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Abstract: Co@NiSe2 electrode materials were synthesized via a simple hydrothermal method by
using nickel foam in situ as the backbone and subsequently characterized by scanning electron
microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and a specific
surface area analyzer. Results show that the Co@NiSe2 electrode exhibits a nanowire structure and
grows uniformly on the nickel foam base. These features make the electrode show a relatively
high specific surface area and electrical conductivity, and thus exhibit excellent electrochemical
performance. The obtained electrode has a high specific capacitance of 3167.6 F·g−1 at a current
density of 1 A·g−1. To enlarge the potential window and increase the energy density, an asymmetric
supercapacitor was assembled by using a Co@NiSe2 electrode and activated carbon acting as positive
and negative electrodes, respectively. The prepared asymmetrical supercapacitor functions stably
under the potential window of 0–1.6 V. The asymmetric supercapacitor can deliver a high energy
density of 50.0 Wh·kg−1 at a power density of 779.0 W·kg−1. Moreover, the prepared asymmetric
supercapacitor exhibits a good rate performance and cycle stability.

Keywords: Co-doped NiSe2; nanowire; hydrothermal method; pseudocapacitance;
asymmetric supercapacitors

1. Introduction

Supercapacitors are excellent energy-storage devices which are attracting increased research
attention. Although lithium-ion batteries or nickel–metal hydride batteries have a high energy density,
their charge and discharge rates are relatively slow and cannot meet the needs of modern life [1].
People are eagerly pursuing energy-storage devices with high energy densities and high power
densities simultaneously [2,3]. Compared with traditional batteries, supercapacitors have a high
power density, high charge and discharge rates, a wide operating temperature range, environmental
protection, and a long cycle life [4,5]. Therefore, they have been widely used in portable electronics,
power backup, electric vehicles, various microdevices, and other fields [6].

However, an issue related to the supercapacitors is the lower energy density compared with
battery systems or fuel cells [7]. According to the calculation formula for the energy density
of the supercapacitor: E = 1/2CV2, the energy density (E) can be evaluated by the specific
capacitance (Cs) and the cell voltage (V). To further increase the energy density, considering both the
advantages of supercapacitors (rate, cycle life) and advanced batteries (energy density), assembly
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of an asymmetric supercapacitor is a commonly used strategy, where the electrode materials with
high pseudocapacitance can be employed and the operating voltage can be expanded [8,9]. However,
the key to preparing asymmetrical supercapacitors is the selection of suitable positive and negative
materials that can function stably under different potential windows in the same electrolyte [10].
This condition is important for the design and preparation of positive and negative materials for
asymmetric supercapacitors. Carbon-based materials, such as graphene, activated carbon (AC), carbon
fiber, and carbon nanotubes are used as negative materials due to their high electrical conductivity,
high specific surface area, good thermal stability, corrosion resistance, controllable pore structure, and
other unique physical and chemical properties [11–13]. Among them, AC is generally chosen as the
negative electrode material of asymmetric supercapacitors due to the advantages of a high specific
surface area, low cost, and stable performance [14].

Recently, increasing attention has been paid to transition metal sulfides as they exhibit a higher
theoretical capacitance and better electric conductivity than transition metal oxides [15]. The charge
storage mechanisms and the electrochemical properties of transition metal sulfides, such as Ni3S4, CoS,
MoS2, and CuS, have been widely studied as electrode materials in supercapacitors or asymmetric
supercapacitors. However, due to the volume change of sulfide electrode materials during charging and
discharging, they are easily detached from the current collectors, which affects their electrochemical
performances [16]. Therefore, finding a good material becomes a challenge [17]. Although metal
selenide also belongs to the metal chalcogen compounds and can produce a high pseudocapacitance,
few reports on the use of metal selenides in supercapacitors are available to date. The published works
indicate that selenide has a high theoretical specific capacitance and good electrochemical performance.
For example, Wang et al. [18] prepared a cubic NiSe2 electrode material under hydrothermal conditions,
showing a specific capacitance of 1044 F·g−1 at 3 A·g−1, Recently, Huang et al. [19] reported a layered
MoSe2 nanosheet electrode material prepared on a Ni foam substrate by a simple hydrothermal
method exhibiting a high specific capacitance of 1114.3 F·g−1 at 1 A·g−1 and excellent cycle life due to
its specific structure. Zhang et al. [20] prepared a unique double-shelled hollow structure CoSe2/C
composite with heterogeneous intervals between the two shells with a high specific capacitance of
726 F·g−1 at 2 A·g−1.

