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A B S T R A C T   

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing an outbreak of coronavirus disease 2019 
(COVID-19), is a major threat to public health worldwide. Previous studies have shown that the spike protein of 
SARS-CoV-2 determines viral infectivity and major antigenicity. However, the spike protein has been undergoing 
various mutations, which bring a great challenge to the prevention and treatment of COVID-19. Here we present 
the MutCov, a pipeline for evaluating the effect of mutations in spike protein on infectivity and antigenicity of 
SARS-CoV-2 by calculating the binding free energy between spike protein and angiotensin-converting enzyme 2 
(ACE2) or neutralizing monoclonal antibody (mAb). The predicted infectivity and antigenicity were highly 
consistent with biologically experimental results, and demonstrated that the MutCov achieved good prediction 
performance. In conclusion, the MutCov is of high importance for systematically evaluating the effect of novel 
mutations and improving the prevention and treatment of COVID-19. The source code and installation in-
struction of MutCov are freely available at http://jianglab.org.cn/MutCov.   

1. Introduction 

The outbreak of coronavirus disease 2019 (COVID-19), caused by 
severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), has 
become a pandemic disease globally [1–4]. As of 20 March 2022, over 
468 million confirmed cases and over 6 million deaths of COVID-19 have 
been reported globally according to the World Health Organization [5]. 
COVID-19 has varied manifestations such as mild infection, pneumonia, 
lung failure, and even death. It has become a major threat to public 
health [6]. 

The genome of SARS-CoV-2 encodes spike (S), envelope (E), mem-
brane (M), and nucleocapsid (N) structural proteins. Among those 
structural proteins, the surface S protein mediates the process of coro-
navirus entering into host cells [7], it must be cleaved by the protein 
convertase furin at the S1/S2 site and the transmembrane serine pro-
tease 2 (TMPRSS2) at the S2’ site into S1 and S2 subunits [8,9]. S1 is 
responsible for binding to the host cell receptor (including ACE2 [10, 
11], neuropilin-1 [12], and CD-147 [13]) or cathepsin L/B in the 

endosome pathway, S2 for the fusion of the viral and cellular mem-
branes [7,14–17]. There is a hypothesis that SARS-CoV-2 viral particles 
may use an alternative strategy for entering cells called 
antibody-dependent enhancement of infection (ADE) [18–22]. 

To prevent further dissemination of COVID-19, several promising 
neutralizing monoclonal antibodies (mAbs) have been developed ac-
cording to the initial sequence of SARS-CoV-2 [23–28], which have been 
proved to inhibit viral replication and alleviate severe clinical symptoms 
effectively [23,29]. Notably, S protein is the major antigen capable of 
inducing protective immune responses, mAbs inhibit the viral entry into 
host cells by blocking the binding of S protein to its receptor [30–33]. 

RNA viruses have much higher mutation rate than DNA viruses due 
to the error-prone nature of the RNA-dependent RNA polymerase [34]. 
SARS-CoV-2 has accumulated a considerable amount of mutations in 
spike protein during the spread of COVID-19 [35–38]. The great ma-
jority of those mutations are either ineffective or detrimental to virus 
function and then removed by natural selection [39]. However, some 
mutations in the S protein RBD region have been reported to 
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significantly alter viral infectivity and antigenicity [40–43], which bring 
challenges to the prevention and mAbs development of COVID-19. For 
example, the N439K in S protein has been proved to emerge indepen-
dently in multiple SARS-CoV-2 lineages, it both increases S protein af-
finity for hACE2 and confers virus resistance against several neutralizing 
antibodies [44]. In addition, there are still many mutations (including 
K417 N, Y453F, A475V, L452R, V483A, F490L et al.) that are reported to 
show resistance to some neutralizing antibodies [40,45]. Thus it is 
crucial to closely monitor the evolution of SARS-CoV-2 and timely 
investigate the effect of those mutations on viral infectivity and anti-
genicity [46,47]. 

