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Abstract

Aim

Although MRI has a substantial role in directing treatment decisions for locally advanced

rectal cancer, precise interpretation of the findings is not necessarily available at every insti-

tution. In this study, we aimed to develop artificial intelligence-based software for the seg-

mentation of rectal cancer that can be used for staging to optimize treatment strategy and

for preoperative surgical simulation.

Method

Images from a total of 201 patients who underwent preoperative MRI were analyzed for

training data. The resected specimen was processed in a circular shape in 103 cases. Using

these datasets, ground-truth labels were prepared by annotating MR images with ground-

truth segmentation labels of tumor area based on pathologically confirmed lesions. In addi-

tion, the areas of rectum and mesorectum were also labeled. An automatic segmentation

algorithm was developed using a U-net deep neural network.

Results

The developed algorithm could estimate the area of the tumor, rectum, and mesorectum.

The Dice similarity coefficients between manual and automatic segmentation were 0.727,

0.930, and 0.917 for tumor, rectum, and mesorectum, respectively. The T2/T3 diagnostic

sensitivity, specificity, and overall accuracy were 0.773, 0.768, and 0.771, respectively.

Conclusion

This algorithm can provide objective analysis of MR images at any institution, and aid risk

stratification in rectal cancer and the tailoring of individual treatments. Moreover, it can be

used for surgical simulations.
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Introduction

In rectal cancer treatment, accurate diagnosis is crucial in determining individual treatment

strategies and achieving curable resection. Multidisciplinary treatment including preoperative

chemoradiotherapy is standard therapy for locally advanced rectal cancer (LARC) to prevent

local recurrence after total mesorectal excision (TME), and here MRI has the pivotal role of

defining the baseline stage of rectal cancer [1, 2]. ESMO and NCCN guidelines recommend

MRI as a mandatory preoperative examination [3, 4].

Although the accuracy of MRI in predicting the stage of rectal cancer has been high in pre-

vious studies comparing MRI findings with histopathology in relatively small series, the MER-

CURY study that prospectively incorporated larger series did not replicate the prior excellent

results [5–11]. In addition, when expert radiologists interpreted the MR images according to

strictly defined protocols, satisfactory accuracy was maintained, but this is not necessarily the

practice at every institution [12]. Other possible concerns include inter-observer differences in

difficult cases, or the shortage of specialized radiologists in some developed countries [13, 14].

If a system supporting MRI diagnosis could be implemented, it would be useful in many

circumstances.

Recent progress in applied artificial intelligence (AI) has increased its importance in medi-

cal care, especially in medical image analysis [15–17]. The use of AI-based diagnostic support-

ing technology is enabled by advances in deep learning technology (DL). With the use of a

substantial number of high-quality training datasets, DL can make an algorithm that predicts

clinical output with high accuracy. Ronneberger et al. introduced the U-net for the segmenta-

tion of two-dimensional (2D) biomedical images [18], and Milletrai et al. extended the U-net

to three-dimensional (3D) images [19]. Regarding tumor segmentation from MR images, the

previous studies used these 2D or 3D U-nets and showed that the results of segmentation were

comparable to those achieved by human experts in multiple types of cancer [20, 21]. While

there have been several studies attempting to segment rectal cancers, the depth of tumor inva-

sion could not be assessed or the accuracy of segmentation could stand further improvement

[22, 23]. We have performed the PRODUCT study (UMIN000034364), in which we measured

the circumferential resection margin (CRM) of LARC as a primary endpoint in laparoscopic

surgery. Resected specimens including rectal cancer were processed in a circular shape with

mesorectum attached for pathological diagnosis, though this has not been the general practice

in Japan. In addition, we started to measure CRM according to the practice in Western coun-

tries, not only in the cases enrolled in the PRODUCT study but also in other LARC cases as a

clinical practice. As a spin-off, available sections of these specimens show the areas of LARC

that correspond to the MR images, thus providing high-quality training datasets which we

consider advantageous in making ground-truth labels that can be used for DL.

Based on this background, we hypothesized that DL might resolve the difficulties related to

MRI diagnosis by using MR images annotated with ground-truth labels reflecting the patho-

logically proved cancer area. In this study, we aimed to develop AI-based software to support

the staging diagnosis of rectal cancer and to visualize the segmentation of rectal cancer, which

can be used to optimize treatment strategy and in surgical simulations.