To further obtain a selenide electrode material with superior electrochemical performances,
we attempt to dope using a pseudocapacitive metal ion, which may lead to a greater abundance
in the redox reactions to produce a high capacitance, and an improvement in the electrochemical
performances due to the complementary advantages of a doped metal ion and the synergistic effects
of the doped metal ion and the host ions.

In this article, Co2+ was doped in situ into a NiSe2 electrode material (Co@NiSe2) grown on
Ni foam using a simple hydrothermal method. The prepared Co@NiSe2 electrode material has a
specific capacitance of 3167.6 F·g−1 at a current density of 1 A·g−1 in 3 M KOH aqueous solution.
Using the Co@NiSe2 electrode material as the positive electrode and AC as the negative electrode,
an asymmetric supercapacitor was assembled to increase the potential window and the energy
density [21,22]. The energy density reaches 50 Wh·kg−1 at a power density of 779 W·kg−1. Thus, the
asymmetric supercapacitor exhibits good electrochemical performance and stable cycle life.

2. Experimental Section

2.1. Materials

Anhydrous ethanol, acetone, 60% aqueous solution of polytetrafluoroethylene (PTFE), urea
(CH4N2O), and acetylene black were purchased from Sinopharm Group Chemical Reagent Co.,
Ltd. (Shanghai, China). Cobalt chloride hexahydrate (CoCl2·6H2O), Nickel chloride hexahydrate
(NiCl2·6H2O), and selenium dioxide (SeO2) were available from Aladdin Industrial Corporation
(Shanghai, China). Nickel foam was purchased from Changsha Liyuan New Material Company
(Changsha, China). AC was purchased from Fuzhou Yihuan Co., Ltd. (Fuzhou, China). All materials
are commercially available and do not require further purification.
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2.2. Preparation of Co@NiSe2

To remove the oxide layer and other impurities on the surface of the nickel foam, the nickel
foam was sonicated in acetone for 2 h, followed by ultrasonication with anhydrous ethanol for 2 h,
repeated washing with distilled water, drying, and allowed to stand. To make the electrode material
grow stably and uniformly on the nickel foam, before the reaction, we trimmed the treated nickel
foam to 1 × 1 cm2 and placed it in a plasma cleaner (PDC-001, Xmcreat, Xiamen, China) for 2 min for
secondary treatment.

Here, we synthesized a Co@NiSe2 electrode material using a simple hydrothermal method. First,
1 mmol of NiCl2·6H2O and 2 mmol of SeO2 were dissolved in 50 ml of deionized water and stirred
until they completely dissolved. Next, 15 mmol CH4N2O was added and continuously stirred at room
temperature for 30 min. Then, a certain amount of CoCl2·6H2O was added to obtain a uniformly
dispersed mixed solution. After the secondary treatment, nickel foam was stably suspended in a
Teflon-lined stainless-steel autoclave with a capacity of 100 mL, and the above dispersed mixed solution
was transferred into the autoclave. Subsequently, the autoclave was sealed in an electric oven at 180 ◦C
for 16 h. After the hydrothermal process was completed, the nickel foam carrying the active material
was taken out and washed several times with distilled water and ethanol. After drying in a vacuum
oven at 80 ◦C for 12 h, a Co@NiSe2 electrode material was finally obtained, and the loading of the active
material was approximately 2.5 mg·cm−2. The samples were named NiSe2, Co@NiSe2-1, Co@NiSe2-2,
and Co@NiSe2-3 for the addition of 0, 1, 2, and 3 mmol CoCl2·6H2O, respectively.

