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Abstract

Progress of machine learning in critical care has been difficult to track, in part due to

absence of public benchmarks. Other fields of research (such as computer vision and natu-

ral language processing) have established various competitions and public benchmarks.

Recent availability of large clinical datasets has enabled the possibility of establishing public

benchmarks. Taking advantage of this opportunity, we propose a public benchmark suite to

address four areas of critical care, namely mortality prediction, estimation of length of stay,

patient phenotyping and risk of decompensation. We define each task and compare the per-

formance of both clinical models as well as baseline and deep learning models using eICU

critical care dataset of around 73,000 patients. This is the first public benchmark on a multi-

centre critical care dataset, comparing the performance of clinical gold standard with our

predictive model. We also investigate the impact of numerical variables as well as handling

of categorical variables on each of the defined tasks. The source code, detailing our meth-

ods and experiments is publicly available such that anyone can replicate our results and

build upon our work.

Introduction

Increasing availability of clinical data and advances in machine learning have addressed a wide

range of healthcare problems, such as risk assessment and prediction in acute, chronic and

critical care. Critical care is a particularly data-intensive field, since continuous monitoring of

patients in Intensive Care Units (ICU) generates large streams of data that can be harnessed by

machine learning algorithms. However, progress in harnessing digital health data faces several

obstacles, including reproducibility of results and comparability between competing models.

While, other areas of machine learning research, such as image and natural language process-

ing have established a number of benchmarks and competitions (including ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) [1] and National NLP Clinical Challenges

(N2C2) [2], respectively), progress in machine learning for critical care has been difficult to

measure, in part due to absence of public benchmarks. Availability of large clinical data sets,

including Medical Information Mart for Intensive Care (MIMIC III) [3] and more recently, a

multi-centre eICU Collaborative Research Database [4] are opening the possibility of establish-

ing public benchmarks and consequently tracking the progress of machine learning models in
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critical care. Availing of this opportunity, we propose a public benchmark suite to address four

areas of critical care, namely mortality prediction, estimation of length of stay, patient pheno-

typing and risk of decompensation. We define each task and evaluate our algorithms on a

multi-centre dataset of 73,718 patients (containing 4,564,844 clinical records) collected from

335 ICUs across 208 hospitals. While there has been work in this area that has focused on the

single-center MIMIC III clinical dataset [5], our work is the first to focus on a multi-center

critical care dataset, the eICU database [4]. Evaluating models on a multi-center dataset typi-

cally results in the inclusion of a wider range of patient groups, larger number of patients,

external validity and lower systematic bias in comparison to a single-center dataset, resulting

in increased generalisability of the study [6, 7]. However building a predictive model on a

multi-centre dataset is more challenging due to heterogeneity of the data. Nevertheless, the

performance of our models (as measured by AUC ROC) compare favourably with the perfor-

mance of the models using the single-center MIMIC III dataset as reported in [5].

The main contributions of this work are as follows: i) we provide the baseline performance,

(using either on clinical gold standard or Logistic/Linear Regression algorithm) and compare

it against our benchmark result, achieved using a model based on bidirectional long short-

term memory (BiLSTM); ii) investigate impact of categorical and numerical variables on all

four benchmarking tasks; iii) evaluate entity embedding for categorical variables, versus one

hot encoding; iv) show that for some tasks the number of variables can be reduced significantly

without greatly impacting prediction performance; and v) report six evaluation metrics for

each of the tasks, facilitating direct comparison with future results. The source code for our

experiments is publicly available at https://github.com/mostafaalishahi/eICU_Benchmark, so

that anyone with access to the public eICU database can replicate our experiments and build

upon our work.