Materials and methods

Patients

The patients who underwent surgery for rectal cancer between January 2016 and July 2020 in

our institution were retrospectively analyzed (Fig 1). A total of 201 MRI exams were used for

training data (Table 1). Of these, a resected specimen was processed in a circular shape in 103
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cases, and neoadjuvant treatment was administered in 55 cases. A total of 98 opened speci-

mens in which mesorectum was detached according to the standard Japanese procedure were

included in the analysis. The protocol for this research project was approved by the Ethics

Committee of Sapporo Medical University. Informed consent was not required due to the fact

that data was anonymized. The procedures were in accordance with the provisions of the Dec-

laration of Helsinki of 1995 (as revised in Brazil, 2013).

Magnetic resonance imaging

MR images were acquired using a 3.0-T (N = 93) or 1.5-T (N = 108) MR scanner (Ingenia;

Philips Healthcare, Best, the Netherlands). A phased-array coil (dStream Torso coil; Philips

Healthcare, Best, the Netherlands) was used for signal reception. In 4 patients who were

referred from the other hospitals, different MR scanners were used (3.0-T Skyra; Siemens,

Fig 1. Details of a total of 201 cases used as training data. Group 1 images were used to prepare ground-truth labels for segmentation. Group 2

images were used as ground-truth labels having pathological information of T staging alone.

https://doi.org/10.1371/journal.pone.0269931.g001

Table 1. Summary of the analyzed cases.

N = 201

Sex (male/female) 115/86

T factor (�T2/T3/T4) 82/103/16

Neoadjuvant treatment (yes/no) 55/146

Processing for pathological examination (circular/open) 103/98

https://doi.org/10.1371/journal.pone.0269931.t001
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Erlangen, Germany in 2 and 1.5-T Signa HDXt; GE Healthcare, Cleveland, OH, USA in 2,

respectively). Before examination, bowel peristalsis was prevented by intramuscular injection

of butylscopolamine if possible. Neither bowel preparation nor air insufflation was performed.

After identifying the tumor on sagittal T2-weighted images, axial T2-weighted images were

acquired in which the angle of the plane was made perpendicular to the long axis of the tumor

(TR/TE, 4000/90 ms; 3-mm slice thickness; 0.5-mm interslice gap; 150-mm field of view;

288 × 288 matrix; spatial resolution, 0.52 × 0.52 pixel size). Three-dimensional isotropic

T2-weighted fast spin-echo was also acquired routinely since October 2018 (TR/TE, 1500/200

ms; 256-mm field of view; 288 × 288 matrix; spatial resolution 0.89 × 0.89 mm).

Processing of resected specimen

In the PRODUCT study, we developed a new method to precisely measure the pathological

CRM, which we named “transverse slicing of a semi-opened rectal specimen” [24]. First, the

anterior side of the rectum is opened longitudinally from the oral stump to the anal side up to

2 cm oral to the tumor border. Similarly, the rectum is opened on the anal side to the tumor if

sufficient distal margin is resected. That is, the area of rectum between 2 cm above and below

the borders of the rectal cancer is not incised. The mesorectum attached to the opened region

of the rectum is removed to harvest embedded lymph nodes, while the mesorectum is left

attached where the rectum is not opened. After the removal of the mesorectum, the dissection

plane is marked using India ink for the purpose of demarcating it and supporting CRM mea-

surement. Next to the inking, a piece of soft sponge is inserted in the rectal lumen to keep the

in situ circular shape and the specimen is pinned to a cork board under gentle tension, fol-

lowed by fixation in 10% formalin. After fixation, a circular area of the rectum is transversely

sliced as thinly as possible. Pathologists analyzed all sections after staining with hematoxylin-

eosin and diagnosed pathological findings.

Ground-truth label

Since we use a supervised training method to develop automatic segmentation algorithms,

ground-truth labels were required. For all 201 cases, baseline T stages were labeled based on

the pathological diagnosis or on the assessment of pathological sections if the patients had

undergone neoadjuvant treatment. Segmentation labels, which represent whether each voxel

of an MR image belongs to the target subject or not, were prepared for 135 of the 201 cases by

two surgeons (AH and MI) who each has more than 10 years’ clinical experience treating colo-

rectal cancer. Before starting the analysis, they received several lectures from a qualified pathol-

ogist to train them to find the area of rectal cancer or to predict the baseline area of rectal

cancer before neoadjuvant treatment by discriminating fibrosis or necrosis on hematoxylin

and eosin sections. These surgeons created MR images annotated with ground-truth segmen-

tation labels, including the areas of tumor, rectum, and mesorectum, using 3D MRI analysis

software (Fig 2). The rectal area was defined as the area within the muscularis propria.

