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Background: Epigenetic dysregulation via aberrant DNA methylation has gradually
become recognized as an efficacious signature for predicting tumor prognosis and
response to therapeutic targets. However, reliable DNA methylation biomarkers
describing tumorigenesis remain to be comprehensively explored regarding their
prognostic and therapeutic potential in breast cancer (BC).

Methods:Whole-genomemethylation datasets integrated from the Cancer Genome Atlas
(TCGA) and Gene Expression Omnibus (GEO) database were profiled (n � 1,268). A three-
stage selection procedure (discovery, training, and external validation) was utilized to
screen out the prominent biomarkers and establish a robust risk score from more than
300,000 CpG sites after quality control, rigorous filtering, and reducing dimension.
Moreover, gene set enrichment analyses guided us to systematically correlate this
epigenetic risk score with immunological characteristics, including immunomodulators,
anti-cancer immunity cycle, immune checkpoints, tumor-infiltrating immune cells and a
series of signatures upon modulating components within BC tumor microenvironment
(TME). Multi-omics data analyses were performed to decipher specific genomic alterations
in low- and high-risk patients. Additionally, we also analyzed the role of risk score in
predicting response to several treatment options.

Results: A 10-CpG-based prognostic signature which could significantly and
independently categorize BC patients into distinct prognoses was established and
sufficiently validated. And we hypothesize that this signature designs a non-inflamed
TME in BC based on the evidence that the derived risk score is negatively correlated with
tumor-associated infiltrating immune cells, anti-cancer immunity cycle, immune
checkpoints, immune cytolytic activity, T cell inflamed score, immunophenoscore, and
the vast majority of immunomodulators. The identified high-risk patients were

Edited by:
Guohui Wan,

Sun Yat-Sen University, China

Reviewed by:
Dong Ren,

The First Affiliated Hospital of Sun
Yat-Sen University, China

Jing Li,
Fujian Medical University, China

*Correspondence:
Qifeng Yang

qifengy_sdu@163.com

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Molecular Diagnostics and
Therapeutics,

a section of the journal
Frontiers in Molecular Biosciences

Received: 02 March 2021
Accepted: 14 July 2021
Published: 26 July 2021

Citation:
Zhang D, Wang Y and Yang Q (2021) A
High Epigenetic Risk Score Shapes the

Non-Inflamed Tumor
Microenvironment in Breast Cancer.

Front. Mol. Biosci. 8:675198.
doi: 10.3389/fmolb.2021.675198

Abbreviations: AUC, area under curve; BC, breast cancer; CI, confidence interval; c-index, concordance index; CpG, 5′-
cytosine-phosphate-guanine-3′; DCA, decision curve analysis; ER, estrogen receptor; ESTIMATE, estimation of stromal and
immune cells in malignant tumor tissues using expression data; FDR, false discovery rate; FISH, fluorescence in situ hy-
bridization; GEO, gene expression omnibus; GSEA, gene set enrichment analysis; KNN, k-nearest neighbors; Her-2, human
epidermal growth factor receptor-2; HR, hazard ratio; IHC, immunohistochemical; LASSO, least absolute shrinkage and
selection operator; MCP-counter, microenvironment cell populations-counter; MSigDB, molecular signatures database; NES,
normalized enrichment score; OS, overall survival; PR, progesterone receptor; ROC, receiver operator characteristic; SNP,
single-nucleotide polymorphisms; TCGA, the cancer genome atlas; TPM, transcripts per kilobase million.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2021 | Volume 8 | Article 6751981

ORIGINAL RESEARCH
published: 26 July 2021

doi: 10.3389/fmolb.2021.675198

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.675198&domain=pdf&date_stamp=2021-07-26
https://www.frontiersin.org/articles/10.3389/fmolb.2021.675198/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.675198/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.675198/full
http://creativecommons.org/licenses/by/4.0/
mailto:qifengy_sdu@163.com
https://doi.org/10.3389/fmolb.2021.675198
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.675198


characterized by upregulation of immune inhibited oncogenic pathways, higher TP53
mutation and copy number burden, but lower response to cancer immunotherapy and
chemotherapy.

Conclusion: Our work highlights the complementary roles of 10-CpG-based signature in
estimating overall survival in BC patients, shedding new light on investigating failed events
concerning immunotherapy at present.

Keywords: breast cancer, prognosis, DNA methylation, tumor microenvironment, therapeutic target

INTRODUCTION

Breast cancer (BC) ranks third among the most common
malignancies and is the leading cause of cancer-related death
in females (Lin et al., 2019; Li et al., 2019b). Currently, the
improvement of mammographic screening has made great
progress in early-stage diagnosis of BC. Moreover, there are a
series of systematic treatments for BC, including surgical
resection, chemotherapy, radiotherapy, endocrine therapy, and
alternative molecule-targeted therapy (e.g., trastuzumab and
pertuzumab) (Akram et al., 2017). However, postoperative
local or distant recurrence rate remains high, even for patients
who have received conventional therapies in the early stage,
causing a pessimistic mortality rate within BC patients at
present (Spronk et al., 2018; Chen et al., 2019). This could be
attributed to the restricted and incomprehensive understanding
of BC heterogeneity concerning carcinogenesis, invasiveness,
progression, and metastasis (Tazaki et al., 2013). Molecular
characteristics that are reliably related to BC prognosis and
patient survival would have tremendous value in guiding
clinical management of BC. Hence, a deeper understanding of
BC functional pathways, as well as the development of novel
crucial biomarkers with biological background, for early
diagnosis and prognostic prediction in BC patients, is urgently
needed.

Although previous studies at different omics levels, such as
somatic mutations, gene expression, non-coding RNA, and copy
number variations, have revealed numerous promising
biomarkers relevant to BC carcinogenesis (Zhang et al., 2018a;
Fan et al., 2019; He et al., 2019; Li et al., 2019a), the contribution
of epigenetic alterations including DNA methylation in human
disease, particularly in cancer, has also been widely recognized
(Khaled and Bidet, 2019; Luo et al., 2020; Yang et al., 2020). From
the point of view of mechanism, DNA methylation, as inherently
reversible changes to repress the transcriptional activities and
interact with various negative and positive feedback processes,
plays decisive roles in both physiological and pathological
regulation of cellular fate (Drake and Søreide, 2019).
Accumulated evidence highlights the multifaceted DNA
methylation of 5′-cytosine-phosphate-guanine-3′ (CpG) sites
in various cancer hallmarks, including modulating energy
metabolism and angiogenesis, sustaining proliferation
signaling, epithelial-mesenchymal transition, invasiveness, and
metastasis, mainly via promoting the activation of oncogenes and
silencing of tumor suppressor genes (Pasculli et al., 2018; Drake
and Søreide, 2019). The tumor microenvironment, intra-tumoral

cell typing, and subsequent response to immunotherapy could
also be evaluated and characterized by DNA methylation
profiling (Jeschke et al., 2015; Jeschke et al., 2017; Calle-
Fabregat et al., 2020). More importantly, DNA methylation
offers feasible clues to assist the early detection and prognosis
of different cancers, using the early onset of global alterations
within DNA methylation profiling in cancer initiation and
significantly distinct methylation patterns between tumor and
normal tissues (Szyf, 2012).

Recent advances of high-throughput technology, combined
with the availability of public, large-scale sequencing datasets,
have opened a new area for defining the genome-wide landscape
of BC and provided opportunities but daunting challenges to
identify potentially reliable BC biomarkers (Jiang et al., 2019;
Xuchao et al., 2019). Preliminary investigation of profiling arrays
has proposed several methylation-based signatures for survival
stratification in patients with BC (Du et al., 2019; Tao et al., 2019).
Unfortunately, none has yet been incorporated in clinical practice
owing to issues such as model overfitting on a single cohort and
insufficient external validation. Moreover, the aforementioned
analyses have not elucidated the complicated regulatory network
that governed BC biological processes, and clinical characteristics
were not included in the predictive models for further assessment.