To address these questions, we present MutCov, a user-friendly 
pipeline for evaluating the effect of mutations in spike protein RBD re-
gion on SARS-CoV-2 infectivity and antigenicity by calculating the 
binding free energy between S protein and ACE2 receptor or mAb. 
MutCov is freely available as Docker images to simplify installation and 
analysis (http://jianglab.org.cn/MutCov). 

2. Methods 

2.1. Homology modeling 

The build-in three-dimensional structures of wild-type RBD-receptor 
complexes were downloaded from the Protein Data Bank database [48]. 
MutCov removes the water and small molecules using PyMOL(The 
PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.), 
then the amino acid sequence of mutant S protein is constituted ac-
cording to the amino acid change (user-defined) and wild-type S protein. 
Finally MODELLER [49] is used for homology modeling of mutant S 
protein based on the amino acid sequence of mutant S protein and the 
three-dimensional structures of the wild-type S protein [50]. At the same 
time, the DOPE and GA341 methods offered by MODELLER are used to 
assess the reliability of the generated model [51]. 

2.2. Docking 

The homology modeling module has got the three-dimensional 
structure of mutant S protein, the docking module further constructs 
the structures of mutant RBD-receptor complexes. Since the wild-type 
and mutant S proteins have similar three-dimensional structures, Mut-
Cov aligns the mutant S protein to wild-type S protein in RBD-receptor 
complexes using PyMOL. Then the wild-type S protein is deleted from 
the complexes [52–55]. 

2.3. Molecular dynamics simulations 

For wild-type and mutant RBD-receptor complexes, MutCov per-
forms the molecular dynamics simulations with the CHARMM36 [56] 
force field and TIP3P [57] water model using GROMACS software 
(version 5.1.4) [58], respectively. In the preparation stage, the com-
plexes are solvated in a rectangular water box with 10 Å distance from 
box boundaries, then the Na+ and CL− ions are added to neutralize the 
whole system and achieve a final salt concentration of 0.15 M [59–61]. 

Subsequently, the MutCov performs 50,000-step energy minimiza-
tion with all atoms unrestrained. Then 1ns NVT equilibration under 
constant volume conditions and 1ns NPT equilibration at 1 bar pressure 
and 310K temperature are performed [62]. Finally, MutCov performs 
5ns (MutCov default value) production MD simulations with a 2fs 
integration step. The Particle Mesh Ewald [63] method is used to 
compute long-range electrostatic interactions, and the SHAKE [64] 
method is used to constrain the covalent bonds involving hydrogen 
atoms [65]. 

2.4. The analysis of molecular dynamics trajectory 

To evaluate the structure change of complexes, the binding free 

energy, binding free energy contribution of each residue, root mean 
square deviation (RMSD), root mean square fluctuation (RMSF), solvent 
accessible surface area (SASA), radius of gyration (RG), and hydrogen 
bonds (HB) analyses are performed based on the molecular dynamics 
trajectories in binding free energy calculation module. 

The RMSD, RMSF, SASA, RG, and HB are analyzed using GROMACS 
built-in tools. The RMSD describes the molecule’s overall discrepancy 
with respect to reference at each time of molecular dynamics simula-
tions. The RMSF describes the variation of each atom in RBD-receptor 
complexes over the whole trajectory. SASA describes the surface area 
of the RBD-receptor complexes that is accessible to solvent at each time 
of molecular dynamics simulations. RG describes the radius of gyration 
of RBD-receptor complexes. HB is defined as the number of hydrogen 
bonds only between the S protein RBD region and ACE2 receptor or mAb 
[66]. 

The binding free energy describes the change in the free energy 
associated with a binding process [67]. In other words, the binding of 
RBD-receptor occurs spontaneously only when the binding free energy is 
negative, and the decrease of binding free energy can promote the 
RBD-receptor binding [68]. Since the complexes are in an unstable state 
during the early MD production phase, the binding free energy is 
calculated according to the last 20% of MD trajectories. For infectivity 
evaluation, the binding free energy is calculated between the RBD re-
gion of S protein and ACE2 protein. Similarly, the binding free energy is 
calculated between the RBD region and double chains of neutralizing 
antibody respectively during antigenicity evaluation. The g_mmpbsa 
tool [69] is used to calculate the binding free energy, which is composed 
of van der waal energy, electrostatic energy, polar solvation energy, and 
SASA energy. To evaluate the effect of mutation on virus infectivity and 
antigenicity, the p-value for the difference between wild-type and 
mutant binding free energy is calculated with the Wilcoxon rank-sum 
statistic. 