Automatic segmentation algorithm

We developed an automatic segmentation algorithm that extracts the tumor, rectum, and

mesorectum areas in 3D from T2-weighted MR images using a deep neural network. The net-

work architecture is a 3D variant of U-net, which is popular for biomedical image segmenta-

tion [18]. It consists of encoder and decoder parts with skip connections (Fig 3). The

convolutional block in each encoder and decoder consists of a 3 × 3 × 3 or 1 × 3 × 3 convolu-

tion layer, a batch normalization layer, and rectified linear unit operations. The deconvolution

blocks are transposed convolutional operators with a kernel size of 4 × 4 × 4 voxels. The skip
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connections include a 1 × 1 × 1 convolution layer, a batch normalization layer, and rectified

linear unit operations. The input to the network is a 3D MR image. The output has same spa-

tial dimensions as the input, with 3 channels each for the mesorectum area, rectum, and tumor

area probabilities. The last three channels have values from 0.0 to 1.0 with application of the

sigmoid function. Final segmentation results were obtained by binarizing the values, using a

threshold of 0.5.

Our algorithm calculates the T stage, following the binary segmentation results. The case is

classified as T2 or below when the tumor area is not in contact with the contour of the area of

the rectum and completely included in the area of the rectum. Otherwise, the case is classified

as T3 or above when at least a part of the tumor area is outside the rectum. This rule exactly

follows the T staging rules of tumor invasion into the area of the rectum (Fig 4). Generally, the

DL-based segmentation method works to maximize the volume overlap between the segmen-

tation result and the ground-truth label image. However, the risk of disagreement for T-stag-

ing would be inherent if T-staging were based on segmentation results of tumor and rectum

that were mutually independent. To deal with this concern, we introduced a novel loss that

can directly maximize T-staging accuracies in model training. The loss consists of two terms,

as follows. The first term is so-called Dice loss [19], which for segmentation purposes is

Fig 2. Preparation for ground-truth segmentation labels. (a) Section of a circular specimen. (b) Pathological section of the specimen

stained with hematoxylin-eosin revealing areas of tumor, rectum, and mesorectum. (c) Axial MR image of the rectal cancer. (d) Ground-

truth segmentation labels were used to annotate the MR images. The areas colored magenta, yellow, and cyan represent tumor, rectum,

and mesorectum, respectively.

https://doi.org/10.1371/journal.pone.0269931.g002
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Fig 3. U-net. The architecture of the segmentation network for the areas of tumor, rectum, and mesorectum.

https://doi.org/10.1371/journal.pone.0269931.g003

Fig 4. Staging algorithm. Left, T2 case, and right, T3 case. The magenta, yellow, and cyan areas represent tumor, rectum and mesorectum, respectively.

https://doi.org/10.1371/journal.pone.0269931.g004
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defined as follows:

LossSEG ¼ 1 �
2�

PN
i¼1

pigi
PN

i¼1
pi þ

PN
i¼1

gi

where N is the number of voxels, p is the probability that is outputted by the network, and g is

the ground-truth label. This term works to maximize the overlap between the ground-truth

label and the probability maps.

The second term of the loss function is cross entropy loss, which for accurate staging pur-

poses is defined as follows:

LossSTG ¼ � 1 � gstaging
� �

=2þ gstaging � pstaging
� �

where

pstaging ¼ max
i2 1;...;Nf g

ðpcancer; i � 1 � prectal tube; i

� �
;

gstaging ¼
1 if ground truth T stage is over T3;

� 1 otherwise:

(

pcancer and prectal tube represent the probability maps of the tumor and rectum, respectively.

pstaging indicates the probability of the predicted staging. It takes a high number when there is

any voxel simultaneously having low rectum probability and high tumor probability. This

term works to reduce the tumor area outside of the rectum for T2 cases. On the other hand, it

works to increase the tumor area outside of the rectum for T3 cases.