In the current study, we identified CpG sites that are
specifically and significantly correlated with BC prognosis and
then developed a multi-CpG classifier by mining DNA
methylation profiles from the Cancer Genome Atlas (TCGA)
project. With sufficient validation of two independent sample
sets, we proved the stability and reliability of our established
model. In addition, pivotal biological processes underlying the
prognostic signature were revealed via a series of bioinformatics
analyses, and the correlations of CpG -based signature with
tumor microenvironment (TME) were also comprehensively
evaluated. To further leverage the complementary value of
molecular and clinical characteristics, we integrated the CpG-
based signature and clinicopathological risk factors to build a
composite nomogram, which improved the risk stratification of
BC patients.

MATERIALS AND METHODS

Data Acquisition and Pre-Processing
Level 3 DNA methylation profiles using the Illumina Infinium
HumanMethylation450 BeadChips Assay, including 785 BC
patients, were downloaded and integrated from TCGA website
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(https://portal.gdc.cancer.gov) via “TCGA-Assembler 2” R
package (https://github.com/compgenome365/TCGA-
Assembler-2) (Tomczak et al., 2015; Wei et al., 2018), and the
genomic manifest of each CpG site was annotated using
“IlluminaHumanMethylation450kanno.ilmn12.hg19” R
package (version 0.6.0) (Aryee et al., 2010). For each CpG
locus, the methylation level was represented by the β value (β
� M/(M+U)), which ranges from 0 to 1, corresponding to
unmethylated and fully methylated. Low quality probes were
excluded if they met the following criteria: 1) failed detection in
more than 25% samples; 2) not uniquely mapped to the human
reference genome; 3) located on unstable genomic sites, including
single-nucleotide polymorphisms (SNP) sites and Y
chromosome; or 4) missed annotations to parent genes.
Furthermore, the remaining CpG sites with unavailable
methylation levels (NAs) were imputed based on k-nearest
neighbors (KNN) algorithm via “impute” R package (version
1.56.0).

Level 4 RNA sequencing data (FPKM normalized) based on
the Illumina HiSeq RNA-seq platform of BC samples were
obtained from GDC data portal of TCGA website via
“TCGAbiolinks” R package (version 2.10.5) (Colaprico et al.,
2016). The ensemble IDs were annotated to gene symbols using
“gencode.v22.annotation.gtf” file (www.gencodegenes.org/
human/releases.html) (Paik and Hancock, 2012). And the
FPKM values were further transformed into transcripts per
kilobase million (TPM) values, which are more reliable and
recommended for inter-group comparisons of expressive
abundance (Wagner et al., 2012). Low-abundance profiles were
eliminated. In addition, if multiple ensemble IDs correspond to
the same gene symbol, the one with the highest mean value was
extracted as the expression level of parent gene.

Subsequently, corresponding clinicopathological features of
BC patients in TCGA cohort, including the gender, age,
histological type, history of neoadjuvant treatment, regional
lymph nodes involvement (H&E stain), TNM stage,
pathological stage, estrogen receptor (ER) status, progesterone
receptor (PR) status, human epidermal growth factor receptor-2
(Her-2) status, and follow-up data, were also downloaded via
“TCGAbiolinks” package and used for subsequent analysis.
Therein, the Her-2 statuses of BC samples were firstly
quantified by immunohistochemical (IHC) results, and we
took an account of the results from fluorescence in situ
hybridization (FISH) to determine the Her-2 status when
the IHC diagnoses were missed or uncertain. The present
study fully complies with the TCGA publication guidelines
(Network, 2012).

The integrated methylation matrix files (GSE75067 and
GSE72308) based on the platform GPL13534 were obtained
from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo). Among these two
datasets, the missing values in methylation profiles were
also imputed via KNN algorithm. And the corresponding
clinical data were obtained either by directly downloading
the attached files from the item page in the GEO website
(GSE75067) or retrieving and manually organizing if
available (GSE72308).

Study Population and Eligibility Criteria
The backbone of our study was comprised of three stages:
discovery stage, training stage, and validation stage. In the
discovery stage, we used paired samples (tumor/normal) from
BC patients in the TCGA-BRCA project as discovery set (n � 91
pairs), which was used to identify the differential methylation
CpG sites. In the training stage, a total of 654 BC patients from the
entire TCGA cohort were enrolled as the training set with the
following inclusion criteria: 1) female patients with a definitive
diagnosis of BC, 2) without any neoadjuvant therapy, 3) with
corresponding follow-up censoring data, 4) the follow-up time
was no less than one month, and 5) with corresponding DNA
methylation profiles. Furthermore, independent validations were
conducted using two external GEO datasets in the validation
stage. For validation set 1, the clinical and DNAmethylation data
were obtained from accession number GSE75067 (Holm et al.,
2016). Only 180 BC patients were included in our analysis, after
the removal of repetitions and samples with missing survival
information. For validation set 2 (accession number: GSE72308),
a subset of 237 BC patients (cohort 1 and cohort 2) treated with
adjuvant therapies from 1995 to 2009 was included and the
patients who had a history of neoadjuvant epirubicin
monotherapy (TOP cohort) were excluded, as described by
Jeschke et al. (2017).

Identification of Differentially Methylated
CpG Sites
On the basis of the discovery set of 91 BC patients who had both
tumor and adjacent-normal tissues, genome-wide differential
methylation CpG sites were identified using paired Student’s
t-test. p-values were adjusted by Benjamini & Hochberg (BH)
correction; the methylation differences were characterized by
absolute differential methylation calculated as mean (βtumor)
−mean (βnormal) and adjusted p-values. An absolute differential
methylation of >0.4 combined with adjusted p < 0.05 was set as
the significance threshold. Additionally, the diagnostic values of
specific CpG sites were evaluated by receiver operator
characteristic (ROC) curve.

Construction and Validation of a
CpG-Based Prognostic Model
In the training stage, the initial assessment of prognostic potential
of each differential methylation CpG site was conducted using
univariate Cox proportional hazard regression analysis, and those
with p-values < 0.05 were selected for further analyses. Next, for
solving the multicollinearity problem of highly correlated
variables, we implemented the Cox regression model, with
least absolute shrinkage and selection operator (LASSO)
penalty, to reduce dimension (Friedman et al., 2010; Simon
et al., 2011). Based on prognostic BC-specific CpG sites, which
were significant in the univariate Cox regression analysis, a sub-
selection of key biomarkers was determined by shrinkage of the
regression coefficients via using a penalized weight to
corresponding size. Finally, only the features with nonzero
regression coefficient were extracted as the candidates for
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constructing prognostic signature. In our LASSO analysis, the
“lambda.min” criteria and 10-fold cross validation were utilized
to conduct penalty parameter tuning. Subsequently, we computed
an epigenetic risk score for each BC patient using the following
regression equation: risk score � ∑n

j�1Coefjβj,
withCoefjindicating the coefficients derived from multivariate
Cox regression model andβjrepresenting the methylation level
(β value) of each CpG site. And the predictive performance of
CpG-based risk score was assessed by time-dependent ROC
curves with area under curve (AUC) values calculated
(Blanche et al., 2013). Then we classified the BC patients in
the training set into low- and high-risk subgroups based on the
optimal cutoff value of risk scores computed using regression
formula, which represented the point at which the Youden index
(specificity + sensitivity - 1) reached a maximum value in 5-years
ROC curve. Furthermore, the Kaplan-Meier survival analysis and
log-rank test were applied to verify the classification performance
of the model.

Independence of CpG-Based Signature
From Other Clinicopathological Parameters
in TCGA
To further validate whether the prognostic value of established
CpG-based signature is independent of traditional
clinicopathological parameters (including age, histological
subtype, regional lymph nodes metastasis, T stage, N stage,
pathological stage, ER, PR, and Her-2 status) for BC patients,
stratification Cox analyses were conducted in various stratified
cohorts. Additionally, among 654 BC patients with survival
information in the training set, 537 BC patients with relatively
complete clinical information, including age, histological type,
regional lymph nodes metastasis, T stage, N stage, pathological
stage, ER, PR, and Her-2 status, were subjected to subsequent
analyses. Univariate followed by multivariate Cox regression
analyses were performed.