3. Results 

3.1. Overview of the MutCov pipeline 

MutCov takes the amino acid change in the S protein as input to 
predict the infectivity and antigenicity changes of mutant SARS-CoV-2 
through four analytical modules based on state-of-the-art computa-
tional tools. Both single mutation, co-mutation (a virus strain contains 
multiple mutations), and multi-mutation (multiple virus strains contain 
multiple mutations) are accepted, and the mutation type can be sub-
stitution, insertion, and deletion. In addition to common built-in mAbs, 
users can evaluate the effect of mutations on the neutralization activity 
of customized mAbs as well. 

MutCov is comprised of the following four modules outlined in Fig. 1: 
(1) homology modeling of mutant S protein, (2) mutant S protein 
docking to ACE2 (in infectivity evaluation) or mAb (in antigenicity 
evaluation), (3) molecular dynamics (MD) simulations, and (4) binding 
free energy calculations. 

The first module takes amino acid change and wild-type structures of 
S protein binding with its receptors (built-in or user-defined) as input to 
predict the three-dimensional structures of mutant S protein using 
MODELLER [49]. To further obtain complete structures of mutant 
RBD-receptor complexes, the second module performs the molecular 
docking of mutant S protein to its receptor with PyMOL. The third 
module adopts the molecular dynamics method to simulate the infection 
or neutralization process of SARS-CoV-2 using GROMACS [58]. The 
fourth module performs root mean square deviation (RMSD), root mean 
square fluctuation (RMSF), solvent accessible surface area (SASA), 
radius of gyration (RG), and hydrogen bonds (HB) analyses based on 
molecular dynamics trajectories. Subsequently, the binding free energy 
of S protein binding to ACE2 (infectivity) or mAbs (antigenicity) in both 
wild-type and mutant RBD-receptor complexes are calculated to eval-
uate the effect of mutation on infectivity or antigenicity. 
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MutCov is available as ready-to-use Docker images containing all the 
necessary software and dependencies. This allows running the pipeline 
in an isolated environment, preventing conflicts with other programs in 

the hosting environment. 

3.2. Assessing the power of MutCov for infectivity prediction 

To assess the power of MutCov for infectivity prediction, we test 
MutCov on previous research that verified the effect of mutations on 
SARS-CoV-2 infectivity and antigenicity by pseudotyped virus experi-
ments [40]. Among them, 14 mutations located in the S protein RBD 
region are reported to significantly alter SARS-CoV-2 infectivity more 
than 4-fold, so the power of MutCov for infectivity prediction is assessed 
utilizing those 14 mutations (Fig. 2A). The wild-type three-dimensional 
structure of the S protein RBD region binding to ACE2 (PDB ID: 6M0J) is 
used for the homology modeling of mutant RBD-ACE2 complexes. Then 
MutCov pipeline performs the molecular dynamics simulations for both 
wild-type and mutant complexes with default parameters. Finally, the 
binding free energy of the S protein binding to ACE2 is calculated, and 
the effect of mutation on infectivity is inferred by comparing the binding 
free energy between wild-type and mutant complexes (see the 
“Methods” section for details). 

To verify the convergence of MD simulations equilibrium, MutCov 
estimates the root mean square deviations (RMSD) of backbone atoms 
relative to the corresponding crystal structure, and RMSD results show 
all the RBD-ACE2 complexes have reached stabilization at 3 ns(Fig. 2B 
and Supplementary Table S1). The flexibility patterns of residues in the 
mutant RBD-hACE2 complex display similar fluctuations to the wild- 
type complex (Fig. 2C). To verify the solvent exposure degree of RBD- 
ACE2 complexes, MutCov also calculated the solvent accessible sur-
face area (SASA), and all the systems show a relatively stable solvent 
exposure degree (Supplementary Table S1). 