2.3. Assembly of Asymmetrical Supercapacitors

Here, we used the prepared nickel foam loaded with the Co@NiSe2 electrode material as a positive
electrode, AC as a negative electrode, and 3 M KOH aqueous solution as an electrolyte to assemble
asymmetrical supercapacitors. First, we prepared a negative active carbon by a typical method [23].
AC, acetylene black, and polytetrafluoroethylene were dispersed in an appropriate amount of absolute
ethanol at a mass ratio of 8:1:1, and the resulting mixture was sonicated for 2 h and then dried in an
oven at 80 ◦C. Excess ethanol was volatilized off, and the mixture was stirred into gel form. Then,
the gel-like AC was pressed into a sheet using a roller press. The appropriate amount of AC was cut
according to the required amount, and the cut AC sheet was pressed under pressure onto the treated
nickel foam and dried in a vacuum oven at 80 ◦C for 12 h to obtain an AC negative electrode [24].

The most critical problem in the construction of asymmetric supercapacitors is the active material
mass matching of the positive and negative electrodes. Without considering the energy loss due
to internal resistance in an ideal state, when the capacitor was charged and discharged, the charge
conservation principle was used for the calculation, illustrated as follows [25]:

q = Cs × ∆E × m (1)

From Formula (1), the charge storage capacity mainly depends on the mass-specific capacitance
of the electrode (Cs), voltage during charge/discharge (∆E), and the active material mass (m) of the
electrode. To conserve the charge of both positive and negative levels (q+ = q−), the mass ratio of
positive (m+) and negative (m−) electrodes follows Equation (2) [26]:

m+

m−
=

C− × ∆V−
C+ × ∆V+

(2)

2.4. Material Characterization

Phase analysis of the prepared samples was performed on an X-ray powder diffractometer (XRD,
CuKα radiation, Bruker D8 Advance, Karlsrube, Germany). The microstructure and morphology of
the Co@NiSe2 electrode material were observed through field emission scanning electron microscopy
(FESEM, S-4800, Hitachi, Tokyo, Japan) and transmission electron microscopy (TEM, H-7650, Hitachi,
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Tokyo, Japan). Using energy-dispersive X-ray spectroscopy (EDS, INCA Energy, Shanghai, China), the
elements of the sample were qualitatively analyzed. The specific surface area and pore size distribution
of the samples were determined by a fully automatic specific surface area analyzer (BET, Autosorb-iQ,
Altanta, GA, USA).

2.5. Electrochemical Measurements

The most effective way to measure the performance of the supercapacitor is to test the
electrochemical performance of the electrode material. At room temperature, we used the 3 M
KOH aqueous solution as the electrolyte, the platinum wire electrode as the counter electrode, the
saturated calomel electrode as the reference electrode, and Co@NiSe2 on nickel foam was used as the
working electrode. Using an electrochemical workstation (CHI760E, Shanghai Chenhua Instrument,
Shanghai, China), cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) test, electrochemical
impedance spectroscopy (EIS), and cycle life testing were performed on the electrode material.

In general, the capacitance of a supercapacitor reflects the ability to store charge, mainly reflecting
the properties of the electrode material. The GCD test was used to calculate the specific capacitance
(Cs) of the supercapacitor according to Equation (3) [27]:

Cs =
i
m
∫

v dt
v2

2

∣∣∣v f

vi

(3)

where Cs (F g−1) is the specific capacitance; I (A) is the current during discharge; ∆t (s) is the discharge
time; m (g) is the mass of the active material; and ∆V (V) is the potential during the discharge process.

Energy density (E) is an indicator of the performance of a supercapacitor and can directly reflect
the capacitor’s ability to store charge. The energy density is related to the specific capacitance of the
capacitor and the discharge voltage window as illustrated in Formula (4) [28]:

E =
Cs∆V2

7.2
(4)

The power density (P) is another key index that determines the rapid charge and discharge
capacity of a capacitor by Formula (5) [29]:

P =
3600E

∆t
(5)