Construction and Evaluation of a Predictive
Nomogram
The independent clinicopathological covariates, identified by
multivariate Cox regression analysis, were taken into
consideration to assemble a nomogram, providing clinicians
with a clinically relevant quantitative approach for predicting
individualized survival probability in BC patients (Harrell et al.,
1996; Zhang and Kattan, 2017). Additionally, the calibration plots
were graphically depicted to evaluate the consistency between the
predicted probability of derived nomogram and actual situation
(Balachandran et al., 2015). And Harrell’s concordance index
(c-index) was utilized to estimate the discrimination ability of the
nomogram. Moreover, decision curve analysis (DCA) was
performed to explore the clinical usefulness of the nomogram,
further providing straightforward information concerning
whether clinical decision-making based on a predictive model
will do more good than harm, in contrast to abstract statistical
concepts (Fitzgerald et al., 2015; Vickers and Elkin, 2016; Zhang
et al., 2018d).

Gene Set Enrichment Analysis of
CpG-Based Signature
In order to identify crucial biological mechanisms related to the
final CpG-based signature in BC carcinogenesis, we implemented
GSEA analysis (version 4.0.2, http://software.broadinstitute.org/
gsea/downloads.jsp) using the adjusted RNA-sequencing profiles
(TPM normalization) for all transcripts (Subramanian et al.,
2005; Reimand et al., 2019). Annotated gene set files were
downloaded from Molecular Signatures Databases (MSigDB,
http://software.broadinstitute.org/gsea/msigdb), and the “c2.cp.
v7.0.symbols.gmt” were selected to perform the quantification of
pathway activity (Liberzon et al., 2011; Liberzon et al., 2015).
Enrichment p-values were evaluated based on 1,000 permutations
and subsequently adjusted by BH correction for multiple testing
to control FDR values. Therein, nominal p-value < 0.05 and FDR
< 0.25 were set as significance threshold.

Comprehensive Evaluation of TME in BC
Patients
To decipher the role of established signature in modifying TME
in BC patients, we comprehensively analyzed the association
between the risk score and immunological characteristics
within TME with respect to the below aspects. The immune
score, stromal score, and tumor purity in BC samples were
calculated by applying the Estimation of STromal and
Immune cells in MAlignant Tumor tissues using Expression
data (ESTIMATE) algorithm designed by Yoshihara et al.
(2013). Thereafter, we applied the Microenvironment Cell
Populations-counter (MCP-counter) algorithm, an estimator
for robust quantification of absolute abundance of two stromal
and eight immune cell populations by gene expression profiles, to
perform the immune infiltration estimation in BC tissues (Becht
et al., 2016). The infiltration levels of immune cells were derived
using “MCPcounter” R package (version 1.1.0). To avoid the
calculation error due to distinct inner algorithm, additional
independent algorithms, including the Cibersort (with LM22
signature) and single sample Gene Set Enrichment Analysis
(ssGSEA) methods, were utilized to quantify the infiltration
levels of immune cells within TME (Chen et al., 2018; Zhang
et al., 2018b). A list of 24 immune inhibitory checkpoint
molecules, 122 immunomodulators and effector genes of
particular tumor-infiltrating immune cells were collected from
hand-curated screenings of literature (Auslander et al., 2018; Hu
et al., 2021). Moreover, based on the ssGSEA algorithm, we
profiled the enrichment scores of seven steps that composed
the “anti-cancer immunity cycle,” including release of cancer cell
antigens (Step 1), cancer antigen presentation (Step 2), priming
and activation (Step 3), trafficking of immune cells to tumors
(Step 4), infiltration of immune cells into tumors (Step 5),
recognition of cancer cells by T cells (Step 6), and killing of
cancer cells (Step 7) (Xu et al., 2018).

Furthermore, immune cytolytic score (CLS), defined as the
log-average (geometric mean) of PRF1 and GZMA in TPM
expression values, was also estimated to represent in silico
measurement of immune infiltration, as provided by Rooney
et al. (2015). Pan-cancer T cell inflamed score (TIS), as a weighted
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linear combination of scores from eighteen genes, which
defines the pre-existing cancer immunogenicity and predicts
response to anti-tumor immunotherapy, was also computed for
each BC patient (Ayers et al., 2017). The stemness indices
(mRNAsi) for BC patients were derived from the
supplementary table by Tathiane et al., who measured the
oncogenic dedifferentiation and were associated with
Immune microenvironment contents and PD-L1 levels
(Malta et al., 2018). Immunophenoscore (IPS), derived from
a panel of immune-related genes belonging to four categories,
namely effector genes, immunosuppressive genes, MHC-
related molecules, and immunomodulators, represents the
cancer antigenomes and immunogenicity (Charoentong
et al., 2017). The IPSs of BC patients were obtained from
The Cancer Immunome Atlas (TCIA) (https://tcia.at/home).
Additionally, Vésteinn Thorsson and his colleagues identified
and characterized six immune subtypes that encompass
multiple tumor types, with distinct intratumoral immune
states and immune response patterns impacting prognosis
(Thorsson et al., 2018). In our present work, we also
classified the BC samples into different immune subtypes
using the ImmuneSubtypeClassifier R package (https://
github.com/Gibbsdavidl/ImmuneSubtypeClassifier).

External Validation of CpG-Based Signature
To evaluate the robustness and practical application of the CpG-
based signature in predicting the OS probability for BC patients,
the performance of this prognostic signature was further
validated based on two independent cohorts. With the
consistent regression formula and cutoff value of CpG-based
signature derived from the training set, we also stratified the BC
patients in validation set 1 (n � 180) and set 2 (n � 237) into low-
risk and high-risk subgroups, respectively. And we applied
Kaplan-Meier survival analysis to compare the OS rates of
these subgroups. Additionally, time-dependent ROC curves
were conducted to investigate the prognostic efficacy of the
model in these external cohorts.

Correlation of Epigenetic Risk Score With
Mutations and Copy Number Aberrations
Somatic mutation profiles and copy number variation data of
BC patients were downloaded from TCGA repositories and
classified into two distinct groups according to the established
risk score. Therein, the driver mutation genes were analyzed
and visualized using “maftools” R package (Mayakonda et al.,
2018), and significant amplifications or deletions among the
whole genomic region were identified via GISTIC 2.0 software
(Mermel et al., 2011), respectively. Additionally, tumor
mutation burden (TMB) of each patient was calculated via
counting the total number of non-synonymous mutation
events per megabase within whole genome (38 Mb was
utilized as the estimate of the exome size). The burden of
copy number losses or gains was defined as the total number of
genes with copy number aberrations at the arm and focal levels
(Sia et al., 2017).

Therapeutic Response Prediction in BC
Patients
To further investigate the potential therapeutic properties for BC
patients with distinct prognoses, we collected a series of
therapeutic signatures, including the oncogenic pathways
shaping non-inflamed TME and gene signatures for targeted
therapies and radiotherapy. Therein, GSVA algorithm was
implemented to calculate the corresponding enrichment
scores, quantifying the possibility for specific therapeutic
response for each patient (Hänzelmann et al., 2013).

The programmed cell death 1 (PD-1) and cytotoxic
T-lymphocyte associated protein 4 (CTLA-4) are involved in
tumor immune evasion. We combined the unsupervised subclass
mapping method (SubMap, https://cloud.genepattern.org/gp/)
and pretreatment genomics to predict the clinical responses to
immune checkpoint blockade for distinct risk BC patients
(Hoshida et al., 2007; Lu et al., 2019).

Based on the Genomics of Drug Sensitivity in Cancer (GDSC)
database, a large public pharmacogenomics repository, we
predicted the potential drug resistance to six commonly used
chemotherapeutic agents, namely, cisplatin, gemcitabine,
docetaxel, paclitaxel, etoposide and vinorelbine. R package
“pRRophetic,” implements ridge regression and 10-fold cross
validation to help in estimating the half-maximum inhibitory
concentration (IC50) of each sample, according to GDSC training
cell lines (Geeleher et al., 2014).

