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Abstract: Current methods for the intraoperative determination of breast cancer margins commonly
suffer from the insufficient accuracy, specificity and/or low speed of analysis, increasing the time
and cost of operation as well the risk of cancer recurrence. The purpose of this study is to develop a
method for the rapid and accurate determination of breast cancer margins using direct molecular
profiling by mass spectrometry (MS). Direct molecular fingerprinting of tiny pieces of breast tissue
(approximately 1 × 1 × 1 mm) is performed using a home-built tissue spray ionization source installed
on a Maxis Impact quadrupole time-of-flight mass spectrometer (qTOF MS) (Bruker Daltonics,
Hamburg, Germany). Statistical analysis of MS data from 50 samples of both normal and cancer tissue
(from 25 patients) was performed using orthogonal projections onto latent structures discriminant
analysis (OPLS-DA). Additionally, the results of OPLS classification of new 19 pieces of two tissue
samples were compared with the results of histological analysis performed on the same tissues samples.
The average time of analysis for one sample was about 5 min. Positive and negative ionization
modes are used to provide complementary information and to find out the most informative method
for a breast tissue classification. The analysis provides information on 11 lipid classes. OPLS-DA
models are created for the classification of normal and cancer tissue based on the various datasets:
All mass spectrometric peaks over 300 counts; peaks with a statistically significant difference of
intensity determined by the Mann–Whitney U-test (p < 0.05); peaks identified as lipids; both identified
and significantly different peaks. The highest values of Q2 have models built on all MS peaks
and on significantly different peaks. While such models are useful for classification itself, they are
of less value for building explanatory mechanisms of pathophysiology and providing a pathway
analysis. Models based on identified peaks are preferable from this point of view. Results obtained
by OPLS-DA classification of the tissue spray MS data of a new sample set (n = 19) revealed 100%
sensitivity and specificity when compared to histological analysis, the “gold” standard for tissue
classification. “All peaks” and “significantly different peaks” datasets in the positive ion mode were
ideal for breast cancer tissue classification. Our results indicate the potential of tissue spray mass
spectrometry for rapid, accurate and intraoperative diagnostics of breast cancer tissue as a means to
reduce surgical intervention.
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1. Introduction

Breast cancer ranks first in the incidence of malignant neoplasms among the female population.
Currently, 60–80% of newly detected cases of breast cancer are treated with organ-preserving
surgery [1,2]. Several large randomized trials clearly showed that there were no statistically significant
differences in the rates of disease-free and overall survival among patients who underwent either
mastectomy or organ-preserving operation [3–5]. At the same time, the risk of local recurrence after
organ-preserving surgeries remains higher than after mastectomy, and is an average of 0.5% per year.
One of the most significant factors of local recurrence is the status of surgical margins. Currently,
the surgical margin is regarded as “positive” in the presence of a dye on an invasive tumor or ductal
carcinoma in situ (DCIS). Preferably, the tumor is absent at more than 2 mm before the marginal
edge of the resection. “Positive” margins of resection are the reason for performing repeated surgical
interventions in 20–25% of breast cancer patients after performing organ-preserving surgeries [6,7].
Re-excisions are accompanied by poorer cosmetic results and dissatisfaction of patients, resulting in an
increase in the cost of treatment. Therefore, it is extremely important to provide the surgeon with the
most accurate information regarding the margins of resection during the operation and thereby reduce
the risk of repeated surgical interventions.

The gold standard for evaluating the margins of resection is the morphological method of
investigation. The sensitivity and specificity of histological and cytological methods are 73% and
98%, 89% and 92%, respectively [8,9]. The disadvantage of the morphological method is the need for
enough time for its implementation. Urgent histological examination takes 20–40 min on average,
and cytological—10 min. Conducting intraoperative ultrasound requires less time—3–6 min, but it is
characterized by a lower sensitivity (75%) and specificity (81%) [10]. In addition, the accuracy of the
method largely depends on the qualification of the specialist. Currently, digital radiography of remote
samples is becoming increasingly popular. The sensitivity and specificity of this method are 83% and
95%, respectively [11]. The research takes only a few minutes. At the same time, it is necessary to state
that not always the true dimensions of the tumor node coincide with the radiographic ones.

