 450 Fink AL, Engle K, Ursin RL, Tang WY, Klein SL. 2018. Biological sex affects 4. 451 vaccine efficacy and protection against influenza in mice. Proc Natl Acad Sci U S 452 A 115:12477-12482.

Dhakal, Park et al.

453	5.	Živković I, Petrović R, Arsenović-Ranin N, Petrušić V, Minić R, Bufan B,
454		Popović O, Leposavić G. 2018. Sex bias in mouse humoral immune response to
455		influenza vaccine depends on the vaccine type. Biologicals 52:18-24.
456	6.	Ursin RL, Dhakal S, Liu H, Jayaraman S, Park HS, Powell HR, Sherer ML,
457		Littlefield KE, Fink AL, Ma Z, Mueller AL, Chen AP, Seddu K, Woldetsadik
458		YA, Gearhart PJ, Larman HB, Maul RW, Pekosz A, Klein SL. 2022. Greater
459		Breadth of Vaccine-Induced Immunity in Females than Males Is Mediated by
460		Increased Antibody Diversity in Germinal Center B Cells. mBio 13:e0183922.
461	7.	Frasca D, Blomberg BB, Garcia D, Keilich SR, Haynes L. 2020. Age-related
462		factors that affect B cell responses to vaccination in mice and humans. Immunol
463		Rev 296:142-154.
464	8.	Saurwein-Teissl M, Lung TL, Marx F, Gschösser C, Asch E, Blasko I, Parson W,
465		Böck G, Schönitzer D, Trannoy E, Grubeck-Loebenstein B. 2002. Lack of
466		antibody production following immunization in old age: association with
467		CD8(+)CD28(-) T cell clonal expansions and an imbalance in the production of
468		Th1 and Th2 cytokines. J Immunol 168:5893-9.
469	9.	Shapiro JR, Li H, Morgan R, Chen Y, Kuo H, Ning X, Shea P, Wu C, Merport K,
470		Saldanha R, Liu S, Abrams E, Chen Y, Kelly DC, Sheridan-Malone E, Wang L,
471		Zeger SL, Klein SL, Leng SX. 2021. Sex-specific effects of aging on humoral
472		immune responses to repeated influenza vaccination in older adults. npj Vaccines
473		6:147.
474	10.	Dhakal S, Deshpande S, McMahon M, Strohmeier S, Krammer F, Klein SL.
475		2022. Female-biased effects of aging on a chimeric hemagglutinin stalk-based
476		universal influenza virus vaccine in mice. Vaccine 40:1624-1633.
477	11.	Ferdinands JM, Gaglani M, Martin ET, Monto AS, Middleton D, Silveira F,
478		Talbot HK, Zimmerman R, Patel M. 2021. Waning Vaccine Effectiveness Against
479		Influenza-Associated Hospitalizations Among Adults, 2015–2016 to 2018–2019,
480		United States Hospitalized Adult Influenza Vaccine Effectiveness Network.
481		Clinical Infectious Diseases 73:726-729.
482	12.	Hu W, Sjoberg PA, Fries AC, DeMarcus LS, Robbins AS. 2022. Waning Vaccine
483		Protection against Influenza among Department of Defense Adult Beneficiaries in
484		the United States, 2016-2017 through 2019-2020 Influenza Seasons. Vaccines
485		(Basel) 10.
486	13.	Hsu JP, Zhao X, Chen MIC, Cook AR, Lee V, Lim WY, Tan L, Barr IG, Jiang L,
487		Tan CL, Phoon MC, Cui L, Lin R, Leo YS, Chow VT. 2014. Rate of decline of
488		antibody titers to pandemic influenza A (H1N1-2009) by hemagglutination
489		inhibition and virus microneutralization assays in a cohort of seroconverting
490		adults in Singapore. BMC Infectious Diseases 14:414.
491	14.	Pone EJ, Zhang J, Mai T, White CA, Li G, Sakakura JK, Patel PJ, Al-Qahtani A,
492		Zan H, Xu Z, Casali P. 2012. BCR-signalling synergizes with TLR-signalling for
493		induction of AID and immunoglobulin class-switching through the non-canonical
494		NF- κ B pathway. Nature Communications 3:767.
495	15.	Castiblanco DP, Maul RW, Russell Knode LM, Gearhart PJ. 2017. Co-
496		Stimulation of BCR and Toll-Like Receptor 7 Increases Somatic Hypermutation,
497		Memory B Cell Formation, and Secondary Antibody Response to Protein
498		Antigen. Front Immunol 8:1833.
.70		

Dhakal, Park et al.