The Broad Institute’s connectivity Map build 02 database
(CMap, https://portals.broadinstitute.org/cmap/) was a
comprehensive resource for investigating relationships among
biomarkers, diseases, and therapeutics (Qu and Rajpal, 2012). To
screen potential candidate compounds targeting crosstalk against
CpG sites derived from established signature, we calculated the
differential expression gene (DEG) list between low- and high-
risk patients and selected the top 300 to query the CMap database.
Furthermore, the shared mechanisms of actions (MoA) among
perturbagens were revealed via specific analysis within CMap
tools (https://clue.io/) (Subramanian et al., 2017).

Statistical Analysis
Shapiro-Wilk normality test was utilized to test the normality of
variables. For pairwise comparisons, statistical significance for
non-normally distributed variables was estimated by wilcoxon
test (Mann-Whitney U test), whereas normally distributed
variables were analyzed by Student’s t-test. The significance of
correlations between variables was computed by Spearman or
Pearson correlation analysis. Contingency tables were analyzed
by two-sided Fisher’s exact tests. All the statistical analyses were
conducted using R (version 3.5.3, https://www.r-project.org/)
software and a two-tailed p-value < 0.05 was considered
statistically significant. Hierarchical cluster analysis using the
Euclidean distance method to calculate dissimilarity structure
was graphically explored with the “pheatmap” package. The
LASSO-penalized Cox regression model was performed with
“glmnet” package. ROC curves were derived using “pROC”
and “PRROC” package, whereas the estimation of time-
dependent ROC curves and AUC values of censored survival
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data were computed using “timeROC” package. The nomogram
and calibration plots were generated via “rms” package, and the
c-index was calculated by “Hmisc” package. The DCA analyses
were performed with the “dca.R” source code.

RESULTS

Selection of Cancer-Specific CpG Sites in
BC Samples
We developed the model for the prognosis prediction of BC
patients in three stages: discovery, training, and validation stage.
The study flowchart is depicted in Figure 1. After a series of
stringent filtering, a total of 308786 CpG sites were chosen as the
background for the selection of candidate CpG sites. Firstly, in the
discovery stage, volcano plot analysis (absolute differential
methylation >0.4 and adjusted p < 0.05) identified 432
differentially methylated CpG sites (Figure 2A). Therein, 375
CpG sites were found to be hypermethylated and 57 CpG sites
were hypomethylated, which corresponded to 308 and 54 genes,
respectively. With regard to these cancer-specific CpG sites,
hierarchical cluster analysis successfully segregated the 91 pairs
of tumor/normal samples into two distinct clusters (Figure 2B).
Then idiogram was used to map and visualize the genome-wide

information of these particular biomarkers into chromosomes
(Figure 2C). Additionally, Upset plot was depicted to
investigate the region-level island based distribution of these
CpG sites across different genomic regions (Figure 2D). And it
was found that the majority of these CpG sites were significantly
enriched within the island and opensea, whereas only a few of
them were located in the N shelf and S shelf.

Construction of a CpG-Based Signature and
Evaluation of Its Predictive Ability in the
TCGA BC Cohort
In the training stage, 654 BC patients with integrated methylation
profiles and clinical information were retrospectively analyzed in
depth, among which 66 (10.1%) died and the median survival
time was 115.7 months. The median follow-up time of these BC
patients was 17.3 months (range, 1.0–235.6 months). For the
entire cohort, the 1-, 3-, 5-, and 8-years OS rates were 98.3,
91.5, 80.4, and 61.5%, respectively. To investigate the prognostic
values of these cancer-specific biomarkers in BC patients,
univariate Cox regression analyses were performed. As results,
18 CpG sites, the methylation levels of which were significantly
correlated with OS (p < 0.05), were predominantly identified as
the candidates (Figure 3A). To screen out the CpG sites with the

FIGURE 1 | Study overview for profiling the prognostic signature based on large-scale DNA methylation data.
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greatest potential prognostic values, we then applied a LASSO-
penalized Cox regression model and narrowed down a
methylation-based signature for BC patients in our training
cohort (Figures 3B,C). Of these 18 candidate CpGs, 10 were
finally identified, namely cg11157172, cg21306240, cg10210510,
cg02177231, cg16703956, cg26118943, cg17302155, cg12744820,
cg01444716 and cg07676859, mapped to PRDM16, EPHA10,
COL9A2, TBX15, SLC6A3, SNX18, PRDM13, OLIG3, BTBD3,
and SSTR4, respectively. Using coefficients weighted by
multivariate Cox regression model (Figure 3D), an epigenetic
score was calculated for each BC patient based on the
individualized methylation levels of corresponding CpG sites
as follows:

[2.0266 × Methylation level of cg11157172] + [0.3172 ×
Methylation level of cg21306240] + [(−2.0224) × Methylation
level of cg10210510] + [0.5711 × Methylation level of
cg02177231] + [(−0.0887) × Methylation level of cg16703956]
+ [(−1.0346) × Methylation level of cg26118943] + [0.1536 ×

Methylation level of cg17302155] + [0.9559 ×Methylation level of
cg12744820] + [(−1.1586) × Methylation level of cg01444716] +
[0.5151 × Methylation level of cg07676859]

Using the Youden index to generate the optimal cutoff value of
the risk score, we assigned 369 BC patients (56.4%) with a derived
risk score > −0.183 to a high-risk subgroup and others (43.6%) to
a low-risk subgroup (Figure 3G). Kaplan-Meier survival analysis
(Figure 3H) also revealed the risk of high-risk patients was 5.83-
fold higher than that in the low-risk group (95%CI, 2.96–11.47;
p < 0.0001). Next, time dependent ROC curves and C-index were
performed to investigate the predictive efficiency of this
established model (Figures 3E,F). The resulting AUC values of
ROC curve remained above 0.7 even up to 15 years and C-index
was 0.743 (95%CI, 0.675–0.811), indicating that our 10-CpG-
based signature had superior predictive efficiency. The
distribution of risk score, patients’ survival status, and
methylation patterns of corresponding CpG sites are shown in
Figure 3G.

FIGURE 2 | Selection of differential methylation CpG sites in the discovery stage (n � 91 pairs). (A) Volcano plot was generated based on the differential methylation
in combination with adjusted t-test p-values. The x-axis represents the differential methylation that the average methylation level in tumor tissues versus average value in
adjacent normal tissues for each CpG site, while the y-axis represents the negative log10 transformation of adjusted p-values for each comparison. The vertical lines
represent an absolute value of differential methylation of 0.4, and the horizontal lines indicate adjusted p-value � 0.05. A total of 432 differentially methylated CpG
sites with statistical significance were identified. Among them, 375 were up-regulated (red dots) and 57 were down-regulated (green dots). (B) Heatmap showing
methylation of 432 CpG sites in paired tumor samples and adjacent normal tissues. (C) Idiogram visualizing the genome-wide information of differential methylation CpG
sites. (D) Upset plot depicting the region-level island-based distribution within parent genes of these 432 CpG sites.
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TheCpG-Based Signature Is Independent of
Conventional Clinicopathological Features
In order to investigate the prognostic value of 10-CpG-based
signature in stratified cohorts, we classified BC patients into
various subgroups and next performed stratification Cox

analyses for the entire cohort according to available
clinicopathologic characteristics. As expected, our signature was
able to classify patients with distinct prognoses, thus confirming its
robustness for independently predicting BC prognosis
(Supplementary Figure S1). Furthermore, 537 samples with