Dissatisfaction with both accuracy and time costs of existing methods of estimating the margins
of resection forces the search for and development of new alternative approaches. One promising
solution is the use of mass spectrometry (MS), which allows information on the molecular composition
of samples and identifies tumor regions by the occurrence of specific proteins and metabolites.
At the moment, several MS methods for the analysis of tissues have been developed, including
mass spectrometry with rapid evaporation ionization mass spectrometry (REIMS) [12–14], desorption
electrospray ionization (DESI) [15–17], matrix-activated laser desorption/ionization (MALDI) [18–20],
secondary ion mass-spectrometric (SIMS) imaging [21–23], etc. Among these methods, REIMS has so
far received the most recognition for the surgical MS analysis of tissues. On the basis of this method,
an intraoperative method called the “intelligent knife” (iKnife) has been developed [12]. When using
this method, tissue identification occurs during the operation in real-time by the characteristic profile
of the mass spectrum of the tissue being cut [12]. However, the use of a “smart knife” is still not
widespread, which is mainly due to its high cost and the need for a mass spectrometer in each
operating room.

In our laboratory we are developing tissue spray mass spectrometry for the study of lipid markers
of endometriosis tissues, lung cancer, and brain tumors [24–31]. The complete obviation of sample
preparation and chromatographic separation stages allows rapid analysis without significant loss of
chemical information [32].
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In this study we tested the performance of the tissue spray mass spectrometry for the rapid and
accurate differentiation between normal and tumor breast tissues.

2. Materials and Methods

2.1. Tissue Handling

A study is performed on biopsy materials of breast cancer from patients treated at the National
Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician
V.I. Kulakov of the Ministry of Healthcare of Russian Federation (Moscow, Russia). All clinical
investigations are conducted according to the principles expressed in the Declaration of Helsinki.
All patients have read and signed informed consent approved by the Ethical Committee of the National
Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.
Kulakov. Biopsy samples of healthy tissues and malignant tumors separated by a histologist are taken
from 25 patients for the development of a classification model. Samples of tissues with tumor–normal
tissue borders analyzed by the histologist are taken for testing with the classification models. The
samples are sliced for the histological study and the rest are frozen in liquid nitrogen and stored at
−75 ◦C until the investigation. A small piece of a sample (approximately 1 × 1 × 1 mm) is cut, thawed
and fixed on the needle in the ion source for tissue spray analysis.

2.2. Chemicals

Methanol and formic acid of HPLC grade were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Deionized water was purchased from Panreac (Barcelona, Spain).

2.3. Tissue Spray Mass Spectrometry of Breast Samples

MS analysis of tissue samples is performed on Maxis Impact qTOF (Bruker Daltonics, Bremen,
Germany) with the in-lab designed ion source for tissue spray MS [28]. A mixture of H2O/methanol 1/9
with 0.1% formic acid is used for online tissue extraction and following spraying [30,31]. The solvent
is supplied to the tissue with a flow rate of 1 mL/min by Dionex binary pump (Thermo Scientific,
Germering, Germany). The potential of 3.8 kV is applied between a tissue and an inlet capillary in the
positive ion mode and 3.1 kV in the negative ion mode. The distance between the sample and MS inlet
is about 5–10 mm. Mass spectra are registered at a 2 Hz frequency resulting in 360 spectra for 3 min.
The mass range is m/z 400–1000.

Tandem MS (MS/MS) is completed using data-dependent analysis with the following
characteristics: the five most abundant peaks are chosen after full mass scan and are subjected
to collision-induced dissociation, 35 eV collision energy, a 3 Da isolation window and 1 min of mass
exclusion time.

2.4. Histological and Pathological Data

Microscopic samples are investigated by optical microscopy using an Olympus MX51 light
microscope (Tokyo, Japan). The following characteristics of the biopsy are evaluated during histological
investigation: the overall localization of the tumor and its localization by the quadrants of the breast,
the borders of the tumor site, the maximum length and width of the node, the width of the node,
histological type of cancer, the degree of malignancy, and the presence of metastatic lesions of regional
lymph nodes. In addition to the standard histopathological study, all tumor samples are subjected
to immunohistochemistry (IHC), which is used to determine the expression of estrogen (clone SP1,
Ventana) and progesterone (clone 1E2, Venatana) receptors, proliferation index of Ki-67 (clone 30-9,
Venatana) and her-2/neu protein expression (clone 4B5, Venatana). This hormone receptor status is
graded using the Allred scoring and grading system. Separated cancer and healthy tissues identified
by a histologist were used on the first stage of the investigation for statistical model training. During
the second part of the study, tissues with normal regions, cancer regions and a margin in between were
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tested with the developed models. The results of the model classification were compared with the
histological results.