Materials and methods

Ethics statement

This study was an analysis of a publicly-available, anonymised database with pre-existing insti-

tutional review board (IRB) approval; thus, no further approval was required.

eICU dataset description and cohort selection

The eICU Collaborative Research Database [4] is a multi-center intensive care unit database

with high granularity data for over 200,000 admissions to ICUs monitored by eICU programs

across the United States. The eICU database comprises 200,859 patient unit encounters for

139,367 unique patients admitted between 2014 and 2015 to 208 hospitals located throughout

the US. We selected adult patients (age > 18) that had an ICU admission with at least 15 rec-

ords, leading to 73,718 unique patients with a median age of 62.41 years (Q1–Q3: 52-75),

45.5% female. Hospital mortality rate was 8.3% and average length of stay in hospital and in

unit were 5.29 days and 3.9 days respectively (further details are provided in Table 1). Cohort

selection criteria are detailed in Fig 1.

The final patient cohort contained 4,564,844 clinical records where we grouped these rec-

ords on 1 hour window, imputed the missing values based on the mean of that window and

took the last valid record of that specific window.

Out of 31 tables in the eICU (v1.0) database we selected variables from the following tables:

patient (administrative information and patient demographics), lab (Laboratory measure-

ments collected during routine care), nurse charting (bedside documentation) and diagnosis
based on advice from a clinician as well as consistency with other similar tasks reported in the
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related work section. Selected variables are shown in Table 2 and are common across all the

four tasks.

Description of tasks

In this section, we define four different benchmark tasks, namely in-hospital mortality predic-

tion, remaining length of stay (LoS) forecasting, patient phenotyping, and risk of physiologic

decompensation. After applying selection criteria for each task, the resulting patient cohorts

are outlined in Table 3

Mortality prediction. In-hospital mortality is defined as the patient’s outcome at the hos-

pital discharge. This is a binary classification task, where each data sample spans a 1-hour win-

dow. The cohort for this task was selected based on the presence of hospital discharge status in

patients’ record and length of stay of at least 48 hours (we focus on prediction during the first

24 and 48 hours). This selection criteria resulted in 30,680 patients containing 1,164,966

records.

Length of stay prediction. Length of stay is one of the most important factors accounting

for the overall hospital costs, as such its forecast could play an important role in healthcare

management [8]. Length of stay is estimated through analysis of events occurring within a

fixed time-window, once every hour from the initial ICU admission. This is a regression task,

where we use 20 clinical variables described in Table 2. For this cohort we selected patients

whose length of stay was present in their records. These selection criteria resulted in 73,389

ICU stays, containing 3,054,314 records. The mean length of stay was 1.86 days with standard

deviation of 1.94 days, as shown in Table 1.

Phenotyping. Phenotyping is a classification problem where we classify whether a condi-

tion (ICD-9 code) is present in a particular ICU stay record. Since any given patient may have

more than one ICD-9 code, this is defined as a multi-label classification problem.

While our definition is focused on diagnosis using ICD codes for this task, the definition of

phenotyping may encompass other domains, such as procedures [9] [10] for example. How-

ever, expanding the definition of phenotyping beyond standardised ICD codes would have

required development of non-standardised rules, as no common standard approach for

Table 1. Characteristics and mortality outcome measures. �LoS (Length of Stay). Continuous variables are presented

as Median [Interquartile Range Q1–Q3]; binary or categorical variables as Count (%).

Overall Dead at Hospital Alive at Hospital

ICU Admissions 73,718 6,167 67,551

Age 62.41 [52-75] 68.12 [59-80] 61.8 [52-75]

Gender (F) 33,544 (45.5) 2,830 (45.8) 30,714 (45.4)

Ethnicity
Caucasian 56,973 (77.2) 4,866 (78.9) 52,107 (77.1)

African American 7,982 (10.8) 582 (9.4) 7,400 (10.9)

Hispanic 2,937 (3.98) 226 (3.6) 2,711 (4)

Asian 1,174 (1.59) 97 (1.5) 1,077 (1.5)

Native American 413 (0.56) 42 (0.68) 371 (0.54)

Unknown 4,239 (5.7) 354 (5.7) 3,885 (5.7)