3. Results and Discussion

3.1. Characterization of Electrode Materials

To accurately show the structure of the prepared electrode material, we performed an XRD test.
Figure 1a shows the blank nickel foam, NiSe2, and Co@NiSe2-2 electrode materials. The XRD pattern,
wherein “�” represents the three very strong peaks (44.5◦, 51.8◦, and 76.37◦), displays the nickel-foam
base (JCPDS no. 04-0850). In addition to the nickel base peaks, the NiSe2 diffraction peaks (JPDS
no. 41-1495) are 29.79◦, 33.40◦, 36.70◦, 50.48◦, and 57.52◦, corresponding to the (200), (210), (211),
(311), and (230) crystal planes, respectively. In the XRD pattern of Co@NiSe2-2, we find a slight
shift in the spectrum presumably due to a small amount of Co doping. In addition, the chemical
composition of the synthesized product was characterized using EDS analysis, as shown in Figure 1b.
The information on Ni, Se, and Co can be seen from the figure, and the surface sample was composed
of the above elements. Moreover, the displayed oxygen may come from the oxygen and moisture on
the sample surface.
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Figure 1. (a) X-ray diffraction (XRD) patterns of blank nickel foam (NF), NiSe2, and Co@NiSe2-2; (b) 
energy-dispersive X-ray spectroscopy (EDS) spectrum of Co@NiSe2-2. 

Figure 2 shows FESEM images of the NiSe2 and Co@NiSe2 electrode materials and TEM images 
of Co@NiSe2-2 at different magnifications. As presented in Figure 2a,b, under this hydrothermal 
condition, a NiSe2 nanowire with a width of about 50 nm can be formed. It is observed that it is 
possible to retain the morphology after doping with Co2+, and increased doping with Co2+ results in a 
decreasing width of the wire (Figure 2c–f). However, for Co@NiSe2-3, the sample exhibits serious 
aggregation (Figure 2g–h). Figure 2i also proves that the morphology of Co@NiSe2-2 is a nanowire 
with the width of about 20 nm. Two different crystal faces are seen from the analysis of Figure 2j. 
The interplanar spacings are d = 0.268 nm and d = 0.1806 nm, corresponding to the (210) and (311) 
crystal faces of the NiSe2 crystal, respectively. The hydrothermal synthesis of the nanowire 
structures can greatly increase the specific surface area of the electrode material, effectively 
increasing the ion transport process and contributing to a higher specific capacitance. 

 

Figure 1. (a) X-ray diffraction (XRD) patterns of blank nickel foam (NF), NiSe2, and Co@NiSe2-2;
(b) energy-dispersive X-ray spectroscopy (EDS) spectrum of Co@NiSe2-2.

Figure 2 shows FESEM images of the NiSe2 and Co@NiSe2 electrode materials and TEM images
of Co@NiSe2-2 at different magnifications. As presented in Figure 2a,b, under this hydrothermal
condition, a NiSe2 nanowire with a width of about 50 nm can be formed. It is observed that it is
possible to retain the morphology after doping with Co2+, and increased doping with Co2+ results in
a decreasing width of the wire (Figure 2c–f). However, for Co@NiSe2-3, the sample exhibits serious
aggregation (Figure 2g–h). Figure 2i also proves that the morphology of Co@NiSe2-2 is a nanowire
with the width of about 20 nm. Two different crystal faces are seen from the analysis of Figure 2j.
The interplanar spacings are d = 0.268 nm and d = 0.1806 nm, corresponding to the (210) and (311)
crystal faces of the NiSe2 crystal, respectively. The hydrothermal synthesis of the nanowire structures
can greatly increase the specific surface area of the electrode material, effectively increasing the ion
transport process and contributing to a higher specific capacitance.
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curves and pore size distributions of the prepared samples. Their specific surface areas, pore 
volumes and pore sizes are listed in Table 1. The adsorption–desorption curves of NiSe2, 
Co@NiSe2-1, Co@NiSe2-2, and Co@NiSe2-3 electrode materials all show the IUPAC-H3 hysteresis 
loop, which is a type of BDDT-IV and belongs to a typical mesoporous structure [31]. The results 
show that with the increase of the Co2+ content of the reactant, the specific surface area increases 
from 54.6 m2·g−1 to the maximum value of 135.2 m2·g−1 (Co@NiSe2-2), before decreasing to 11.5 m2·g−1 
(Co@NiSe2-3). The reason for the enhancement of the specific surface area can be attributed to the 
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for Co@NiSe2. 