FIGURE 3 | Identification of 10-CpG-based prognostic signature in the training stage (n � 654). (A) Forest plot which depicts the 18 significantly survival-associated
CpG sites (p-value < 0.05) among the cancer-specific methylation locus in the training set. Unadjusted hazard ratios (boxes) and 95% confidence intervals (horizontal
lines) of univariate Cox regression analyses are presented in the plot. p-values are indicated by the color scale by the right side. (B) Selection of tuning parameter (lambda)
in the LASSO-penalized Cox model via 10-fold cross validation in the training set. The partial likelihood deviance (y-axis) from the cross-validation procedure of
LASSO regression is plotted as a function of log(lambda) (lower x-axis). Dynamically changing number along the upper x-axis indicates the average number of predictors.
Dashed vertical lines from right to left define the logarithm of the optimal value of lambda via “1-fold standard error” and “minimum” criteria, respectively. (C) The shrinkage
procedure of regression coefficients of predictors in (B). The optimal lambda value of 0.0119 was chosen based on the “minimum” criteria and 10-fold cross validation.
The 10 resulting predictors with nonzero coefficients were subselected as candidates for model construction. And the numbered lines represented the corresponding
CpG sites in y-axis of the (A) from top to bottom, respectively. (D) Coefficients of CpG sites derived from the multivariate Cox regression analysis, which were used for
calculating the risk score. (E) The performance of the model in training set. Dynamically time-dependent ROC curves with AUC values estimated from 1 year to 15 years.
(F) The 5-years ROC curve analyses for the risk score derived from the 10-CpG-based signature. The red dot represents the corresponding optimal cutoff value (−0.183),
which were calculated based on the Youden index. (G) The distribution of patients’ survival status ranked by corresponding risk score, the methylation pattern of
corresponding CpG sites included in final signature, (H)Kaplan-Meier curves of overall survival between low- and high-risk patients stratified by 10-CpG-based signature
in the training cohort. Log-rank test, p-value < 0.0001.
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relatively complete clinical information within TCGA-BC cohort
were subjected to verify whether our signature was an independent
predictive factor for the prognosis of BC patients. The results of
univariate analyses suggested that age, ER status, PR status, N
stage, positive lymph nodes status, pathological stage, and risk
score derived from 10-CpG-based signature were all remarkably
correlated with OS of BC patients (Supplementary Figure S2A).

Hence, these risk factors were included to perform a multivariate
Cox analysis and our results indicated the CpG-based signature
was an independent prognostic factor when adjusted by those
factors (Supplementary Figure S2B). Based on the PAM50
subtype classification of BC, the signature also shows its robust
prognostic ability in basal-like and luminal subtype
(Supplementary Figures S2C,D).

FIGURE 4 |Construction and evaluation of a clinical predictive model. (A) The methylation-clinicopathologic nomogram for predicting the 3-, 5- and 8-years overall
survival probability for BC patients, which was developed in the TCGA cohort, with ER status, age, positive lymph nodes status and 10-CpG-based signature
incorporated. (B) Calibration curves and C-index (95% CI) of the nomogram in TCGA cohort. The calibration plot depicts the calibration of the nomogram in term of
agreement between observed and predicted 3-, 5- and 8-years clinical outcomes. The dashed 45-degree line indicates the ideal situation, and the dotted lines
indicate the predictive performance of the model. (C–E) Decision curve analysis of the nomogram in TCGA cohort for evaluating the clinical usefulness in (C) 3 years, (D)
5 years and (E) 8 years. The blue line represents the CpG-clinicopathologic nomogram. The red line represents the model which integrated clinical risk factors only. The
black line represents the treat-none scheme. And the green line represents the treat-all-patients scheme.
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Construction and Assessment of a Novel
Methylation-Clinicopathological
Nomogram
To further develop a clinically applicable approach for predicting
OS probability in BC patients, a secondary multivariate Cox
regression analysis that integrated the identified independent
risk factors, consisting of age, ER status, positive lymph nodes
status and risk score, was performed and depicted as an inclusive

nomogram (Figure 4A). It substantiated that the risk score
contributes the greatest weight to the total points, whereas
other clinicopathological features contribute much less, which
were consistent with results from previous multivariate
regression analyses. The C-index of our nomogram for OS
prediction reached 0.8705 with 1,000 bootstrap replicates (95%
CI: 0.8111–0.9298), indicating a favorable discriminatory
performance of derived nomogram. And the results of
calibration curves showed that the bias-corrected lines were

FIGURE 5 | The performance of the 10-CpG-based signature in validation set 1 (GSE75067) and validation set 2 (GSE72308). (A) Kaplan-Meier curves depicting
the significant difference of overall survival between low- and high-risk patients stratified by 10-CpG-based signature in GSE75067 cohort. Log-rank test, p-value � 0.03.
(B) Time-dependent ROC curves with AUC values estimated of the prognostic signature in GSE75067 cohort from 1 year to 15 years. (C) The 5-years ROC analysis of
the prognostic signature in GSE75067 cohort. (D) The relationship among the distribution of patients’ risk score (upper), survival status (middle), and the
methylation pattern of the 10 particular CpG sites (bottom) in GSE75067 cohort is shown. The Kaplan-Meier survival analysis (E), time-dependent ROC curves with AUC
values calculated (F–G) and risk score analysis (H) for the 10-CpG-based signature in GSE72308 cohort. Log-rank test, p-value � 0.039.
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close to the ideal line (45-degree line), indicating good agreement
between the predicted and actually observed outcomes
(Figure 4B). Moreover, we performed DCA analysis to
evaluate the real-world clinical usefulness of the inclusive
nomogram by quantifying the net benefits against a range of
threshold probabilities. The DCA results of the nomogram are
presented (Figures 4C–E), revealing that the prognosis-related
treatment decision-making based on our methylation-
clinicopathological nomogram could add more net benefit
than treat either none or all patients if the probability
threshold for doctors or patients does not exceed 60%.
Besides, the clinical usefulness of our nomogram significantly
overwhelmed the conventional clinicopathological factors.
Consequently, these findings suggested that our nomogram
was an optimal prognostic model for predicting both short-
term and long-term survival probability in BC patients.

External Validation and Evaluation of
10-CpG-Based Prognostic Signature in the
GEO BC Cohorts
To substantiate the stability of final 10-CpG-based signature,
external analyses were performed in two external validation
cohorts: GSE75067 and a subset of GSE72308. Utilizing the
same risk score formula and cutoff value obtained from the
training cohort, the BC patients in the GSE75067 dataset were
categorized into a high-risk (51.7%) subgroup and a low-risk
(48.3%) subgroup. Consistent with the outcomes of TCGA-BC
cohort, the patients who were assigned to the high-risk subgroup
had significantly worse OS than low-risk BC patients (Figure 5A;
HR, 1.576; 95%CI, 1.041–2.385; p � 0.03), demonstrating the
robustness and clinical applicability of the established signature
across different cohorts. And time-dependent ROC analysis
revealed the CpG signature had favorable efficacy for
predicting both short-term and long-term OS, with AUC value
maintaining above 0.6 from 1 year to 15 years (Figures 5B,C).
The distribution of risk score and methylation patterns of 10
particular CpG sites are shown (Figure 5D). Furthermore,
similar analyses showed that the CpG signature could
successfully divide 155 BC patients (65.4%) into low-risk
subgroup and 82 patients (34.6%) into high-risk subgroup in
term of OS (HR, 1.876; 95%CI, 1.023–3.44; p � 0.039) in the
GSE72308 cohort (Figure 5E). Similarly, the CpG signature
maintained its discriminative power for prognosis prediction
spanning from 1 year to 8 years (Figures 5F,G). Additionally,
the risk score distribution, survival status, and methylation
patterns of 10 CpG biomarkers are displayed (Figure 5H).
Taken together, these results suggested that our 10-CpG-based
signature is robust for differentiating BC patients with a favorable
or poor prognosis, which may possess the pivotal mechanism
underlying the BC carcinogenesis, progression, and metastasis.

Decipher the Diagnostic Values of These
CpG Sites in BC
These identified ten CpG sites were significantly differentially
methylated in paired tumor/adjacent-normal tissues

(Supplementary Figure S3). ROC curves revealed that these
CpG could individually or jointly show diagnostic value for
BC in high efficacy in discovery set (Supplementary Figure
S4) and entire TCGA-BC dataset (Supplementary Figure S5).
Additionally, Spearman correlation analyses were performed to
estimate the prospective methylation and expression quantitative
trait loci (meQTL) relationships (Supplementary Figure S6). As
results, hypermethylation of CpG sites (cg01444716, cg02177231,
cg26118943, and cg07676859) inhibited expression of
corresponding gene (BTBD3, TBX15, SNX18, and SSTR4),
while hypermethylation (cg11157172, cg21306240, and
cg10210510) was positively correlated with parent gene
(PRDM16, EPHA10, and COL9A2) expression. However,
methylation levels of three other CpG sites (cg12744820,
cg16703956, and cg17302155), which were located in 1st exon
of OLIG3, TSS1500 of SLC6A3, and gene body of PRDM13,
respectively, did not display any correlation with the gene
expression.