Outcomes
Hospital LoS� (days) 5.29 [2.53-6.84] 3.9 [1.42-5.22] 5.41 [2.65-6.92]

ICU LoS� (days) 2.32 [1.01-2.91] 3.17 [1.19-4.43] 2.24 [1-2.83]

Hospital Death 6,167 (8.36) 6,167 (100) -

ICU Death 4,575 (6.2) 4,575 (74.1) -

https://doi.org/10.1371/journal.pone.0235424.t001
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Fig 1. Cohort selection criteria.

https://doi.org/10.1371/journal.pone.0235424.g001
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defining and validating EHR phenotyping algorithms exists [11] [12]. Consequently, it would

have been challenging to compare this work with the already published benchmarks. Further-

more, there is some concern regarding reproducibility of rule-based phenotyping as found in

[12]. Considering these issues, as well as keeping consistent with previously published bench-

marks, we settled on using ICD codes as the basis for the definition of this task. Accordingly,

the dataset contains 767 unique ICD codes, which are grouped into 25 categories shown in

Table 4. The cohort for this task, considering initial inclusion criteria as well as recorded diag-

nosis during the ICU stay, resulted in 49,299 patients.

Physiologic decompensation. There are a number of ways to define decompensation,

however in clinical setting majority of early warning systems, such as National Early Warning

Score (NEWS) [13] are based on prediction of mortality within the next time window (such as

24 hours after the assessment). Following suit and keeping consistent with previously pub-

lished benchmarks [5], we also define decompensation as a binary classification problem,

where the target label indicates whether the patient dies within the next 24 hours. The cohort

for this task results in 55,933 patients (2,800,711 records), where the decompensation rate is

around 6.5% (3,664 patients).

Table 2. Selected variables for all the four tasks.

Variable Data Type

Heart rate Numerical

Mean arterial pressure Numerical

Diastolic blood pressure Numerical

Systolic blood pressure Numerical

O2 Numerical

Respiratory rate Numerical

Temperature Numerical

Glucose Numerical

FiO2 Numerical

pH Numerical

Height Numerical

Weight Numerical

Age Numerical

Admission diagnosis Categorical

Ethnicity Categorical

Gender Categorical

Glasgow Coma Score Total Categorical

Glasgow Coma Score Eyes Categorical

Glasgow Coma Score Motor Categorical

Glasgow Coma Score Verbal Categorical

https://doi.org/10.1371/journal.pone.0235424.t002

Table 3. Number of patients and records in four tasks.

Task No. of patients Clinical records

In-hospital Mortality 30,680 1,164,966

Remaining LoS 73,389 3,054,314

Phenotyping 49,299 2,172,346

Physiologic Decompensation 55,933 2,800,711

https://doi.org/10.1371/journal.pone.0235424.t003
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Prediction algorithms

Baselines. We compare our model with two standard baseline approaches namely, logis-

tic/linear regression (LR) and a 1-layer artificial neural network (ANN). The embeddings for

these models are learned in the same way as for the proposed BiLSTM model as explained in

the section that follows.

Deep learning models. In this section, we describe the selected clinical variables,

approaches to represent these variables as well as baseline and deep models used in this study.

The architecture of this work consists of three modules, namely input module, encoder mod-

ule and output module as shown in Fig 2.

Input representation: We process and model both numerical and categorical variables sep-

arately, as shown in Table 2. Categorical variables are represented using either one-hot encod-

ing (OHE) or entity embedding (EE). OHE is the baseline approach that converts the variables

into binary representation. Using this approach for our 7 categorical variables results in 429

Table 4. Phenotype categories.

Type Phenotype

Acute 1. Respiratory failure; insufficiency; arrest 2. Fluid and electrolyte disorders 3. Septicemia 4. Acute and

unspecified renal failure 5. Pneumonia 6. Acute cerebrovascular disease 7. Acute myocardial infarction 8.