499 500	16.	Cunningham MA, Wirth JR, Naga O, Eudaly J, Gilkeson GS. 2014. Estrogen Receptor Alpha Binding to ERE is Required for Full Tlr7- and Tlr9-Induced
501		Inflammation. SOJ Immunol 2.
502	17.	Pauklin S, Sernández IV, Bachmann G, Ramiro AR, Petersen-Mahrt SK. 2009.
503	17.	Estrogen directly activates AID transcription and function. J Exp Med 206:99-
504		111.
505	18.	Dodd KC, Menon M. 2022. Sex bias in lymphocytes: Implications for
506	10.	autoimmune diseases. Front Immunol 13:945762.
507	19.	Pollard AJ, Bijker EM. 2021. A guide to vaccinology: from basic principles to
508	17.	new developments. Nat Rev Immunol 21:83-100.
509	20.	Harrell MI, Iritani BM, Ruddell A. 2008. Lymph node mapping in the mouse. J
510	20.	Immunol Methods 332:170-4.
511	21.	Burgoyne PS, Arnold AP. 2016. A primer on the use of mouse models for
512	21.	identifying direct sex chromosome effects that cause sex differences in non-
513		gonadal tissues. Biol Sex Differ 7:68.
514	22.	Krammer F. 2019. The human antibody response to influenza A virus infection
515	22.	and vaccination. Nature Reviews Immunology 19:383-397.
516	23.	Song JY, Cheong HJ, Hwang IS, Choi WS, Jo YM, Park DW, Cho GJ, Hwang
517	23.	TG, Kim WJ. 2010. Long-term immunogenicity of influenza vaccine among the
518		elderly: Risk factors for poor immune response and persistence. Vaccine 28:3929-
519		3935.
520	24.	Frasca D, Blomberg BB. 2020. Aging induces B cell defects and decreased
521	21,	antibody responses to influenza infection and vaccination. Immunity & Ageing
522		17:37.
523	25.	Mesin L, Ersching J, Victora GD. 2016. Germinal Center B Cell Dynamics.
524	23.	Immunity 45:471-482.
525	26.	Maul RW, Gearhart PJ. 2010. AID and somatic hypermutation. Adv Immunol
526	201	105:159-91.
527	27.	Sasaki S, Sullivan M, Narvaez CF, Holmes TH, Furman D, Zheng NY, Nishtala
528	27.	M, Wrammert J, Smith K, James JA, Dekker CL, Davis MM, Wilson PC,
529		Greenberg HB, He XS. 2011. Limited efficacy of inactivated influenza vaccine in
530		elderly individuals is associated with decreased production of vaccine-specific
531		antibodies. J Clin Invest 121:3109-19.
532	28.	Henry C, Zheng NY, Huang M, Cabanov A, Rojas KT, Kaur K, Andrews SF,
533		Palm AE, Chen YQ, Li Y, Hoskova K, Utset HA, Vieira MC, Wrammert J,
534		Ahmed R, Holden-Wiltse J, Topham DJ, Treanor JJ, Ertl HC, Schmader KE,
535		Cobey S, Krammer F, Hensley SE, Greenberg H, He XS, Wilson PC. 2019.
536		Influenza Virus Vaccination Elicits Poorly Adapted B Cell Responses in Elderly
537		Individuals. Cell Host Microbe 25:357-366.e6.
538	29.	Fish EN. 2008. The X-files in immunity: sex-based differences predispose
539	_>.	immune responses. Nat Rev Immunol 8:737-44.
540	30.	Souyris M, Cenac C, Azar P, Daviaud D, Canivet A, Grunenwald S, Pienkowski
541		C, Chaumeil J, Mejía J, Guéry J-C. 2018. TLR7 escapes X chromosome
542		inactivation in immune cells. Science Immunology 3:eaap8855.
543	31.	Klein SL, Flanagan KL. 2016. Sex differences in immune responses. Nat Rev
544		Immunol 16:626-38.
-		

Dhakal, Park et al.