To summarize, we minimize the loss function to train the network:

LossSEG þ l� LossSTG

λ is a parameter used to balance the two terms and it was experimentally determined to be

0.02. During the training, LossSEG is evaluated only for the cases with ground-truth segmenta-

tion labels, while LossSTG is evaluated for all cases. We used the Adam optimizer to minimize

the loss function, with the following parameters: base learning rate, 0.003; beta1, 0.9; beta2,

0.999; and epsilon, 1 × 10−8. The batch size was 5 samples, including 3 cases with ground-truth

segmentation labels and 2 cases with only ground-truth staging. All experiments were con-

ducted on an NVIDIA DGX-2 machine using the NVIDIA V100 GPU with 80 GB of memory.

In the network training, each training image is augmented by several image-processing

techniques such as scaling, rotation, and slice thickness conversion to improve segmentation

accuracies. Also, the input image is cropped around the tumor area and rescaled to a 0.5 mm3

isotropic voxel size and 256 × 256 × 128 voxel number. In the test phase, a user inputs an esti-

mated center position of the tumor, and then the image around the tumor position is

processed.

Workflow for evaluation and statistical analysis

We evaluated two aspects of the algorithm: segmentation accuracy and staging accuracy. Ten-

fold cross validation was conducted. The data were randomly divided into 10 datasets. Eight

datasets out of 10 were used for training the network parameters. The remaining two datasets

were used for validation and evaluation, respectively. During the training iteration, the perfor-

mance of the network was evaluated at every 100th iteration on the validation dataset. We

chose the best network parameter for the validation dataset, using the sum of the dice score,
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sensitivity, and specificity, and then applied it to the evaluation dataset. We repeated this pro-

cedure ten times, changing the role of training, validation, and evaluation of each dataset.

Regarding the segmentation accuracy, we calculated the Dice similarity coefficients (DSC)

between manual segmentation and automatic segmentation [25]. The DSC is defined as fol-

lows:

DSC ¼
2� jP \ Gj
jPj þ jGj

where P is the segmentation result and G is the ground truth. The DSC ranges from 0.0 to 1.0,

and DSC = 1.0 means that the results overlap completely. Note that, since not all of the training

data have corresponding ground-truth segmentation, we evaluated the segmentation accura-

cies using 135 cases.

Next, the T staging accuracies were evaluated with all 201 cases by calculating the sensitivity

and specificity. The sensitivity is defined as follows:

Sensitivity ¼
jPT3 \ GT3j

jGT3j

where PT3 represents the predicted T stage as being over T3. GT3 represents the ground-truth

T stage as being over T3. Specificity is defined as follows:

Specificity ¼
jPT2 \ GT2j

jGT2j

where PT2 means the predicted T stage is under T2 and GT2 is means the ground-truth T stage

is under T2.

Results are presented as the number of cases evaluated for categorical data and expressed as

the median and interquartile range (IQR) for quantitative data. Univariate analysis was per-

formed using the Wilcoxon rank-sum test. Statistical analyses were performed using JMP Pro

15.1.0 software (SAS Institute, Cary, NC, USA).

Results

Segmentation accuracy

The developed algorithm could successfully estimate the areas of the tumor, rectum, and

mesorectum, in which the ground-truth labels and segmentation results of typical cases corre-

sponded well (Fig 5a). The summary of evaluation results regarding the segmentation accuracy

demonstrated that the median DSCs for tumor, rectum, and mesorectum were 0.727, 0.930,

and 0.917, respectively (Fig 5b). Mucinous cancer exhibits high intensity on T2 in contrast to

the most common histology of adenocarcinoma. Therefore, we investigated DSCs in mucinous

cancer patients (N = 6) to analyze whether this feature affects segmentation accuracy. As a

result, the DSC was lower in the cases of mucinous cancer compared with those of the other

histology (0.358 [0.167–0.596] vs 0.736 [0.605–0.801], P = 0.0024). In addition, on the assump-

tion that the DSC of the tumor might easily have been lowered by a slight positional deviation

in the smaller tumor, the correlation between the DSC and the diameter of the tumor was

investigated after excluding mucinous cancer (Fig 5c). We then observed a significant correla-

tion between the two values (Pearson correlation coefficient = 0.2418; P = 0.0081). After

excluding cancers of diameters less than 20 mm, the median DSC of the tumor was slightly ele-

vated, to 0.739 [0.615–0.801].
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Correlation between pathological and AI T stage

The guidelines used worldwide regard distinguishing between T2 and T3 as one of the impor-

tant factors directing treatment decisions. Therefore, we investigated our method’s diagnostic

accuracy in discriminating T2 from T3 as an initial assessment. The summary of correlation

between pathological T stage and AI-predicted T stage was analyzed (Table 2). The T-staging

sensitivity, specificity, and overall accuracy were 0.773, 0.768, and 0.771, respectively. For com-

parison, we evaluated a baseline model that was trained by using a standard dice loss with only

ground-truth segmentation labels. The baseline model obtained a sensitivity, specificity, and

overall accuracy of 0.765, 0.756, and 0.761, showing that the AI developed in this study could

Fig 5. Results of segmentation accuracy. (a) Representative images of MRI, the ground-truth segmentation labels, and AI-predicated segmentations.