The binding free energy of the S protein RBD region binding to ACE2 
in wild-type and mutant complexes are shown in Table 1, and 9 out of 14 
infectivity changes predicted by MutCov are consistent with the exper-
iment results. As shown in Supplementary Table S1, the binding free 
energy changes are mainly focused on electrostatic energy and polar 
solvation energy. For example, the 385-387del mutant RBD-ACE2 
complexes show significantly higher electrostatic energy (− 668.850 ±
48.660 kJ/mol) compared to wild-type (− 1329.412 ± 58.592 kJ/mol), 

Fig. 1. Schematic overview of MutCov algorithm. The MutCov algorithm 
consists of homology modeling, docking, molecular dynamics simulation, and 
binding free energy calculation modules. The orange box is input, the green box 
is a module, the blue box is data, and the grey box is output. 

Fig. 2. The RBD-hACE2 interaction profile of MD simulations. (A)The structure of SARS-CoV-2 RBD-hACE2 (PDB ID: 6M0J). SARS-CoV-2 RBD region is shown in 
yellow and its interacting hACE2 is colored green. The mutations reported altering the infectivity of SARS-CoV-2 2 are colored red. (B) The RMSD changes of 
backbone atoms for the wild and mutant RBD-hACE2 complexes during the 5 ns MD trajectories. (C) The RMSF of Cα atoms for the wild and mutant RBD- 
hACE2 complexes. 
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and the electrostatic energy of V503F R509K, V510L, and P521S mutant 
RBD-ACE2 complexes also significantly increase by more than 100 kJ/ 
mol. In addition, the polar solvation energy of Q414P and S438F mutant 
RBD-ACE2 complexes also increase by more than 100 kJ/mol compared 
with wild-type. Subsequently, MutCov also explores the critical residues 
involved in the RBD-hACE2 binding by calculating the per-residue 
decomposition of binding free energy (Supplementary Table S1). The 
contribution energy of per-residue shows that the LYS386 residue 
(− 140.11 kJ/mol) promotes RBD-ACE2 complexes binding, which is 
deleted in 385–387del RBD-hACE2 complexes. 

3.3. Assessing the power of MutCov for antigenicity prediction 

Similarly, to assess the power of MutCov for antigenicity prediction, 
we then test MutCov based on the reported mutations which signifi-
cantly alter the neutralization activity of mAb [40]. Part of the muta-
tions are excluded from the following analysis because of lacking the 
three-dimensional structure, so MutCov simulates the effect of the 
remaining 6 mutations in spike protein on the neutralization activity of 
their corresponding mAbs including CB6 (PDB ID: 7C01), H014 (PDB ID: 
7CAH), and B38 (PDB ID: 7BZ5). MutCov pipeline performs the mo-
lecular dynamics simulations for both wild-type and mutant RBD-mAb 
complexes with the “–Model” parameter to specify the mAb to be used 
(see the “Methods” section for details). 

As is shown in the three-dimensional structure of RBD-mAb com-
plexes (Fig. 3A), the 7CAH and 7C01 mAbs bind to the different RBD 
regions of S protein, and 7BZ5 mAb show a similar RBD-mAb binding 
pattern with 7C01. The RMSD results (Fig. 3B) show all the RBD-mAb 
complexes also reached stabilization at 3 ns. The SASA plot (Fig. 3C) 
shows the solvent exposure degree of 7CAH RBD-mAb complexes is 
quite different from that of 7C01 and 7BZ5, which may mainly cause by 
the different structural patterns. 