545 546 547	32.	vom Steeg LG, Vermillion MS, Hall OJ, Alam O, McFarland R, Chen H, Zirkin B, Klein SL. 2016. Age and testosterone mediate influenza pathogenesis in male mice. Am J Physiol Lung Cell Mol Physiol 311:L1234-L1244.
548	33.	Robinson DP, Lorenzo ME, Jian W, Klein SL. 2011. Elevated 17β-estradiol
549	55.	protects females from influenza A virus pathogenesis by suppressing
550		inflammatory responses. PLoS Pathog 7:e1002149.
	24	
551	34.	Nguyen DC, Masseoud F, Lu X, Scinicariello F, Sambhara S, Attanasio R. 2011.
552		17β -Estradiol restores antibody responses to an influenza vaccine in a
553	25	postmenopausal mouse model. Vaccine 29:2515-8.
554	35.	Hill L, Jeganathan V, Chinnasamy P, Grimaldi C, Diamond B. 2011. Differential
555		roles of estrogen receptors α and β in control of B-cell maturation and selection.
556	26	Mol Med 17:211-20.
557	36.	Park SR, Zan H, Pal Z, Zhang J, Al-Qahtani A, Pone EJ, Xu Z, Mai T, Casali P.
558		2009. HoxC4 binds to the promoter of the cytidine deaminase AID gene to induce
559		AID expression, class-switch DNA recombination and somatic hypermutation.
560		Nat Immunol 10:540-50.
561	37.	Mai T, Zan H, Zhang J, Hawkins JS, Xu Z, Casali P. 2010. Estrogen receptors
562		bind to and activate the HOXC4/HoxC4 promoter to potentiate HoxC4-mediated
563		activation-induced cytosine deaminase induction, immunoglobulin class switch
564		DNA recombination, and somatic hypermutation. J Biol Chem 285:37797-810.
565	38.	Wilhelmson AS, Lantero Rodriguez M, Stubelius A, Fogelstrand P, Johansson I,
566		Buechler MB, Lianoglou S, Kapoor VN, Johansson ME, Fagman JB, Duhlin A,
567		Tripathi P, Camponeschi A, Porse BT, Rolink AG, Nissbrandt H, Turley SJ,
568		Carlsten H, Mårtensson I-L, Karlsson MCI, Tivesten Å. 2018. Testosterone is an
569		endogenous regulator of BAFF and splenic B cell number. Nature
570		Communications 9:2067.
571	39.	Vom Steeg LG, Flores-Garcia Y, Zavala F, Klein SL. 2019. Irradiated sporozoite
572		vaccination induces sex-specific immune responses and protection against malaria
573		in mice. Vaccine 37:4468-4476.
574	40.	Kasmani MY, Topchyan P, Brown AK, Brown RJ, Wu X, Chen Y, Khatun A,
575		Alson D, Wu Y, Burns R, Lin CW, Kudek MR, Sun J, Cui W. 2023. A spatial
576		sequencing atlas of age-induced changes in the lung during influenza infection.
577		Nat Commun 14:6597.
578	41.	Henry C, Palm AE, Krammer F, Wilson PC. 2018. From Original Antigenic Sin
579		to the Universal Influenza Virus Vaccine. Trends Immunol 39:70-79.
580	42.	Dhakal S, Klein SL. 2019. Host Factors Impact Vaccine Efficacy: Implications
581		for Seasonal and Universal Influenza Vaccine Programs. J Virol 93.
582	43.	Arnold AP, Chen X. 2009. What does the "four core genotypes" mouse model tell
583	101	us about sex differences in the brain and other tissues? Front Neuroendocrinol
584		30:1-9.
585	44.	De Vries GJ, Rissman EF, Simerly RB, Yang LY, Scordalakes EM, Auger CJ,
586		Swain A, Lovell-Badge R, Burgoyne PS, Arnold AP. 2002. A model system for
587		study of sex chromosome effects on sexually dimorphic neural and behavioral
588		traits. J Neurosci 22:9005-14.
589		
507		

Dhakal, Park et al.