2.5. Statistical Analysis of Mass Spectrometry Data and MS Peak Annotation

One hundred mass spectra were averaged over the stable total ion current (TIC) period and
transformed into the abundance-m/z table for further analysis. Each peak abundance is normalized
on TIC.

For multivariate analysis (MVA) data are normalized by Pareto scaling [33] prior to principal
component analysis (PCA) and orthogonal projections onto latent structures discriminant analysis
(OPLS-DA) [34], which are performed by in-house routines based on the ropls library [35]. The OPLS-DA
is applied to the datasets in order to develop a sample classification model. The models are trained on
MS data from 50 tissue samples. Three types of the MS data are used: all MS peaks with an intensity of
over 300 counts; peaks with abundances which have statistically significant differences in abundances
between normal and cancer tissue according to the Mann–Whitney test; and peaks identified as lipids.
In addition, sets of peaks with variable influence on the projection of the model (VIP scores) higher than
1.0 are defined. In the case of identified features, they can be used as biomarkers and their biological
meaning can be deduced.

The statistical significance of the ion’s abundance difference is determined by the Mann–
Whitney test.

The lipids are annotated with in-lab-created R code (the RStudio version was 1.1.463 and
the R language version was 3.5.2), which compares measured accurate m/z values with theoretical
computer-generated values within 15 ppm. Sodium cation adducts and deprotonated molecules are
considered in the positive ion and negative ion modes, respectively. More precise identification is
completed based on the MS/MS data for the peak under consideration (Table S1) if it underwent
MS/MS analysis. Lipid nomenclature throughout the paper is in accordance with LIPID MAPS [36]
terminology and shorthand notation summarized in [37].

2.6. Results and Discussion

2.6.1. Tissue Spray MS Data

The data on a sample molecular composition are obtained by tissue spray mass
spectrometry [24–26]. The positive and negative ionization modes are used to provide complementary
information and to find out the most informative method for a breast tissue classification. The obtained
mass spectra of the tissues contain 438 peaks over the threshold of 300 counts. The Mann–Whitney
U-test reveals 152 peaks with statistically significant difference between normal and cancer samples.
Of the 152 peaks, 64 are identified as lipids.

Characteristic mass spectra of tumors and surrounding tissues obtained in the positive and
negative ion modes are shown in Figure 1. The most abundant peaks are observed in the m/z 600–900
mass range. These peaks correspond to different lipid species. Lipid peaks are typically dominated
in tissue spray mass spectra [24–26], therefore, R-scripts generating theoretical lipid masses are
developed to identify the obtained spectra. The possibility of ion formation by protons, sodium cation
or potassium cation attachment in the positive ion mode is considered [29–32]. Deprotonation and
chloride anion attachment are considered in the negative ion mode. Lipid identification is provided
according to accurate mass within 15 ppm from the theoretical mass, and according to characteristic
tandem mass spectra (Table S1) [36,37]. The results of lipids identification are summarized in Table S2
and Figure S1 for positive ions and in Table S3 and Figure S2 for negative ions. Overall, 164 species are
identified in the cancer and normal tissue extracts. These lipids belong to 10 subclasses, including
phosphatidylcholines (PC), phosphatidylethanolamines (PE), sphingomyelins (SM), phosphatidic acids
(PA), phosphatidylglycerols (PG), fatty acids (FA), phosphatidylinositols (PI), phosphatidylserines
(PS), nonpolar glycerolipids (diacylglycerols (DG) and triacylglycerols (TG). The generated database
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contains masses of polar and nonpolar lipid classes with fatty acyls and alkyls varying from 10 to 26
carbon atoms and from 0 to 6 double bonds. Note that our results indicate that the use of both the
positive and negative ion detection modes enhances the molecular coverage. Thus, the positive ion
mode analysis provides information on phosphatidylcholines (PC), phosphatidylethanolamines (PE),
sphingomyelins (SM), diacylglycerols (DG) and triacylglycerols (DG), whereas the negative ion mode
analysis provides information on phosphatidic acids (PA), phosphatidylglycerols (PG), fatty acids (FA),
phosphatidylinositols (PI), phosphatidylserines (PS) and phosphatidylethanolamines (PE).
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Figure 1. Characteristic tissue spray spectral profiles of breast samples recorded on Maxis Impact MS
in m/z 200 to 1000. (a) Positive ion mode normal tissue; (b) positive ion mode tumor tissue; (c) negative
ion mode normal tissue; (d) negative ion mode tumor tissue.