Figure 2. Field emission scanning electron microscopy (FESEM) images of (a,b) NiSe2; (c,d)
Co@NiSe2-1; (e,f) Co@NiSe2-2; (g,h) Co@NiSe2-3; (i,j) transmission electron microscopy (TEM) images
of Co@NiSe2-2 electrode materials.

To study the structure and specific surface area of the nanowires of the electrode material in depth,
physical adsorption of nitrogen was used [30]. Figure 3 shows the N2 adsorption–desorption curves
and pore size distributions of the prepared samples. Their specific surface areas, pore volumes and pore
sizes are listed in Table 1. The adsorption–desorption curves of NiSe2, Co@NiSe2-1, Co@NiSe2-2, and
Co@NiSe2-3 electrode materials all show the IUPAC-H3 hysteresis loop, which is a type of BDDT-IV
and belongs to a typical mesoporous structure [31]. The results show that with the increase of the Co2+

content of the reactant, the specific surface area increases from 54.6 m2·g−1 to the maximum value
of 135.2 m2·g−1 (Co@NiSe2-2), before decreasing to 11.5 m2·g−1 (Co@NiSe2-3). The reason for the
enhancement of the specific surface area can be attributed to the thinner nanowire [32]. However, the
aggregation leads to the decrement of the specific surface area for Co@NiSe2.
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Figure 3. N2 absorption–desorption curves and pore size distributions of (a) NiSe2; (b) Co@NiSe2-1;
(c) Co@NiSe2-2; and (d) Co@NiSe2-3 electrode materials.

Table 1. Comparisons of surface area analysis of different electrode materials.

Sample BET (m2·g−1) Pore Volume (cm3·g−1) Pore Size (nm)

NiSe2 54.6 0.5 >30
Co@NiSe2-1 115.7 0.6 >25
Co@NiSe2-2 135.2 0.5 >5
Co@NiSe2-3 11.5 0.05 >25

3.2. Electrochemical Properties of Electrode Materials

Electrochemical Tests of Electrode Materials in a Three-Electrode System

Figure 4 shows the electrochemical performance of a three-electrode system for NiSe2 and
Co-doped NiSe2 electrode materials in 3 M KOH electrolyte. Figure 4a illustrates their CV curves
at a scan rate of 5 mV·s−1 and a potential of 0–0.6 V (vs. Hg/HgO). A reversible redox peak is
observed in the curves during charge and discharge. This phenomenon illustrates that the NiSe2

and Co-doped NiSe2 electrode materials show typical pseudocapacitance characteristics, and the CV
curve of Co@NiSe2-2 surrounds the largest area, indicating that this electrode material can produce
the biggest specific capacitance. Figure 4b shows GCD curves of NiSe2 and Co-doped NiSe2 electrode
materials at a current density of 1 A·g−1. According to these GCD curves, their specific capacitances
are calculated. For NiSe2, Co@NiSe2-1, Co@NiSe2-2, and Co@NiSe2-3 electrode materials, the specific
capacitances are 1091.3, 1249.6, 3167.6, and 580.4 F·g−1, respectively. The enhancement of the specific
capacitance after doping with Co2+ is possibly due to the increase in the specific surface area of the
electrode material and the synergistic effects of Co2+ and Ni2+. This super high capacitance of the
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Co@NiSe2-2 electrode material is higher than those of the previously reported metal selenide electrodes
and some other typical electrode materials, as shown in Table 2.
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Figure 4. (a) Cyclic voltammetry (CV) curves of electrode materials at a scan rate of 5 mV·s−1;
(b) galvanostatic charge-discharge (GCD) curves of electrode materials at a current density of 1 A·g−1;
(c) Nyquist plots of electrode materials (the inset is the enlarged curves at a high-frequency curve
range); (d) equivalent circuit used to fit the Nyquist spectra.

Table 2. Comparisons of supercapacitor performances with past typical materials.