Gastrointestinal hemorrhage 9. Shock 10. Pleurisy; pneumothorax; pulmonary collapse 11. Other lower

respiratory disease 12. Complications of surgical 13. Other upper respiratory disease

Chronic 1. Hypertension with complications 2. Essential hypertension 3. Chronic kidney disease 4. Chronic

obstructive pulmonary disease 5. Disorders of lipid metabolism 6. Coronary atherosclerosis and related 7.

Diabetes mellitus without complication

Mixed 1. Cardiac dysrhythmias 2. Congestive heart failure; non hypertensive 3. Diabetes mellitus with

complications 4. Other liver diseases 5. Conduction disorders

https://doi.org/10.1371/journal.pone.0235424.t004

Fig 2. Model architecture.

https://doi.org/10.1371/journal.pone.0235424.g002
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unique records, rendering a large sparse matrix. In response, we represent each variable as an

embedding and compare the performance with the OHE approach. We use entity embedding

[14], where each categorical variable in the dataset is mapped to a vector and the correspond-

ing embedding is added to the patient’s record. This entity embedding is learned by the neural

network during the training phase along with other parameters. So the final representation of

the input at time t is as follows:

xt ¼ ½Numt;UðCattÞ�

where Numt is the numerical variable, Catt is the categorical variable at time t and U is the

embedding matrix learned by the model.

Encoder: To capture sequential dependency in our data, we use Recurrent Neural Network

(RNN) that resemble a chain of repeating modules to efficiently model sequential data [15].

They take sequential data X = (x1, x2, . . ..xn) as input and provide a hidden representation

H = (h1, h2, . . ..hn) which captures the information at every time step in the input. Formally,

ht ¼ f ðxt þWht� 1Þ

where xt is the input at time t,W is the parameter of RNN learned during training and f is a

non-linear operation such as sigmoid, tanh or ReLU.

A drawback of regular RNNs is that the input sequence is fed in one direction, normally

from past to future. In order to capture both past and future context, we use a Bidirectional

Long Short Term Memory (BiLSTM) [16] [17] for our model, which processes the input in

both forward and backward direction. Using a BiLSTM the model is able to capture the con-

text of a record not only by its preceding records but also with the following records, allowing

the model to produce more informed predictions. The input at time t is represented by both

its forward context ht
� !

and backward context ht
 �

as ht ¼ ½ht
� !

; ht
 �

�. Similarly, the representation

of the completed patient record is given by hT ¼ ½hn
� !

; h1
 �

�.

Output: The choice of output layer is based on whether the benchmarking task is a regres-

sion or a classification task.

Remaining LoS prediction is a regression task, in which we predict the remaining LoS

record-wise. That is, each patient record is fed to the model to predict the remaining LoS for

that specific time step. This task is realized using a many to many architecture, where we assign

a label to each patient record. The score for this task is obtained using:

byt ¼ ReLUðW � htÞ ð1Þ

where yt is the remaining LoS predicted and ReLU is the non-linear activation function used as

the prediction of remaining LoS cannot be negative.

In-hospital mortality and decompensation are binary classification tasks. For the in-hospi-

tal mortality the many to one architecture is applied and the classifier is as follows:

by ¼ sðW � hTÞ ð2Þ

For the decompensation task, a many to many architecture is applied. Prediction at each-

time step is treated as a binary classification and the classifier is defined as:

byt ¼ sðW � htÞ ð3Þ

Phenotyping is defined as a multi-label task with 25 binary classifiers for each phenotype,

and the score for the task is obtained using:

byt n ¼ sðWn � htÞ ð4Þ
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where t is the time step and n is the phenotype being predicted andWn is the model

parameter.