24

590 Figure legends.

591	Figure 1. The frequency and number of germinal center (GC) B cells and
592	plasmablasts are greater in the draining lymph nodes and spleens from vaccinated
593	adult, but not aged, females than males. Adult (8-10 weeks old) and aged (17 months
594	old) male and female C57BL/6CR mice were vaccinated twice with inactivated 2009
595	H1N1 vaccine in a 3-week interval. At 35 days post-vaccination (i.e., 14 days post-
596	boost), draining lymph nodes and spleens were collected, single-cell suspensions were
597	prepared, and flow cytometry was performed to measure the frequencies and numbers of
598	GC B cells and plasmablasts. (A) Representative flow plots are shown from the lymph
599	nodes of one adult female mouse. Frequencies and numbers of (B, C) GC B cells and (D,
600	E) plasmablasts in the lymph nodes were quantified. The frequencies and numbers of GC
601	B cells in the spleen were quantified (F, G), GC B cells were sorted, and (I) mutation
602	frequency in the J_H4 intronic region of sorted splenic GC B cells was measured. Data
603	represent the mean \pm standard error of the mean (n=5-19/group), and asterisks (*)
604	represent significant differences (p<0.05) between the groups based on two-way
605	ANOVAs followed by Tukey's multiple comparisons tests in GraphPad Prism 10.1.0.
606	
607	Figure 2. Adult, but not aged, females have higher antibody titers at 1-month post-
608	vaccination (mpv). Adult (8-10 weeks old) and aged (17 months old) male and female
609	C57BL/6CR mice were vaccinated twice with inactivated 2009 H1N1 vaccine in a 3-
610	week interval. At 35 days post-vaccination (i.e., 1 mpv), plasma samples were collected

611 to determine the titers of anti-2009 H1N1 influenza virus-specific (A) IgG, (B) IgG1, (C)

612 IgG2c, and (D) virus-neutralizing antibody (nAb) titers and to measure the concentrations

Dhakal, Park et al.

25

613	of (E) estradiol and (F) testosterone. Data represent the mean \pm standard error of the
614	mean (n=5-20/group), asterisks (*) represent significant differences (p<0.05) between the
615	groups based on two-way ANOVAs followed by Tukey's multiple comparisons tests in
616	GraphPad Prism 10.1.0.
617	
618	Figure 3: Adult female mice maintain higher titers of influenza vaccine-induced
619	antibodies up to 4 months post-vaccination (mpv), which is mitigated with aging.
620	Adult (8-10 weeks old) and aged (17 months old) male and female C57BL/6CR mice
621	were vaccinated twice with inactivated 2009 H1N1 vaccine at a 3-week interval. Plasma
622	samples were collected each month until 4 mpv and anti-2009 H1N1 influenza virus-
623	specific (A) IgG, (B) IgG2c, and (C) virus-neutralizing antibody (nAb) titers were
624	measured. Data represent the mean \pm standard error of the mean (n=15-20/group) and
625	significant differences between the groups are denoted by asterisks (*p<0.05) based on
626	repeated measures two-way ANOVAs followed by Tukey's multiple comparisons tests in
627	GraphPad Prism 10.1.0.
628	
629	Figure 4: Female-biased vaccine-induced protection against infection, but not
630	disease, is maintained for up to 4 months post-vaccination (mpv) among adult, but

631 **not aged, animals.** Adult (8-10 weeks old) and aged (17 months old) male and female

632 C57BL/6CR mice were vaccinated twice with inactivated 2009 H1N1 vaccine at a 3-

633 week interval. At 1 or 4 mpv, vaccinated mice were challenged with 10^5 TCID₅₀ of a drift

634 variant of the 2009H1N1 virus. (A, B) Replicating virus titers in the lungs were measured

635 in a subset of mice at 5 days post-challenge (dpc), and (C, D) changes in body mass over

a period of 14 dpc were measured in another subset of mice to compare protection from

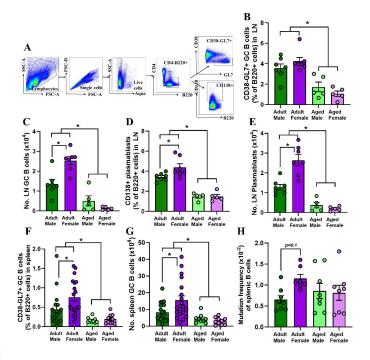
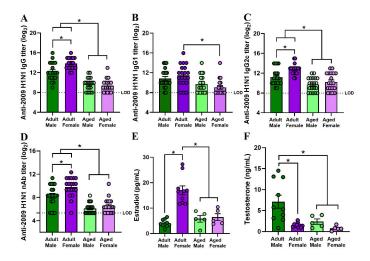
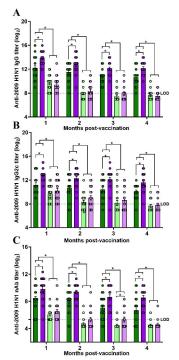
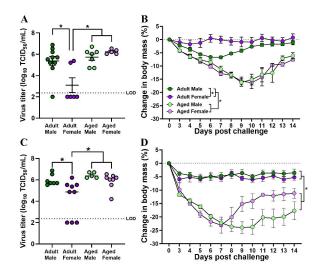
636