Electrode Material Electrolyte Morphology Structure Specific Capacitance
(F·g−1) Ref.

Co3O4/rGO 2 M KOH Cubic morphology 487 F·g−1 at 5 mV·s−1 [33]
NiO 2 M KOH Nanosheet hollow spheres 600 F·g−1 at 10 A·g−1 [34]

PANI/MoSX 1 M H2SO4 Nanoparticle 48.64 mF·cm−2 at 56.62 µA·cm−2 [35]
GO/PPy 1 M Na2SO4 Nanoparticle 332.6 F·g−1 at 0.25 A·g−1 [36]

NiS 3 M KOH Microflower 1122.7 F·g−1 at 1 A·g−1 [37]
CoS 6 M KOH Nanotubes 285 F·g−1 at 0.5 A·g−1 [38]
NiTe 3 M KOH Nanorods 804 F·g−1 at 1 A·g−1 [39]

CoSe/C 2 M KOH Nanoparticles 726 F·g−1 at 1 A·g−1 [20]
NiSe2 4 M KOH Nano cube 1044 F·g−1 at 3 A·g−1 [18]
MoSe2 6 M KOH Nanosheets 1114.3 F·g−1 at 1 A·g−1 [19]

Co-doped NiSe2 3 M KOH Nanowire 3167.6 F·g−1 at 1 A·g−1 This work

Figure 4c displays the Nyquist plots of NiSe2 and Co-doped NiSe2 electrode materials.
Impedance testing is a characterization of the dynamic characteristics between the electrode material
and the electrolyte [40]. Table 3 shows comparisons of the impedance data of different electrode
materials. Rs is related to the resistances of the current collector, the electrode material, and the
electrolyte. Rct represents the charge transfer resistance. Zw refers to the ion diffusion resistance
in the electrolyte. As can be seen from Table 3, Co@NiSe2-2 has the smallest Rs (0.72 Ω·cm2), Rct
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(0.82 Ω·cm2), and Zw (0.0012 Ω·s−1/2·cm2), which are beneficial; therefore, Co@NiSe2-2 exhibits
superior electrochemical performances. This indicates that the Co@NiSe2-2 electrode has the best
electronic conductivity and the fastest charge transfer rate. Therefore, we chose a Co@NiSe2-2 electrode
material for the following in-depth study.

Table 3. Comparisons of impedance data of different electrode materials.

Sample Rs (Ω·cm2) Rct (Ω·cm2) Zw (Ω·s−1/2·cm2)

NiSe2 1.14 1.45 0.0013
Co@NiSe2-1 0.93 1.48 0.0026
Co@NiSe2-2 0.72 0.82 0.0012
Co@NiSe2-3 0.86 1.11 0.0015

Figure 5 describes the electrochemical tests of a Co@NiSe2-2 electrode material in a 3 M KOH
electrolyte using a three-electrode system. Figure 5a shows the CV curves at different scan rates
(5–50 mV·s−1) for a Co@NiSe2-2 electrode at a potential of 0–0.6 V vs Hg/HgO. The charge and
discharge curves show a pair of reversible redox peaks, indicating that the Co@NiSe2-2 electrode
exhibits typical pseudocapacitance properties. With the increase of the scanning rate, the redox peak
reveals a potential shift, but the shape of the curve does not change significantly. The change signifies
that the electrode material not only had good reversibility but can also work stably at a potential
window of 0–0.6 V vs Hg/HgO [41]. Figure 5b shows the plot of the square root of the scan rate and
the peak current. This figure illustrates that both the oxidation peak and the reduction peak have an
approximately linear relationship with the square root of the scan rate. This condition demonstrates the
redox reaction at the electrolyte/electrode interface, corresponding to quasi reversible and diffusion
control processes [42]. Figure 5c shows the GCD curves of the Co@NiSe2-2 electrode in a potential
window of 0–0.5 V vs Hg/HgO at different current densities. The GCD curves show that each line
does not change linearly. Distinct charging and discharging platforms are observed due to reversible
oxidation and reduction. Using the integral calculation Formula (3) to calculate the specific capacitances
of the Co@NiSe2-2 electrodes, the results are 3167.6, 2697.6, 2079.4, 1572.9, 1202.4, and 885.6 F·g−1 at
current densities of 1, 2, 4, 6, 10, and 15 A·g−1, respectively, as shown in Figure 5d. As the current
density increases, the capacitance declines, signifying that the kinetics of the redox reaction depend
primarily on the diffusion and migration of ions in the electrolyte [43]. The migration and diffusion
rates of electrolyte ions were suppressed at high current densities.