Results

In this section, we report benchmarking results of methods and prediction algorithms, focus-

ing on answering the following questions: (a) How does performance of our model compare

to the performance of clinical scoring systems as well as baseline algorithms (logistic/linear

regression in our case); and (b) What is the impact on prediction performance when using dif-

ferent feature sets, such as categorical and numerical variables, solely categorical and solely

numerical variables? We evaluate our model through a 5-fold cross-validation using the fol-

lowing evaluation metrics: for the regression tasks we report coefficient of determination R2,

and Mean Absolute Error (MAE), while for the classification tasks we report AUROC (Area

Under the Receiver Operating Characteristics), AUPRC (Area Under the Precision Recall

Curve), Specificity and Sensitivity (set to 90% to facilitate direct comparison of results), Posi-

tive Predictive Value (PPV) and Negative Predictive Value (NPV).

Mortality prediction

Results from this task indicate that the proposed approach of learning embeddings for categor-

ical variables is more effective than OHE representation. This holds true for both baseline

models (LR and ANN) as well as BiLSTM model, reflected in the prediction performance of

each model. Furthermore, BiLSTM based model outperforms all the other approaches in pre-

dicting mortality in both the 24 hour window and the 48 hour window as shown in Table 5. It

is interesting to note that using only categorical variables (reducing the number of variables

from 20 to only 7) with embedding provides a better performance than using numerical vari-

ables only (AUROC 78.57 vs. 76.63 for the first 24h). These results suggest that EE of categori-

cal features in vector space is more effective in the prediction of mortality.

Remaining length of stay in unit prediction

Predicting remaining LoS in the ICU unit requires capturing temporal dependencies between

each time-step. For this reason baseline models perform poorly due the lack of explicit

Table 5. In-hospital mortality prediction during first 24 and 48 hours in ICU. (Num. and Cat. indicate presence of numerical and categorical variables respectively.

Repn. indicates representation of categorical variables, either One Hot Encoding (OHE) or embedding (EMB)).

Data Model Num. Cat. Repn. AUROC AUPRC Spec. Sens. PPV NPV

First 24 hours APACHE ✓ ✓ Not spec. 77.30 41.23 38.74 86 57.09 93.07

LR ✓ ✓ EMB 79.88±0.67 40.50 46.01 90 64.53 90.06

ANN ✓ ✓ EMB 82.60±0.58 46.17 51.99 90 65.91 90.78

BiLSTM ✓ ✓ EMB 83.80±0.42 48.72 54.29 90 69.33 90.82

BiLSTM ✓ ✓ OHE 82.78±0.32 46.34 51.96 90 62.95 91.09

BiLSTM ✕ ✓ EMB 78.57±0.70 40.21 43.83 90 58.52 90.83

BiLSTM ✓ ✕ ✕ 76.63±0.75 38.56 36.30 90 66.00 90.82

First 48 hours LR ✓ ✓ EMB 82.34±0.65 45.39 51.07 90 69.06 90.33

ANN ✓ ✓ EMB 85.36±0.66 52.59 57.19 90 69.78 91.53

BiLSTM ✓ ✓ EMB 86.63±0.66 55.20 60.72 90 68.98 92.07

BiLSTM ✓ ✓ OHE 84.96±0.63 51.63 56.12 90 64.82 91.83

BiLSTM ✕ ✓ EMB 80.59±0.82 45.59 46.39 90 63.86 91.27

BiLSTM ✓ ✕ ✕ 80.77±1.29 45.48 44.02 90 67.94 90.63

https://doi.org/10.1371/journal.pone.0235424.t005
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modelling of temporal dependencies. The proposed BiLSTM model on the other hand is able

to capture this dependency effectively and outperforms the baseline models as shown in

Table 6. We can also see that the numerical variables are the most effective in prediction of

remaining LoS. However, using categorical variables encoded with OHE reduces the model

performance, while EE improves R2 measures.

Phenotyping

For the phenotyping task, we focus on comparing performance (AUROC) of the proposed

model on different subset of features, namely numerical versus categorical variables. Using

only the categorical features, modelled as entity embeddings shows a significantly higher per-

formance (77.75) compared to using only the numerical features (67.05) as outlined in Table 7.