Altered Biological Processes and Pathways
in High- and Low-Risk BC Patients
The strong risk stratification ability of our 10-CpG-based
signature for BC patients could be attributed to their potential
regulation in tumor development or metastasis. Therefore, GSEA
analysis was performed to elucidate the association between
potential biological phenotypes and our prognostic signature.
In the GSEA enrichment results, we noticed that genes highly
expressed in the high-risk patients were significantly enriched in
multiple cancer-related pathways, such as Notch4 signaling
pathway (normalized enrichment score, NES � 1.937, size �
53), cell cycle regulation (NES � 1.866, size � 85), stabilization
of P53 (NES � 1.806, size � 55), regulation of DNA damage
checkpoints (NES � 1.917, size � 66), and apoptosis (NES � 1.951,
size � 52) (p < 0.05 and FDR < 0.25) (Supplementary Figure S7).
In contrast, the CpG-based model was negatively correlated with
immune relevant behaviors, including alteration of immune
checkpoint molecules, activation of immune cell signaling
pathways, and Interleukin-related signatures (Figure 6),
further demonstrating low-risk BCs were characterized as an
enhanced immune phenotype. Therefore, it could be speculated
that our CpG-based signature might serve as an interface between
epigenetic modification and immune activities. In summary, our
GSEA analysis implied that these CpG sites play crucial roles in
mammary carcinogenesis via the above-referenced biological
processes and their functional dysregulation subtly affected the
OS of BC patients.

TheRisk Score Shapes aNon-inflamed TME
in BC
Considering that a vast number of immunological pathways were
downregulated in high-risk BC patients, we sought to explore the
intrinsic correlation between the TME and our established risk
scores to elucidate the immunogenicity of each risk subgroup. To
execute this, we first evaluated the correlation between the risk
score and seven steps of cancer-immunity cycle, which
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conceptualized the anti-cancer immune response. Overall,
activities of the majority of the steps in the cycle were
negatively correlated with our prognostic signature
(Figure 7A), including the release of cancer cell antigens (Step
1), cancer antigen presentation (Step 2), priming and activation
(Step 3), trafficking of immune cells to tumors (The recruiting of

Th1 cell, dendritic cell, macrophage, NK cell, Th17 and Th2 cell,
Step 4), and infiltration of immune cells into tumors (Step 5).
Subsequently, for high-risk patients, the reduced activities of
these steps may also impede the infiltration of tumor-
associated immune cells and promote the formation of non-
inflamed TME.

FIGURE 6 | Gene set enrichment analysis (GSEA) delineates the significantly enriched pathways which are negatively correlated with 10-CpG-based signature
using the “c2.cp.v7.0. symbols” gene set, downloaded from the MSigDB database, as the reference. And the significance threshold was set at nominal p-value < 0.05
and FDR < 0.25.
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FIGURE 7 | The epigenetic risk score shapes a non-inflamed TME in BC. (A) Correlation between risk score and enrichment scores of various steps of the
anticancer immunity cycle. (B) Correlation between risk score and expression levels of 24 curated inhibitory immune checkpoints. (C) Differences in the infiltration levels
of 24 immune cells (quantified by ssGSEA algorithm) between low- and high-risk subgroups. (D) Correlation between risk score and mRNA levels of NFAT and STAT

(Continued )
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Thereafter, using the ESTIMATE algorithm in combination
with the corresponding transcriptome profiles, we evaluated the
differences in the TME between high- and low-risk BC patients,
comprised of immune cell infiltration level (immune score),
stromal cell content (stromal score), and tumor purity. Based
on this algorithm, immune scores ranged from −1337.749 to
3747.411, and stromal scores were distributed between −2142.388
and 2125.969, respectively. And we found that both the immune
and stromal scores were significantly elevated in low-risk subtype
while an opposite trend was revealed when comparing the tumor
purify of different risky subgroups (Supplementary Figures
S8A–C), suggesting the risk score may reflect cancer
immunogenicity in BC.

Consistently, the risk score was found to be mutually exclusive
with a majority of immune checkpoint inhibitors, such as PD-1,
PD-L1, CTLA-4, and so on (Figure 7B). Theoretically, the low
abundance of checkpoint molecules was always indicative of
resistance to immune checkpoint blockade. Moreover, the risk
score was negatively correlated with a vast majority of
immunomodulators (Supplementary Figure S9). Notably, a
majority of MHC molecules were significantly downregulated
in high-risk BC subgroup, suggesting potential regression on the
capacity of antigen presentation and processing within these
patients. Several critical chemokines, such as CCL19, CCL21,
CCL22, XCR1, and paired receptors CCR7, CCR4, XCL1, and
XCL2, were also negatively correlated with risk score. These
chemokines and receptors could induce the recruitment of
tumor-infiltrating immune cells such as CD8+ T cells and
regulatory T cells (Treg). These outcomes indicated our risk
score may exert a wide range of effects upon anticancer
immune response.

Furthermore, for reducing calculation errors caused by
different inner algorithms and marker gene sets, several
independent methods, including ssGSEA, MCP-counter, and
Cibersort, were applied to infer the infiltration levels of
immune cells among BC patients using bulk RNA-seq data.
Consistently, the majority of immune subpopulations within
TME exhibited reduced infiltration in high-risk BC patients,
indicating an immune-deserted TME in high-risk subgroup
(Figure 7C, Supplementary Figures S8D–K, S10B). Of note,
the infiltration levels of dendritic cells and CD8+ T cells, which
induce antigen presentation and immune activation in tumors,
were significantly lower in the high-risk subgroup based on these
three methods. Both MCP-counter and Cibersort revealed that
the infiltration level of macrophage was significantly reduced in
high-risk patients. In addition, the high-risk subgroup exhibited
downregulation of the effector genes of these tumor-infiltrating
immune cells (Figure 7E). Additionally, the ssGSEA algorithm
also detected that a wide range of immune cells was significantly

decreased in high-risk BC subgroup, including T cells, Th17 cells,
T effector memory cells, NK cells, mast cells, and B cells. We also
found that cancer-associated fibroblasts were significantly
downregulated in low-risk subtype. In addition, the risk score
was negatively correlated with the gene signature of Th1 cells
(Figure 7E). Collectively, for high-risk BC patients, the
coordination role of these methylation biomarkers may
restrain recruitment of tumor-associated infiltrating immune
cells, transforming the inflamed surroundings into a non-
inflamed TME.

Additionally, we observed that mRNA levels of STAT and
NFAT family members, such as STAT3, STAT4, STAT5, and
NFATC2, were also negatively correlated with our risk score
(Figure 7D). The reverse-phase protein array data downloaded
from cbioportal (http://www.cbioportal.org/) also validated that
the protein level of STAT3 was significantly lower in high-risk
patients compared with low-risk ones (Figure 7H). Given the
evidence that NFAT and STAT family are well-known
transcriptional regulators of immune checkpoints in T cells,
these data indicated that DNA methylation biomarkers
promote the downregulation of immune checkpoints
synergistically in BC, potentially through the inhibition of
NFAT/STAT signaling pathways.