The binding free energy of the RBD region of S protein binding to 
heavy chains of mAbs are shown in Table 2 and Fig. 3D, and 7 out of 8 
antigenicity changes predicted by MutCov are consistent with the 
experiment results. The binding free energy of the RBD region binding to 
light chains shows a similar result with heavy chains (Supplementary 
Table S1). Both the heavy and light chains of 7BZ5 and 7C01 mAbs show 
higher binding free energy with A475V-mutant S protein than wild-type 
which indicates A475V is resistant to 7BZ5 and 7C01 mAbs. Oppositely, 
double chains of 7BZ5 and 7CAH mAbs show lower binding free energy 
with V367F-mutant S protein which indicates V367F becomes more 
sensitive to 7BZ5 and 7CAH mAbs. In addition, some mutations in the 
RBD region, including Y508H, I468F, and I468T, are observed to be 
more susceptible to the neutralization activity of their corresponding 

mAbs (Table 2 and Supplementary Table S1). 

4. Discussion 

As the SARS-CoV-2 has been undergoing various mutations which 
bring a great challenge to the prevention and treatment of COVID-19, it 
is vital to identify the high-risk mutations in the spike protein of SARS- 
CoV-2. Here, we presented the first computational pipeline to evaluate 
the infectivity and antigenicity of mutant SARS-CoV-2 on the basis of 
homology modeling, molecular dynamics simulations, and binding free 
energy calculations. When MutCov is tested on a public dataset, 9/14 
infectivity and 7/8 antigenicity changes predicted by MutCov are 
consistent with the pseudotyped virus experiments. We expect the 
MutCov pipeline will provide references for the development of 
neutralizing antibodies and the prevention of COVID-19. 

For the sake of creating a more practical pipeline, the MutCov ac-
cepts both substitution, insertion, and deletion of amino acids. As most 
SARS-CoV-2 virus strains contain multiple mutations, both single mu-
tation, co-mutation, and multi-mutation can be accepted by MutCov. 
When facing multiple mutations, we recommend the user run the Mut-
Cov in a multi-mutation model instead of several single mutation 
models. In the multi-mutation model, MutCov will only calculate the 
binding free energy of wild-type for one time, which will save loads of 
computing resources. In addition, with the emergence of new mAbs, the 
user also can run MutCov with customized mAbs using the “–type Cus-
tomizedAntibody” parameter. 

The prediction of each infectivity and antigenicity change takes on 
average about 14.4 h on a high-performance computing server (Intel 
Xeon Platinum 8260 CPU @ 2.40 GHz) utilizing 100 threads. Part of the 
infectivity and antigenicity changes predicted by MutCov are not in 
agreement with the pseudotyped virus experiments, the conformation of 
RBD-ACE2 complexes may not reach a stable status during the 5ns 
production MD simulations. To improve the accuracy and stability of 
prediction, the time scale of molecular dynamics simulations can be 
appropriately extended upon the computing resources using the 
’–MDtime’ parameter. 

In the future, using MutCov, it is planned to study the structural 
determinants of recognition in models of the RBD domain complexes of 
the spike protein with the ACE2, CD-147, and neuropilin-1 receptors, by 
a complete enumeration of amino acid residues in the binding interface 
both in the RBD domain and in the receptor, with the estimation of 
binding energy and construction of a multidimensional surface of 
interaction energy. This will make it possible to understand the change 
in the species specificity of the virus and predict its further spread 
pathways. 

Table 1 
The infectivity change of mutant SARS-CoV-2 virus evaluated by MuCov pipeline and pseudotyped virus experiments.  

Mutation BFEa of wild-type BFEa of mutation P-valueb Infectivity predicted by MutCov Infectivity verified by Experimentsd 

V341I − 1063.82 − 968.03 2.43E-05 Decreasec Decrease 
N343Q − 1063.82 − 954.17 1.53E-08 Decreasec Decrease 
D364Y − 1063.82 − 1139.9 2.28 E− 02 Increase Decrease 
385-387del − 1063.82 − 580.49 9.05E-14 Decreasec Decrease 
D405V − 1063.82 − 1404.58 1.21E-13 Increase Decrease 
Q414P − 1063.82 − 952.87 2.68E-06 decreasec decrease 
I434K − 1063.82 − 1140.21 2.98E-04 Increase Decrease 
S438F − 1063.82 − 1056.02 1.65E-03 Decreasec Decrease 
D467V − 1063.82 − 1066.04 0.80 Increase Decrease 
P491R − 1063.82 − 1285.05 2.61E-11 Increase Decrease 
V503F − 1063.82 − 905.23 1.91E-09 Decreasec Decrease 
R509K − 1063.82 − 960.91 0.00348688 Decreasec Decrease 
V510L − 1063.82 − 821.38 6.63E-14 Decreasec Decrease 
P521S − 1063.82 − 945.07 1.61E-09 Decreasec Decrease  