Clearly categorical features are more effective in representing patients’ phenotype, since inte-

grating both of the subsets does not significantly improve the result (79.89 from 77.75). In this

task there is a wide difference between performance of the model on individual diseases, vary-

ing from 61.55 (diabetes mellitus without complications) to 94.24 (acute cerebrovascular dis-

ease). As a general trend prediction performance on acute diseases is higher (82.49) than that

on chronic diseases (73.55). This may be due to the slow-progressing nature of chronic dis-

eases, where recorded ICU data is relatively short and thus unable to fully capture events

related to chronic diseases.

Decompensation prediction

As mentioned in Section Physiologic Decompensation, decompensation is related to mortality

prediction with the difference that we predict whether the patient survives in the next 24

hours, given the current time step. As such, time-dependence is critical. Since 3 categorical

variables (out of 7) are time-independent and only 4 are time-dependent, they pose a difficult

challenge for the model to be able to predict decompensation using only the time-independent

categorical variables. For this reason, the model with only numerical variables outperforms the

model with only categorical variables as shown in Table 8.

Discussion

In this study we have described four standardised benchmarks in machine learning for critical

care research. Our definition of benchmark tasks is consistent with previously published

benchmarks to facilitate comparison with already published results. However, in this work we

focus on the more recent eICU database, where clinical data has been collected from 335 ICUs

across 208 hospitals across the United States. Our dataset contains a larger number of patients

and a wider range of patient groups, in comparison to benchmarks published using a single

center dataset, which should result in lower systematic bias and increased generalisability of

the study.

Table 6. Length of stay in hospital prediction, evaluated using Mean Absolute Error (MAE).

Data Model Num. Cat. Repn. R2 MAE [Day]

In ICU unit LR ✓ ✓ EMB 0.024±0.001 1.292±0.008

ANN ✓ ✓ EMB 0.048±0.003 1.267±0.014

BiLSTM ✓ ✓ EMB 0.643±0.042 0.532±0.033

BiLSTM ✓ ✓ OHE 0.623±0.025 0.511± 0.021

BiLSTM ✕ ✓ EMB 0.610±0.029 0.532±0.033

BiLSTM ✓ ✕ ✕ 0.610±0.042 0.479±0.016

https://doi.org/10.1371/journal.pone.0235424.t006
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We provided a set of baselines for our benchmarks and show that BiLSTM model signifi-

cantly outperforms clinical gold standard as well as the baseline models. Of note is the impact

of entity embedding of categorical variables in further improving the performance of our

LSTM-based model. Clearly, interpretability remains a significant challenge of models based

on deep neural networks, including our BiLSTM model. However, there has been significant

progress in “opening the black box” [18] as demonstrated by a recently updated review of

interpretability methods [19], bringing these models one step closer to clinical practice. As our

work is meant to track the progress of machine learning in critical care, interpretability is

Table 7. Phenotyping task on eICU (reported scores are AUROC).

Phenotype Prevalence Type Num & cat Num. Cat.

Respiratory failure; insufficiency; arrest 0.241 acute 83.31±0.32 73.09±0.41 81.24±0.19

Fluid and electrolyte disorders 0.156 acute 72.76±0.77 60.35±0.50 72.18±1.20

Septicemia 0.145 acute 91.54±0.15 71.43±0.50 90.86±0.50

Acute and unspecified renal failure 0.142 acute 75.93±0.68 65.41±0.66 74.14±1.32

Pneumonia 0.120 acute 89.34±0.51 70.28±0.77 88.47±0.24

Acute cerebrovascular disease 0.108 acute 94.24±0.58 74.37±0.75 93.63±0.49

Acute myocardial infarction 0.090 acute 91.35±0.67 70.56±0.74 91.18±0.87

Gastrointestinal hemorrhage 0.079 acute 91.38 ± 0.74 61.33 ± 1.33 90.66 ± 0.83

Shock 0.068 acute 85.75 ± 0.57 77.12 ± 0.41 82.74 ± 1.35

Pleurisy; pneumothorax; pulmonary collapse 0.039 acute 70.40 ± 2.23 61.15 ± 1.56 70.03 ± 0.90