2.6.2. Classification Models Training

Semi-quantitative data on lipids are obtained using lipid peak abundance normalization to total
ion current. The main differences (p < 0.05) in lipid level between normal and tumor tissues are found
for three lipid classes: phosphatidylinositols (PI), phosphatidylcholines (PC) and sphingomyelins (SM)
(Figure 2). Lipids within each class differ in attached fatty acyls, which are named in accordance with
their total carbon number and double bond number (CN:DB).
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Figure 2. Relative abundances (%) of lipids in normal (gray) and tumor (orange) tissues: (a) SM, (b) PC,
(c) PI. Lipid annotation: PI, phosphatidylinositols; PC, phosphatidylcholines; SM, sphingomyelins.
SM and PC are detected in the positive ion mode, PI—in the negative mode. Statistically significant
differences according to U-test are indicated by an asterisk: *—p-value < 0.05; **—p-value < 0.01;
***—p-value < 0.001. Black dots correspond to outliers.
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PCA is performed to assess the experimental data quality. The PCA shows that the pooled quality
control samples were clustered together (Figure S3), indicating that the MS analysis process met the
required qualifications. Variances of 31% and 15% are described by the first and second principal
components in the positive ion mode, respectively; variances of 27% and 17% are described by the
first and second principal components in the negative ion mode, respectively. The PCA score plots
demonstrate moderate clustering of data points corresponding to normal and tumor tissues without
significant outliers.

Evaluation of the possibility of classification of tissues based on mass spectrometric data and
identification of potential biomarkers of a breast tumor were carried out using the OPLS-DA multifactor
analysis method. This method is a modification of the method of analyzing the main components,
and its aim is to identify the differences between the studied groups using the set of samples with
known diagnoses.

OPLS-DA models are created for the classification of normal and cancer tissue based on the
following datasets: all mass spectrometric peaks over 300 counts; threshold peaks with a statistically
significant difference of intensity determined by the Mann–Whitney U-test (p < 0.05); peaks identified
as lipids; both identified and significantly different peaks. The parameters of the models under
consideration are summarized in Table 1. R2 displays the proportion of data that the model describes
using hidden variables. Q2 shows the expected accuracy of predicting new data.

Table 1. Summary of the data used for model development and parameters of the positive ion MS data
of the OPLS-DA model. Statistically different peaks/lipids were considered at p-value < 0.05 according
to the Mann–Whitney U-test with false discovery rate (FDR) correction.

Dataset Model Parameters

Name Number of
Variables

Number of
Features with

VIP > 1
R2X R2Y Q2

All peaks 541 102 0.438 0.868 0.829
Significantly different peaks 231 52 0.503 0.888 0.850

Identified lipids 106 22 0.512 0.845 0.784
Significantly different lipids 60 14 0.649 0.826 0.785

The highest values of Q2 have models built on all MS peaks and on significantly different peaks.
While such models are useful for classification itself, they are of less value for building explanatory
mechanisms of pathophysiology and providing a pathway analysis. Models based on identified peaks
are preferable from this point of view.

The same multivariate OPLS analysis of tissue spray MS data in the negative mode resulted
in much worse classification models (Table 2). Even for the “all peaks” dataset, Q2 was only 0.643.
We conclude that the analysis in the positive mode is better suited for rapid tissue classification.

Table 2. Summary of the data used for model development and parameters of the negative ion MS data
of the OPLS-DA model. Statistically different peaks/lipids were considered at p-value < 0.05 according
to the Mann–Whitney U-test with FDR correction.