a The binding free energy (kJ/mol) of RBD region of S protein (wild-type or mutant) binding to ACE2. 
b The p value of Wilcoxon rank-sum statistic for the binding energy change between wild-type and mutation. 
c The antigenicity predicted by MutCov show a consistent change with pseudotyped virus experiments. 
d The infectivity verified by pseudotyped virus experiments. 
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Fig. 3. The structural and energetic of both wild and mutant RBD-mAbs interactions. (A) Crystal structures of RDB-7C01/7CAH complexes. The RBD region of 
S protein is colored red, the heavy and light chains of 7C01 mAbs are represented as light green and yellow respectively, the heavy and light chains of 7CAH mAbs are 
represented as blue and dark green respectively. (B) The changes in the RMSD values of backbone atoms for the different wild and mutant RBD-mAb complexes 
during the 5 ns MD trajectories. (C) The residues wise SASA value for wild and mutant RBD-mAbs complexes. (D) The binding free energies for both wild and mutant 
complexes of RBD-mAb (including 7BZ5, 7C01, and 7CAH), the Wilcoxon rank-sum statistic are conducted to check the statistical significance of binding free energy 
changes between wild and mutant complexes. 

Table 2 
The antigenicity change of mutant SARS-CoV-2 virus evaluated by MuCov pipeline and pseudotyped virus experiments.  

Antibody Mutation BFEa of wild type BFEa of mutation P-valueb Antigenicity predicted by MutCov Antigenicity verified by experimentsd 

7BZ5 [25] A475V − 34.81 72.34 2.60E-18 Decreasec Decrease 
7BZ5 V367F − 34.81 − 49.59 0.50 Increasec Increase 
7BZ5 Y508H − 34.81 − 77.71 0.03 Increasec Increase 
7C01 [26] A475V − 87.28 25.85 3.15E-18 Decreasec Decrease 
7CAH [27] V367F − 168.99 − 286.56 2.38E-07 Increasec Increase 
7CAH Y508H − 168.99 − 225.19 0.19 Increase Decrease 
7CAH I468F − 168.99 − 267.97 2.56E-05 Increasec Increase 
7CAH I468T − 168.99 − 366.67 1.84E-11 Increasec Increase  

a The binding free energy (kJ/mol) of RBD region of S protein (wild-type or mutant) binding to heavy chain of neutralizing antibody. 
b The p value of Wilcoxon rank-sum statistic for the binding energy change between wild-type and mutation. 
c The antigenicity predicted by MutCov show a consistent change with pseudotyped virus experiments. 
d The antigenicity change verified by pseudotyped virus experiments [40]. 
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5. Conclusions 

In summary, MutCov is a user-friendly pipeline for evaluating the 
effect of mutations in spike protein on SARS-CoV-2 infectivity and an-
tigenicity. During the testing phase, the predicted infectivity and anti-
genicity changes are highly consistent with experimental results. The 
MutCov source code, installation, usages, and output instructions are 
freely available from http://jianglab.org.cn/MutCov. As SARS-CoV-2 
keeps evolving and adapting, MutCov will be of value for the immedi-
ate and accurate evaluation of novel mutations, which will improve the 
prevention of SARS-COV-2 and accelerate the development of thera-
peutic neutralizing antibodies. 

Ethics approval and consent to participate 

Not applicable. 

Availability and requirements 

Project name: MutCov. 
Project home page: http://jianglab.org.cn/MutCov. 
Operating system(s): Linux/Unix. 
Programming language: Python (v2.7 or later). 
Other requirements: Docker (version 19.03 or later). 
License: GNU GPL. 
Any restrictions to use by non-academics: None. 

Availability of data and materials 

The MutCov source code and installation instructions are freely 
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