After the three-electrode test on the Co@NiSe2-2 electrode material, we will use the AC electrode
as the negative electrode and the Co@NiSe2-2 electrode as the positive electrode to fabricate an
asymmetric supercapacitor. The electrochemical performance of the capacitor will be further explored
and analyzed.

Figure 6 is a comparison of the CV curves of an AC electrode and a Co@NiSe2-2 electrode at
a scan rate of 5 mV·s−1 in a three-electrode system. As can be seen from the figure, the potential
window of the AC electrode is −1–0 V, and the AC electrode exhibits typical double-layer capacitance
characteristics, whereas the potential window of the Co@NiSe2-2 electrode was 0–0.6 V, showing a
satisfying pseudocapacitance performance.

The asymmetric supercapacitor was composed of an AC electrode as the negative electrode
and a Co@NiSe2-2 electrode as the positive electrode. These two electrodes have a different energy
storage mechanism, potential window, and specific capacitance; thus, they must be in accordance
with the principle of charge storage [44]. At a current density of 1 A·g−1, the specific capacitances of
the Co@NiSe2-2 electrode and the AC electrode are 3167.6 and 253.6 F·g−1, respectively. Therefore,
according to Formula (2) for the calculation of the quality of the AC electrode, we determined the best
quality ratio of positive and negative materials as approximately m (Co@NiSe2-2)/m (AC) = 0.16 and
assembled them into an asymmetric supercapacitor for testing.
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Figure 6. CV curves of the activated carbon (AC) electrode and the Co@NiSe2-2 electrode in a
three-electrode system.

Figure 7a shows the CV curves for the Co@NiSe2-2//AC asymmetric supercapacitor at different
potential windows and a scan rate of 50 mV·s−1. Notably, the CV curve maintains a similar shape in the
potential window of 1 to 1.6 V. When the potential window extends to 1.8 V, a polarized phenomenon
appears. Thus, we can confirm that the asymmetric supercapacitor can be stabilized in the potential
window of 0 to 1.6 V. From the analysis results of the CV curves, we specify the subsequent test
potential window from 0 to 1.6 V. Figure 7b shows the GCD curves of the Co@NiSe2-2//AC asymmetric
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supercapacitor at a current density of 1 A·g−1 under different potential windows. As can be seen from
the figure, all curves show exceptional consistency once again. The results show that the Co@NiSe2-2
electrode has excellent electrochemical performance and stability. Figure 7c reveals the plots of specific
capacitances for NiSe2//AC and Co@NiSe2-2//AC asymmetric supercapacitors at different potential
windows. For both asymmetric supercapacitors, the specific capacitances increase with the increment
of potential window. For the Co@NiSe2-2//AC asymmetric supercapacitor, when the potential
window is from 1 to 1.6 V, the specific capacitance is enhanced from 70.64 to 136.06 F·g−1. Both the
original and enhanced specific capacitances of the Co@NiSe2-2//AC asymmetric supercapacitor are
much higher than those of NiSe2//AC (from 18.16 to 71.31 F·g−1). Figure 7d shows CV curves
of Co@NiSe2-2//AC at different scanning rates of 10–100 mV·s−1 and with the same potential
window of 0–1.6 V. No significant deformation of the CV curve is observed as the scan rate increases.
In addition, each curve presents a similar quasi-rectangular shape, indicating the cooperative behavior
of pseudocapacitive Co@NiSe2-2 electrode and the electric double-layer capacitive AC electrode.
In addition, this phenomenon indicates that this asymmetric supercapacitor has rapid charge–discharge
reversibility. Figure 7e shows GCD curves of the Co@NiSe2-2//AC asymmetric supercapacitor at
different current densities. The specific capacitances at current densities of 1, 2, 4, 5, and 6 A·g−1 are
140.6, 121.2, 98, 88.7, and 80.6 F·g−1, respectively. The specific capacitance for the Co@NiSe2-2//AC
asymmetric supercapacitor at 6 A·g−1 is 57.3% of that at 1 A·g−1 in the case of a sixfold increase in
the current density, which is higher than that for the NiSe2//AC asymmetric supercapacitor (38.9%),
demonstrating that the assembled Co@NiSe2-2//AC asymmetric supercapacitor presents a good rate
performance, as shown in Figure 7f.
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Figure 7. (a) CV curves of Co@NiSe2-2//AC asymmetric supercapacitor at a scan rate of 50 mV·s−1