Other lower respiratory disease 0.030 acute 80.42 ± 0.99 60.06 ± 1.24 79.60 ± 1.05

Complications of surgical 0.011 acute 68.45 ± 3.91 54.01 ± 4.79 65.43 ± 3.17

Other upper respiratory disease 0.007 acute 77.46 ± 5.46 53.56 ± 3.17 74.18 ± 4.52

Macro-average (acute diseases) - - 82.49 ± 1.35 65.60 ± 1.30 81.10 ± 1.28

Hypertension with complications 0.019 chronic 85.70 ± 2.59 81.27 ± 1.29 81.61 ± 2.97

Essential hypertension 0.203 chronic 72.16 ± 0.74 66.58 ± 0.31 68.31 ± 0.66

Chronic kidney disease 0.104 chronic 65.96 ± 1.66 62.06 ± 1.39 65.05 ± 0.90

Chronic obstructive pulmonary disease 0.093 chronic 75.62 ± 1.44 63.73 ± 0.60 74.48 ± 1.67

Disorders of lipid metabolism 0.054 chronic 72.95 ± 1.05 62.85 ± 1.03 71.56 ± 1.36

Coronary atherosclerosis and related 0.041 chronic 80.89 ± 0.45 64.03 ± 0.98 79.90 ± 1.34

Diabetes mellitus without complication 0.006 chronic 61.55 ± 4.52 58.89 ± 5.77 59.12 ± 3.56

Macro-average (chronic diseases) - - 73.55 ± 1.78 65.63 ± 1.63 70.72 ± 1.78

Cardiac dysrhythmias 0.165 mixed 75.68 ± 0.86 66.24 ± 0.81 71.92 ± 1.49

Congestive heart failure; non hypertensive 0.106 mixed 78.87 ± 1.05 66.34 ± 0.76 76.56 ± 1.56

Diabetes mellitus with complications 0.047 mixed 93.59 ± 0.65 90.38 ± 1.41 89.59 ± 0.99

Other liver diseases 0.039 mixed 78.33 ± 1.71 68.20 ± 1.02 75.51 ± 2.32

Conduction disorders 0.013 mixed 83.58 ± 1.68 72.90 ± 2.43 80.81 ± 1.66

Macro-average (mixed diseases) - - 82.01 ± 1.19 72.81 ± 1.29 78.88 ± 1.60

Macro-average (all diseases) - - 79.89 ± 1.44 67.05 ± 1.39 77.75 ± 1.48

https://doi.org/10.1371/journal.pone.0235424.t007

Table 8. Decompensation risk prediction in eICU.

Data Model Num. Cat. Repn. AUROC AUPRC Spec. Sens. PPV NPV

In ICU unit LR ✓ ✓ EMB 67.63 ±5.89 16.53 18.92 90.00 Nan 95.10

ANN ✓ ✓ EMB 80.59±0.60 22.86 47.65 90.00 45.73 95.32

BiLSTM ✓ ✓ EMB 95.35±0.60 68.69 88.45 90.00 78.51 97.27

BiLSTM ✕ ✓ EMB 86.82±0.70 36.34 61.08 90.00 57.31 96.13

BiLSTM ✓ ✕ ✕ 95.15±0.16 68.28 85.60 90.00 79.36 97.46

https://doi.org/10.1371/journal.pone.0235424.t008
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certainly an important aspect of this progress. We believe that our work will provide a solid

basis to further improve critical care decision making and we provide the source code for

other researchers that wish to replicate our experiments and build upon our results.

Related work

In this Section, we provide a brief review of the most relevant studies related to each of the

tasks, mortality, length of stay, phenotyping, and physiologic decompensation. We briefly

review the other benchmarking studies in critical care, related to our work.