(b) Summary of evaluation results regarding the segmentation accuracy. (c) Scatter plots showing the relationships between tumor diameter and the

Dice similarity coefficients.

https://doi.org/10.1371/journal.pone.0269931.g005

Table 2. Summary of pathological T stage and AI-predicted T stage.

Ground-truth pathological T staging

�T2 �T3 Total

AI-predicted T staging �T2 63 27 90

�T3 19 92 111

Total 82 119 201

https://doi.org/10.1371/journal.pone.0269931.t002
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achieve better performance in T-staging. As in the analysis of segmentation accuracy, the diag-

nostic accuracy was recalculated after the exclusion of small cancers and mucinous cancer. As

a result, the T-staging sensitivity, specificity, and overall accuracy were 0.789, 0.714, and 0.762,

respectively.

Discussion

In this study, an algorithm for diagnosing and staging rectal cancer was successfully developed

using DL technology. It could be used in future semi-automation software to aid physicians.

The characteristic feature of this algorithm is that it can output the segmentation that visualizes

the areas of tumor, rectum, and mesorectum. This could be used not only for T-factor staging,

but also for preoperative surgical simulation. In the future, based on the provided visual infor-

mation, we will be able to choose the surgical plane to be dissected or decide whether the com-

bined resection of an adjacent organ is necessary. In addition, we think the algorithm will also

help multidisciplinary teams tailor treatment to individual patients.

Two meta-analyses have investigated the diagnostic accuracy of MRI and shown favorable

results, with about 85% sensitivity and 75% specificity for diagnosing tumor invasion beyond

the muscularis propria [10, 11]. However, these results are subject to substantial selection bias,

which can be associated with higher reported than actual accuracy. This is partly reflected by

the fact that the carefully designed prospective study, MERCURY, demonstrated diagnostic

accuracy that was acceptable but that did not reach the values reported in the meta-analyses.

Accurately diagnosing rectal cancer using MRI would, in reality, not be easy. Furthermore,

although MRI scanners are plentiful in Japan, certified radiologists are in quite short supply,

leaving individual radiologists with excessive workloads. This is also the case in other devel-

oped countries [13, 14]. Given this situation, a method that can improve the acquisition of

objective MRI findings at every institution is needed. We think the current algorithm might

play a substantial role in providing equal access to MRI diagnosis in institutions or regions

where there are shortages of trained personnel.

As MRI technology has advanced in recent decades, it is important to re-evaluate the accu-

racy of MRI. Since neoadjuvant CRT was established as a standard treatment in Western coun-

tries, it has become difficult to validate the accuracy of baseline MRI findings by simply

comparing them with the corresponding pathology. In the current study, we made a training

dataset by annotating the pathologically proven tumor areas on MRI images. In the cases with

neoadjuvant therapy, the baseline area of the tumor was predicted by the pathological evidence

of fibrosis or necrosis. These processes might be useful in making reliable training datasets

even in cases with neoadjuvant treatment, suggesting that the algorithm for segmentation

might reflect the typical results of MRI today.

Some recent studies have tried to estimate rectal cancer–related parameters on preoperative

MR images using AI, and have shown that the accuracy was acceptable [22, 26–28]. However,

these studies had several limitations: tumor tissue was not visualized on the MR image, the

relationship of the tumor with the mesorectal fascia was difficult to assess, the results were not

based on high-resolution MRI, or the ground-truth labels were not based on pathological

assessment, the last issue being the one we consider to be most critical. We think there is much

room for improvement in the clinical application of AI. However, the software developed in

this study has various strengths. First, the ground-truth labels are based on the pathological

findings in circular specimens, providing the high-quality training datasets that are essential in

establishing a reliable algorithm. Second, the algorithm can output the segmentation of the

tumor, rectum, and mesorectum. This feature is valuable for staging the tumor, for individual