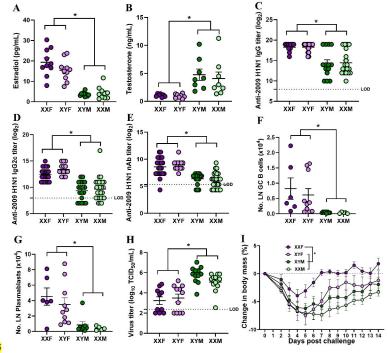
Dhakal, Park et al.

637	severe disease. Data represent the mean \pm standard error of the mean (n=15-20/group)
638	and significant differences between the groups are denoted by asterisks (*p<0.05) based
639	on two-way ANOVAs or repeated measures two-way ANOVAs followed by Tukey's
640	multiple comparisons tests in GraphPad Prism 10.1.0.
641	
642	Figure 5: Gonadal sex more than sex chromosomal complement mediates influenza
643	vaccine-induced immunity and protection. Eight to ten-week-old four core genotype
644	(FCG) C57BL/6J mice were vaccinated twice with inactivated 2009 H1N1 vaccine at a 3-
645	week interval. Plasma samples were collected at 28 days post-vaccination (dpv) and
646	concentrations of (A) estradiol and (B) testosterone along with 2009 H1N1 influenza
647	virus-specific (C) IgG, (D) IgG2c, and (E) virus-neutralizing antibody (nAb) titers were
648	measured. At 35 dpv (i.e., 14 days post-boost), popliteal and inguinal lymph nodes were
649	collected, single-cell suspensions were prepared, and the numbers of (F) germinal center
650	(GC) B cells and (G) plasmablasts were quantified using flow cytometry. At 42 days
651	post-vaccination (dpv), mice were challenged with 10^5 TCID ₅₀ of a drift variant of the
652	2009 H1N1 virus and (H) replicating virus titers in the lungs were measured in a subset
653	of mice at 5 days post-challenge (dpc) and (I) the percentage change in body mass over a
654	period of 14 dpc was measured in another subset of mice to evaluate protection from
655	severe disease. Data represent the mean \pm standard error of the mean (n=5-27/group) and
656	significant differences between the groups are denoted by asterisks (*p<0.05) based on
657	two-way ANOVAs or repeated measures two-way ANOVAs followed by Tukey's
658	multiple comparisons tests in GraphPad Prism 10.1.0.

Dhakal, Park et al.

660	Figure 6: Estradiol replacement improves influenza vaccine-induced antibody
661	responses and protection in aged female mice. Adult (8-10 weeks old) or aged (17
662	months old) female C57BL/6CR mice were subcutaneously implanted either with a
663	placebo or estradiol (E2)-loaded capsules. One week after capsule implantation, mice
664	were vaccinated with inactivated 2009 H1N1 vaccine and boosted after 3 weeks. At 35
665	days post-vaccination (dpv), plasma samples were collected and anti-2009 H1N1
666	influenza virus-specific (A) IgG, (B) IgG2c, and (C) virus-neutralizing antibody (nAb)
667	titers were measured. At 42 dpv, vaccinated mice were challenged with 10^5 TCID_{50} of a
668	drift variant of the 2009 H1N1 virus. (D) Replicating virus titers in the lungs were
669	measured in a subset of mice at 3 days post-challenge (dpc) and (E) changes in body
670	mass over a period of 14 dpc were measured in another subset of mice to compare
671	protection from severe disease. Data represent the mean \pm standard error of the mean
672	(n=7-15/group) and significant differences between the groups are denoted by asterisks
673	(*p<0.05) based on two-way ANOVAs or repeated measures two-way ANOVAs
674	followed by Tukey's multiple comparisons tests in GraphPad Prism 10.1.0.


Figure 1