Mortality prediction

Many clinical scoring systems have been developed for mortality prediction, including Acute

Physiology and Chronic Health Evaluation (APACHE III [20], APACHE IV [21]) and Simpli-

fied Acute Physiology Score [22] (SAPS II, SAPS III). Most of these scoring systems use logistic

regression to identify predictive variables to establish these scoring systems. Providing an accu-

rate prediction of mortality risk for patients admitted to ICU using the first 24/48 hours of

ICU data could serve as an input to clinical decision making and reduce the healthcare costs.

In this regard, recent advances in deep learning have been shown to outperform the conven-

tional machine learning methods as well as clinical prediction techniques such as APACHE

and SAPS [5] [23] [24]. Mortality prediction has been a popular application for deep learning

researchers in recent years, though model architecture and problem definition vary widely.

Convolutional neural network and gradient boosted tree algorithm have been used by Darabi

et al. [25], in order to predict long-term mortality risk (30 days) on a subset of MIMIC-III

dataset. Similarly, Celi et al. [26] developed mortality prediction models based on a subset of

MIMIC database using logistic regression, Bayesian network and artificial neural network.

Length of stay

Resource allocation and identifying patients with unexpected extended ICU stays would help

decision-making systems to improve the quality of care and ICU resource allocation. There-

fore forecasting the length of stay (LoS) in ICU would be significantly important in order to

provide high-quality care to a patient, and it would avoid extra costs for care providers. In this

regard, Sotoodeh et al [27] applied hidden markov models to predict LoS by using the first 48

hours of physiological measurements. Ma et al. [28] defined LoS as a classification problem in

which the objective was to create a personalized model for patients to forecast LoS. Previous

studies [23] [5] have shown that deep learning models obtain good results on forecasting

length of stay in ICU. In this regard, Tu et al [29] applied neural network based methods on a

Canadian private dataset, which includes patients with cardiac surgery. The developed model

was able to detect the patient with low, intermediate, and high prolonged stay in ICU.

Phenotyping

Phenotyping has been a popular task in recent years [30] [31], although problem definition

varies widely, from focusing on ICD based diagnosis [24] up to including clinical procedures

and medications [9] [10]. Several works on phenotyping from clinical time series have focused

on variations of tensor factorization and related models [30] [31] [32], and the most recently

published studies on phenotyping are focused on deep learning methods. In this regard, Raza-

vian et al [33] and Lipton et al [24] applied deep learning methods to predict diagnoses. While

the first trained RNN LSTM and CNN for prediction of 133 diseases based on 18 laboratory

tests on a private dataset including 298k patients, the latter applied an RNN LSTM on a single-
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center, private pediatric intensive care unit (PICU) dataset in order to classify 128 diagnoses

given 13 clinical measurements.

Physiologic decompensation

Early detection of physiologic decompensation could be used to avoid or delay the occurrence

of decompensation. Recently machine learning researchers have started to apply various

machine learning methods in order to predict the decompensation incident. Recent study by

Ren et al. [34] applied gradient boosting models (GBM) to predict required intubation 3 hours

ahead of time, in this work they used a cohort of 12,470 patients to predict unexpected respira-

tory decompensation. Differently, Xu et al [35] proposed a deep learning model to predict the

decompensation event. The proposed attention-based model was applied on MIMIC-III

Waveform Database and it outperformed several machine learning and deep learning models.

Benchmark

Harutyunyan et al. [5] developed a deep learning model based on RNN LSTM called multi-

task RNN, in order to predict a number of clinical tasks such as mortality prediction in hospi-

tal, physiologic decompensation, phenotyping, and length of stay in ICU unit. The proposed

model was applied on MIMIC-III dataset. Similarly, Purushotham et al [23] have provided a

single-center benchmark of several machine learning and deep learning models trained on

MIMIC-III for various tasks, showing that deep learning models consistently outperformed

conventional machine learning models and clinical scoring systems. One common theme

across the reviewed work is that the current literature focuses on single-center databases, while

we did not find any work in this area that addressed multi-centre datasets, including the asso-

ciated challenges.
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