multidisciplinary treatment decision making, and for the preoperative simulation that is
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required by colorectal surgeons in order to obtain curative resection. Third, we used high-res-

olution MRI in this analysis, though the MRI acquisition protocols differ from those used in

the MERCURY study. Thus, this system can be applied anywhere if the appropriate protocol

and an adequate scanner are used for image acquisition. We note that the accuracy of our algo-

rithm was insufficient in analyzing some types of tumors, including mucinous cancer and

small tumors. Although the quality of segmentation can also be regarded as favorable as a

whole, it would be ideal if these hurdles were cleared with future refinement. However, because

these small tumors rarely infiltrate the mesorectum or surrounding tissues, this algorithm can

still be regarded as useful for diagnosing locally advanced rectal cancers.

The current study has several limitations. First, validation using the test data acquired in

various conditions should be performed to confirm the generalizability of the algorithm. Cur-

rently, we are planning a validation study using an independent large series to investigate the

algorithm’s effectiveness. Simultaneously, we will continue to improve the software’s perfor-

mance in assessing other important factors, including mesorectal fascia involvement. Second,

the workload involved in preparing individual ground-truth labels is too heavy for the number

of training sets to be readily increased. Third, as explained in the results, the accuracy of this

system is still insufficient to be used for mucinous tumors and it is not able to estimate the

shape of small tumors. We think this limitation can be overcome with the use of more training

datasets in the future.

In conclusion, we have successfully developed the first AI-based algorithm for segmenting

rectal cancer. This system can provide stable results at any institution and contribute to rectal

cancer risk stratification and the tailoring of individual treatments, and is likely to gain impor-

tance in the era of individualized medical care.

Supporting information

S1 Dataset.

(XLSX)

Acknowledgments

We are grateful to Shintaro Sugita, Associate Professor in the Department of Surgical Pathol-

ogy at Sapporo Medical University, for giving lectures on finding areas of rectal cancer prior to

preparing ground-truth labels.

Author Contributions

Conceptualization: Atsushi Hamabe, Masayuki Ishii, Koichi Okuya, Masamitsu Hatakenaka,

Ichiro Takemasa.

Formal analysis: Atsushi Hamabe, Masayuki Ishii, Koichi Okuya, Kenji Okita, Emi Akizuki,

Yu Sato, Ryo Miura, Koichi Onodera.

Funding acquisition: Atsushi Hamabe, Ichiro Takemasa.

Investigation: Atsushi Hamabe, Masayuki Ishii, Kenji Okita, Emi Akizuki, Yu Sato, Ryo

Miura, Koichi Onodera.

Methodology: Atsushi Hamabe, Masayuki Ishii, Rena Kamoda, Saeko Sasuga, Koichi Okuya,

Kenji Okita, Koichi Onodera, Masamitsu Hatakenaka, Ichiro Takemasa.

Resources: Atsushi Hamabe, Masayuki Ishii, Emi Akizuki, Yu Sato, Ryo Miura, Koichi

Onodera.

PLOS ONE Artificial intelligence–based technology for diagnosis of rectal cancer using high-resolution MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0269931 June 17, 2022 11 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0269931.s001
https://doi.org/10.1371/journal.pone.0269931


Software: Rena Kamoda, Saeko Sasuga.

Supervision: Masamitsu Hatakenaka, Ichiro Takemasa.

Writing – original draft: Atsushi Hamabe, Masayuki Ishii, Rena Kamoda, Saeko Sasuga, Koi-

chi Okuya, Koichi Onodera.

Writing – review & editing: Kenji Okita, Masamitsu Hatakenaka, Ichiro Takemasa.

References
1. Taylor FG, Quirke P, Heald RJ, Moran BJ, Blomqvist L, Swift IR et al. Preoperative magnetic resonance

imaging assessment of circumferential resection margin predicts disease-free survival and local recur-

rence: 5-year follow-up results of the MERCURY study. J Clin Oncol 2014; 32: 34–43. https://doi.org/

10.1200/JCO.2012.45.3258 PMID: 24276776

2. Battersby NJ, How P, Moran B, Stelzner S, West NP, Branagan G et al. Prospective Validation of a Low

Rectal Cancer Magnetic Resonance Imaging Staging System and Development of a Local Recurrence

Risk Stratification Model: The MERCURY II Study. Ann Surg 2016; 263: 751–760. https://doi.org/10.

1097/SLA.0000000000001193 PMID: 25822672
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