To further authenticate our conjecture, we used CLS
computed by Rooney et al., revealing the high-risk subgroup
tends to exhibit downregulation of immune cytolytic activity
(Figure 7F, Supplementary Figure S8L). The pan-cancer TIS is
positively correlated with clinical response to anticancer
immunotherapy and defines the pre-existing inflammatory
status in TME. As expected, the risk score is negatively
correlated with the T cell inflamed signature and the majority
of genes within this signature (Figure 7G, Supplementary Figure
S10A), further confirming its roles in shaping non-inflamed
TME. And high-risk BC patients showed higher cancer
stemlike indices (Figure 7I), indicating a potential negative
regulation between stemness and anti-tumor immunity.
Moreover, IPS was known as a superior immune response
molecular marker to quantify the intratumoral immune
landscape and predict response to immune checkpoint
blockade therapy spanning multi-types of tumors. Of note, the
epigenetic risk score was significantly negatively correlated with
IPS (Supplementary Figure S11A) and the IPS, IPS-PD1-PD-L1-
PD-L2, IPS-CTLA4, and IPS-PD1-PD-L1-PD-L2-CTLA4 scores
in the high-risk subgroup were significantly lower compared with
low-risk subgroup (Supplementary Figure S11B), indicating a
less immunogenic phenotype and less sensitivity to immune
checkpoint blockade treatment in high-risk patients. In
addition, we found that in both the pre-defined low- and
high-risk BC patients, C1 (Wound Healing) and C2 (IFN-γ

FIGURE 7 | family members. (E) Differences in expression levels (average z-scores) of the effector genes of tumor-associated immune cells between low- and high-risk
patients. (F) Pearson correlation between immune cytolytic activities and risk score. (G) Spearman correlation between pan-cancer T cell inflamed signature and
risk score. Both T cell inflamed score and immune cytolytic activities are positively correlated with clinical response to anti-cancer immunotherapy. (H)Differences in
protein expression of STAT3 between low- and high-risk patients based on the reverse-phase protein array analysis. (I) Differences in stemness index (mRNAsi)
between low- and high-risk patients. The statistical significance of pairwise correlations or comparisons is annotated with asterisks (*p < 0.05; **p < 0.01; ***p <
0.001).
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Dominant) immune subtypes were mostly enriched with absence
of C5 (Immunologically Quiet), which were in accordance with
results from Thorsson et al. It was noteworthy that the high-risk
subgroup had considerably more C1 and C2 subtypes
characterized by high proliferation rate and poor prognosis,
whereas low-risk ones occupied a higher percentage of C3
(Inflammatory) and C6 (TGF-β Dominant) subtypes with a

high inflammatory signature and lymphocytic infiltrate
(Supplementary Figure S11C). Thus, the distribution of
immune subtypes between low- and high-risk patients was
consistent with the prognosis and immunogenicity of each
subgroup.

To further explore the contribution of each CpG site in
shaping non-inflamed TME, we performed the correlation

FIGURE 8 | The landscape of mutational signatures and copy number alterations across distinct prognostic subgroups. (A–B) The oncoPrint depicting top 20
significantly mutated genes in the BC subsets stratified by risk scores, with corresponding clinicopathological characteristics of each subgroup annotated as below. (C)
TMB difference in the high-risk and low-risk subgroups. Wilcoxon test, p � 0.00808. (D) Scatter plot depicting the positive correlation between TMB and risk scores in
TCGA BC cohort. Spearman correlation between risk scores and mutation load is shown (p � 0.00202). (E) High-risk BC patients divided by risk scores showed
significantly higher burden of gains and losses, both focal (upper panels) and arm levels (lower panels). (F) Composite copy number profiles (gistic scores or altered
frequency) for low-risk and high-risk patients, with gains in dark red and losses shown in midnight blue. The copy number segments are placed according to
corresponding chromosomal locations.
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analyses between methylation levels of biomarkers and adverse
indicators of modifying non-inflamed TME, including TIS, CLS,
and IPS. As shown in Supplementary Figure S11D, the
methylation level of cg102110510 was significantly positively
correlated with TIS, CLS, and IPS, indicating its negative role
in modifying a non-inflamed TME, whereas the epigenetic
modification of cg21306240, cg17302155, cg16703956,
cg12744820, and cg022177231 was significantly positive
correlated with shaping non-inflamed TME in BC.

In summary, these results indicated that compared with its
counterparts, BC patients who were divided into high-risk
subtype via 10-CpG-based signature have a distinct immune
phenotype, characterized by lower immune activation and
being less efficacious to immunotherapies. Hence, a prior
treatment option for BC with higher risk score was to
transform a non-inflamed TME into an inflamed
microenvironment, consequently triggering anti-cancer
immune response.

The Epigenetic Risk Score Is Associated
With Distinct Genomic Imprints
To explore the intrinsic correlation between established risk score
and specific genomic alterations in BC, we performed multi-
omics data analyses, including somatic mutation and copy
number variation analysis using the corresponding TCGA
profiles. In terms of somatic mutation analysis, patients in the
high-risk subgroup had significantly higher somatic mutation
burdens in TP53, KMT2C, and GATA3 (Figures 8A,B), which
have been shown to play crucial roles in the carcinogenesis of
multiple tumors. Additionally, patients in the high-risk subgroup
showed a significantly higher overall TMB than low-risk ones
(Wilcoxon-test p � 0.00808; Figure 8C). Further correlation
analyses confirmed that the risk score was significantly and
positively correlated with TMB (Spearman p � 0.00202;
Figure 8D).

We further explored the copy number burdens of distinct
subgroups. Similar to the findings as previous described, the high-
risk BC patients, occupied with non-inflamed TME, showed a
higher burden of gain and loss both at the focal and arm-levels
(Figure 8E). As illustrated within focal amplification and deletion
peaks, we observed the deletions of chr1 (1p36) and
amplifications of chr8 (8p11), chr17 (17q12), and chr20
(20q13) were significantly enriched in high-risk patients
(Figure 8F, Supplementary Figure S12).

The Risk Score Distinguished Different
Therapeutics Responses in BC
After comparing the differences in enrichment scores of
therapeutic signatures, we could determine the roles of risk
score in predicting clinical response to these therapies. As
exhibited in Figure 9A, the majority of immune inhibited
oncogenic pathways, such as WNT-β-catenin_network, cell
cycle, mismatch repair, and p53 signaling pathway, were
invigorated in the high-risk subgroup, suggesting an inhibited
immune status in them. And it may be reasonable to take these

signatures as potential therapeutic targets for high-risk BC
patients. However, for low-risk ones, immunotherapy should
be regarded as candidates due to the inflamed TME within
them. The submap analysis also revealed the low-risk patients
were more sensitive to anti-PD-1 treatment (Figure 9B).

Since chemotherapy is a commonly used strategy for clinical
treatment on BC patients, we selected three commonly used and
three other useful chemicals agents (cisplatin, gemcitabine,
docetaxel, paclitaxel, etoposide, and vinorelbine), further
evaluating the clinical responses of each risk subgroup. As is
shown in Figure 9C, the estimated IC50 for gemcitabine,
etoposide, and vinorelbine was significantly higher in high-risk
BC subgroup, indicating potential chemotherapeutic drug
resistance for these patients.

Additionally, we intended to screen for the candidate
compounds, especially targeting the high-risk BC patients
identified by our risk score. Top 300 DEGs were obtained by
comparing the corresponding mRNA expression profiles between
low- and high-risk subgroups. The top 66 perturbagens that
potentially target these DEGs were exhibited in Figure 9D,
along with 48 MoAs derived from CMap analysis. The top
hits revealed that six compounds (chlorpromazine,
haloperidol, levomepromazine, prochlorperazine, thioridazine,
and trifluoperazine) shared the MoA of dopamine receptor
antagonist. Meanwhile, other specific MoAs, such as estrogen
receptor agonist (diethylstilbestrol and estriol), mTOR inhibitor
(LY-294002 and sirolimus), PKA inhibitor (H-7), and tyrosine
kinase inhibitor (genistein), were also identified as potential
therapeutic targets for high-risk BC patients. These findings
may provide opportunities for optimizing treatment in BC.

DISCUSSION

As a highly complex and heterogeneous disease, BC involves
intricate interwoven relationships (Reis-Filho and Pusztai, 2011).
Currently, the conventional clinicopathologic indicators,
including tumor size, lymph node metastasis, TNM stage, and
cellular biomarkers (ER, PR, HER-2 status and Ki-67 index) of
tumor biopsy, are still the gold standard for the risk stratification
and subsequent formulating of therapeutic scheme. However, BC
patients might possess different treatment responses and clinical
outcomes spanning <6 months to beyond 10 years, even with the
same histological grade and pathological stage (Network, 2012;
Olsson et al., 2013). In this aspect, integrating reliable prognostic
biomarkers into real-life work are a critical requisite to identifying
the subset of patients who harbored a worse prognosis and might
benefit from the systematic adjuvant therapy. Significant research
on the high-throughput gene expression profiles has led to recent
commercialization of two multi-gene-based signatures
(Mamounas et al., 2010; Cardoso et al., 2016; Geyer et al.,
2018), but their additional utility in aiding treatment decision
in BC patients still needs validating based on long-term
prospective studies (Sparano et al., 2015).