Dataset Model Parameters

Name Number of
Variables

Number of
Features with

VIP > 1
R2X R2Y Q2

All peaks 514 79 0.420 0.734 0.643
Significantly different peaks 190 36 0.490 0.753 0.579

Identified lipids 118 16 0.510 0.504 0.311
Significantly different lipids 40 7 0.706 0.479 0.381
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2.6.3. Classification Model Testing

Further validation of the OPLS-DA statistical model was completed by unsupervised classification
of the tissue spray MS data on two histologically verified tissue samples containing both normal and
cancer regions (Figure 3a,b) cut into 7 and 12 pieces, respectively. Several specific mass spectra from
the sequential points are shown in Figure 1. Figure 3 presents a plot of tissue classification scores,
calculated using previously built OPLS-DA models for the positive/negative ion modes and new MS
data for particular pieces of tissue. Data points with a negative ordinate correspond to a normal tissue
profile. Data points with a positive ordinate correspond to a cancer tissue MS profile. The bigger
absolute values of the score are related to a more pronounced tissue type. The switch between negative
and positive scores corresponds to a margin between normal and cancer regions.
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Figure 3. Validation of developed OPLS-DA models for tissue classification on a new set of samples
(n = 19). (a,b)—The photo showing the pieces of two tissue samples that underwent both histological
and tissue spray analysis. (c–f) The plot of tissue classification score vs. its spatial position for two
samples for four types of datasets: all peaks, peaks with a statistically significant difference of intensity
determined by the Mann–Whitney U-test, peaks identified as lipids, lipids with a statistically significant
difference. Tissue spray MS is performed in the positive ion mode. The scores are obtained by
unsupervised analysis of tissue spray mass spectra with the previously developed OPLS-DA models.
The red line on the graph is determined by statistical model and separates the “normal region” from
the “cancer region”.

Results obtained by OPLS-DA classification of the tissue spray MS data revealed 100% sensitivity
and specificity (Table 3) when compared to histological analysis, the “gold” standard for tissue
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classification. “All peaks” and “significantly different peaks” datasets in the positive ion mode were
ideal for breast cancer tissue classification. This result is in strict accordance with previous data
obtained during the construction of OPLS-DA models. Moreover, the average analysis time for one
tissue spot was about 5 min. This confirms the potential of using the tissue spray method for rapid and
intraoperative diagnostics of breast cancer in order to reduce the surgical intervention.

Table 3. Summary on the data used for model development and parameters of the positive and
negative ion MS data of the OPLS-DA model. Statistically different peaks/lipids were considered at
p-value < 0.05 according to the Mann–Whitney U-test with FDR correction.

Tissue Sample Dataset
Positive Polarity Negative Polarity

Sensitivity Specificity Sensitivity Specificity

1

All peaks 1.00 1.00 1.00 0.67
Identified lipids 0.25 1.00 0.25 0.67

Significantly different peaks 1.00 1.00 1.00 0.33
Significantly different lipids 0.00 1.00 0.25 0.67

2

All peaks 1.00 1.00 1.00 0.83
Identified lipid 0.00 1.00 0.17 1.00

Significantly different peaks 1.00 1.00 1.00 0.83
Significantly different lipids 0.00 1.00 0.33 1.00

3. Conclusions

Our results indicate that tissue spray mass spectrometry allows sufficient molecular specificity
for the reliable differentiation between normal breast tissues and breast cancer tissues. Beneficially,
the analysis of one tissue piece only requires 5 min and does not rely on the subjective assessment by a
qualified clinician. Therefore, tissue spray mass spectrometry offers an alternative method for rapid
and intraoperative determination of breast cancer margins.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/12/
4568/s1. Figure S1. Lipids identified in cancer/surrounding tissues using tissue spray MS in the positive
mode: phosphatidylcholines (PC), phosphatidylethanolamines (PE), diacylglycerols (DG) and triacylglycerols
(DG), sphingomyelins (SM). Figure S2. Lipids identified in cancer/surrounding tissues using tissue spray
MS in the negative mode: phosphatidic acids (PA), phosphatidylglycerols (PG), phosphatidylinositols (PI),
phosphatidylserines (PS). Figure S3. PCA score plots of positive and negative MS. Table S1. Characteristic lipid
fragmentation used for lipid class identification. Table S2. Lipids identified in positive ion tissue spray mass
spectra of breast samples. Table S3. Lipids identified in negative ion tissue spray mass spectra of breast samples.
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