at different potential windows; (b) GCD curves of Co@NiSe2-2//AC asymmetric supercapacitor
at different potential windows at a current density of 1 A·g−1; (c) plots of specific capacitances
for NiSe2//AC and Co@NiSe2-2//AC asymmetric supercapacitors at different potential windows;
(d) CV curves of Co@NiSe2-2//AC at different scanning rates; (e) GCD curves of Co@NiSe2-2//AC
asymmetric supercapacitor at different current densities; (f) plots of specific capacitances for
NiSe2//AC, Co@NiSe2-2//AC asymmetric supercapacitors at different current densities.

Figure 8a shows the Ragone plots of NiSe2//AC and Co@NiSe2-2//AC asymmetric
supercapacitors, which refer to the relationship of energy density and power density derived from
GCD curves at different current densities. The Co@NiSe2-2//AC asymmetric supercapacitor can
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reach the maximum energy density of 50 Wh·kg−1 at a power density of 779 W·kg−1, which exceeds
that of the NiSe2//AC asymmetric supercapacitor (34.8 Wh·kg−1 at 998 W·kg−1), and those of
most previously reported NiSe2-based supercapacitors [18–20]. Figure 8b shows the cycle life for
NiSe2//AC and Co@NiSe2-2//AC asymmetric supercapacitors over 4000 charge-discharge cycles at
a constant current density of 1 A·g−1. Both capacitors exhibit an increase in capacitance in the first
200 cycles, which is assigned to the activation process [45], and then present a decrease in capacitance.
After 4000 cycles, the capacitance retention rate for the Co@NiSe2-2//AC asymmetric supercapacitor
is 79.4%, which is higher than that of the NiSe2//AC asymmetric supercapacitor (57.9%), indicating
good cycling stability.Materials 2018, 11, x FOR PEER REVIEW  12 of 14 
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The possible reasons for the superior electrochemical performances of Co@NiSe2-2//AC
asymmetric supercapacitor are shown as follows: 1) This unique nanowire structure is beneficial
to the transfer of electrons; 2) the doping of Co2+ into NiSe2 can increase the specific surface area,
leading to an increase in the use of active material; 3) the direct growth of the electrode material onto
the current collector (Ni foam) does not require extra binder and conductive additive, avoiding a
decline in the electrochemical performance caused by obstruction of the hole in the electrode material.

4. Conclusions

The Co@NiSe2 electrode material with a nanowire structure was synthesized by a simple
one-step hydrothermal method with nickel foam as the supporter. Proper doping of Co2+ into
NiSe2 can greatly improve the electrochemical performances of electrode material. The specific
capacitance of the Co@NiSe2-2 electrode can reach up to 3167.6 F·g−1 at the current density of 1 A·g−1.
This Co@NiSe2-2 electrode as the positive electrode assembled with AC as the negative electrode lead
to a Co@NiSe2-2//AC asymmetric supercapacitor. The asymmetric supercapacitor can reversibly work
in the potential window of 0-1.6 V, shows a high energy density of 50 Wh·kg−1 at a power density of
779 W·kg−1. In addition, after 4000 charge-discharge cycles, a retention rate of 79.4% can be achieved.
The results show that the obtained Co@NiSe2-2 electrode material has potential as a supercapacitor
electrode material.
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