DNA methylation, as a changeable and possibly heritable
epigenetic modifying mechanism, offers promising clues for
early detection, monitoring treatment response, prognosis
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FIGURE 9 | Correlation of established risk score with therapeutic response to several therapies in BC patients. (A) Differences in enrichment scores (average
z-scores) of several therapeutic signatures for low- and high-risk patients. (B) Immunotherapeutic response prediction for anti-PD-1 and anti-CTLA-4 treatments in low-
and high-risk patients. (C) Differential chemotherapeutic responses for distinct risk subgroups. Boxplots showing the estimated IC50 of risk subgroups for particular
chemotherapeutic drugs, including cisplatin, gemcitabine, docetaxel, paclitaxel, etoposide, and vinorelbine. (D) Potential molecular inhibitors derived from
Connectivity Map analysis (CMap). Based on the differential expression genes between distinct risk subgroups, we utilized the heatmap to depict each compound
(perturbagen) from CMap database that shares similar mechanism of action (MoA). Sorted by descending number of inhibitors with shared MoA.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2021 | Volume 8 | Article 67519817

Zhang et al. A CpG-Based Signature Shapes TME

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


prediction, and molecular subtyping in cancer (Franco et al.,
2008; Wu and Ni, 2015; Zhang et al., 2018c). The aberrant
methylation of particular subsets of CpG sites is prone to take
place at the beginning of carcinogenesis, resulting in specific
processes of tumorigenesis (Wang et al., 2019). Preliminary
investigation indicated that using DNA methylation as a
biomarker holds serious implications for cancer diagnosis and
treatment, including the relative steady expression both in vivo
and ex vivo (Keeley et al., 2013), ensuring precise judgement in a
minimally invasive way instead of requiring bulk tissue samples
(Dai et al., 2011), and higher accuracy in cancer management,
especially distinguishing relatively indolent or aggressive tumors
(Hao et al., 2017). Taking the potential epigenetic modification of
DNA methylation in breast carcinogenesis into account, it is
reasonable to consider the CpG sites to increase the effectiveness
of adjuvant therapy. In the current study, we proposed a robust,
individualized prognostic signature that can estimate OS
probability in BC patients on the basis of 10 aberrant CpG
sites, through integrating the well-established public, large-
scale multi-omics sequencing cohorts. And our prognostic
signature could further stratify clinically defined groups of
patients (e.g., age, histological type, TNM stage) into
subgroups with distinct survival outcomes. Moreover,
attributed to the complementary value of molecular and
conventional clinical characteristics, our inclusive nomogram
could indicate a more accurate estimation of OS in both
short-term and long-term prognosis prediction for BC patients.

We applied a three-stage selection procedure to screen out the
prominent biomarkers from more than 300,000 CpG sites after
quality control and rigorous filtering. Initially, in the discovery
stage, differential methylation analyses using paired tissue profiles
winnowed out nearly 99.86% of probes, and those CpG sites with
cancer-specific properties in BC patients were preserved. Next, in
the training stage, univariate Cox regression analyses were
performed to assess their prognostic values, excluding probes
unrelated to OS. Meanwhile, considering that the Cox model is
insufficient for variable selection due to the high-dimensional
data, the successive application of machine-learning methods,
LASSO-penalized Cox regression with 10-fold cross validation, to
screen the optimal combination of CpG sites for further
modeling, markedly raised the accuracy of methylation-based
signature. Finally, in the validation stage, the performance of the
established model was further validated based on two external
independent cohorts, confirming its robust and reliable prognosis
prediction.

Furthermore, the GSEA analysis provided more opportunities
for deciphering the largely untapped mechanisms which our
identified CpG sites might participate in. For instance,
Nothch4 signaling pathway is considered as playing pivotal
roles in malignant potential, including proliferation,
invasiveness, and metastasis, by sustaining epithelial-
mesenchymal transition and controlling BC stem cell activity
(Nagamatsu et al., 2014; Kim and Singh, 2015; Wang et al., 2018;
Giuli et al., 2019), and activation of it could contribute to
endocrine therapy assistance in BC cells (Lombardo et al.,
2014; Simões et al., 2015; Bui et al., 2017). Upregulation of
ORC1 (origin recognition complex 1), the largest unit of ORC

required in the initiation of DNA replication, was gradually
confirmed resulting in DNA re-replication to trigger DNA
damage response and control cancer cell-cycle (McNairn and
Gilbert, 2005; Kara et al., 2015; Chen et al., 2019). Altered tumor
metabolism, including increased glycolysis in cancer cells,
determined the malignant biological behaviors and cancerous
phenotype (Ma and Zong, 2020). Inhibitor of glycolysis pathway
could sensitize the anti-cancer effect of chemotherapeutic agents
and delay the occurrence of acquired drug resistant in hypoxia
(Le Calvé et al., 2010; Jiang et al., 2018). In addition, dysregulation
of other pathways, such as regulation of apoptosis (Jordan, 2015;
Ahmed et al., 2019), DNA damage checkpoints (Lord and
Ashworth, 2012; del Rincón et al., 2014), and P53 signaling
pathway (Silwal-Pandit et al., 2017), were also involved in
cancer cell growth, proliferation, invasion, and metastasis and
played crucial roles in BC cells. Hence, the results mentioned
above added more evidence for the interactions between our
established signature and cancers, highlighting its clinically
transitional potential.

Nowadays, exploiting the intrinsic interplay of host immune
system and malignant tumors has achieved impressive success
(Chung et al., 2017; Plava et al., 2019). Moreover, preliminary
reports have provided elegant analyses on the cross-talk between
tumor-intrinsic genes and BC microenvironment (Fox et al.,
2019; Patel et al., 2019), hailing cancer immunotherapy as a
vast breakthrough in the combat against malignancies (Jia et al.,
2017; Szekely et al., 2018). However, currently, the immune
checkpoint blockades such as PD-1, PD-L1, and CTLA-4 do
not exhibit an overwhelming situation for conquering cancers.
Only a small portion of BC patients with suitable immunogenicity
could show clinical response to immunotherapy. And it is
necessary for the success of immunotherapy that to hold an
inflamed TME in conjunction with pre-existing anticancer
immunity. Particular molecules or pathways, inducing the
formation of non-inflamed TME and making the recruitment
of tumor-cytotoxic T cells invalid, may cause resistance to
immunotherapeutic agents. Intriguingly, an extensive
immunogenomic analysis has revealed that our established risk
score could distinguish subgroups with different prognoses and
remarkably distinct phenotypes within TME. For high-risk BC
patients with a non-inflamed TME, transforming it into an
inflamed TME is one of the top priorities along with re-
invigoration of tumor-infiltrating immune cells to drive tumor
regression. To some extent, these findings suggested the CpG sites
included in our signature hold great promise for identifying novel
molecular targets and improving cancer management in the era
of immunotherapy.

Although our study proposed a robust 10-CpG-based
prognostic signature and shed new light on the epigenetic
microenvironment for possible therapeutic potential, several
limitations should be addressed. Firstly, due to the
retrospective nature of our work, it is imperative to design
multicenter prospective clinical trials with large sample sizes
for further providing high-level evidence for clinical
application. Secondly, due to the lack of normal mammary
samples, the differential methylation profiles merely derived
from the comparison between tumor and adjacent normal
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tissues need to be further validated. Thirdly, our attempts were
based on single-omics data (DNA methylation), so that the
understanding of BC-related properties could be inevitably
incomprehensive in the presence of tumor heterogeneity.
Finally, concrete biological mechanisms of the candidate CpG
sites still need to be experimentally verified, especially underlying
the immune microenvironment.

CONCLUSION

Overall, we constructed and externally validated a novel
predictive model by sufficiently integrating and analyzing the
DNA methylation profiles. And we expect that application of our
model will not only greatly contribute to the personalized follow-up
and decision-making process of clinicians, but also facilitate further
understanding of the basic biology of BC and thereby inform the
drafting of appropriate therapeutic strategies in the future.
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